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Abstract— Gait is an essential function for humans, and gait
patterns in daily life provide meaningful information about
a person’s cognitive and physical health conditions. Inertial
measurement units (IMUs) have emerged as a promising tool
for low-cost, unobtrusive gait analysis. However, large varieties
of IMU gait analysis algorithms and the lack of consensus for
their validation make it difficult for researchers to assess the
reliability of the algorithms for specific use cases. In daily life,
individuals adapt their gait patterns in response to changes in
the environment, making it necessary for IMU gait analysis
algorithms to provide accurate measurements despite these
gait variations. In this paper, we reviewed common types
of IMU gait analysis algorithms and appropriate analysis
methods to evaluate the accuracy of gait parameters extracted
from IMU measurements. We then evaluated stride lengths
and stride times calculated from a comprehensive double
integration based IMU gait analysis algorithm using an
optoelectric walkway as gold standard. In total, 729 strides
from five healthy subjects and three different walking patterns
were analyzed. Correlation analyses and Bland-Altman plots
showed that this method is accurate and robust against large
variations in walking patterns (stride length: correlation
coefficient (r) was 0.99, root mean square error (RMSE) was
3% and average limits of agreement (LoA) was 6%; stride
time: r was 0.95, RMSE was 4% and average LoA was 7%),
making it suitable for gait evaluation in daily life situations.
Due to the small sample size, our preliminary findings should
be verified in future studies.

I. INTRODUCTION

Gait is an important indicator of a person’s cognitive
and physical health, and gait speed has been found to
correlate with a person’s health status, functional decline,
and even mortality [1][2]. Clinical gait analyses are
routinely conducted by medical professionals during the
treatment or rehabilitation process of neurological disease
patients or stroke patients [3]. Gait can be quantified
using spatio-temporal parameters such as stride length,
stride time, clearance, and gait speed. In a laboratory
setting, multi-camera systems or instrumented walkways
can assess gait parameters with high accuracy, however, the
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costs and efforts of setting up such systems are very high [4].

A. Gait Analysis with Inertial Measurement Units (IMUs)

The ultimate goal of rehabilitation is to regain mobility
in daily life, which means that the assessment of the
rehabilitation process should also be continuously carried
out after the patients are discharged from the rehabilitation
clinic. In order to provide personalized and pervasive
healthcare, low-cost and unobtrusive methods for gait
analysis is needed. Inertial measurement units (IMUs)
is often used for this purpose. In fact, estimating gait
parameters using IMUs has been intensively investigated
over the past years, and the approaches can be summarized
in three broad categories: 1) Model based approaches,
where the legs are modelled as double pendulums. By
combining gyroscope data and an individual’s leg length,
gait parameters such as stride length, swing- and stance time
can be estimated [5][6]. 2) Machine learning approaches,
where a set of features extracted from the sensor data
is used for directly estimating gait parameters [7][8]. 3)
Double integration approaches, which is based on the
physical principles of acceleration and angular velocity, and
applies sensor fusion methods to calculate spatio-temporal
gait parameters [9][10].

B. Validating Gait Analysis Algorithms with Gold Standards

Despite their advantage of low-cost and convenience
compared to traditional gold standards in gait analysis, IMU
gait analysis methods have to cope with the integration
drift problem that may lead to large errors of positional
estimates in the integration results. Therefore, it is crucial for
researchers to understand ways of evaluating the agreement
of the IMU algorithms with gold standards.

The various gold standards used for evaluating IMU
gait analysis algorithms can be divided into three major
categories. 1) Putting artificial restrains to walking,
such as limiting the subject to walk with fixed stride
length, or estimating only total distance covered by the
subject. These methods are simple but less robust. 2)
Instrumented walkways, which offer more detailed and
reliable measurements on gait parameters. Examples from
this group of methods include: treadmill with pressure
sensors (h/p/cosmos) [11], pressure sensitive walkway
(GAITRite R©) [12], and walkway with optical sensors
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(OptoGait) [13]. 3) Multi-camera systems, such as Vicon [4]
or Qualisys [14] systems, which also provide detailed
movement parameters and are commonly used for gait
assessment.

In terms of the metrics used for evaluating the accuracy
of the gait parameters, stride-by-stride evaluation provides
more information compared to average values. Typically,
gait analysis methods are evaluated on the basis of their
agreement with a gold standard on the same measurements.
According to a systematic review by Zaki et al. [15],
the most commonly used measures of agreement are 1)
Bland-Altman plot, which is a scatter plot of the difference
between two measures against the average of those two
measures, and limits of agreement (LoA) at 1.96 standard
deviation that reflect the agreement between the assessed
methods. In the case of gait analysis, one can simply plot
the measurements from the gold standard method (e.g.
stride lengths from OptoGait) as the x axis - since the
gold standard methods are known to be reliable. Because
the LoA is determined by the standard deviation, this
method is robust against outliers. 2) Correlation analysis,
which can be nicely visualized using a scatter plot with
measurements obtained from the two methods as x- and
y axis. The regression line shows the linear relationship
between the two measurements. In the case of gait analysis,
ideally, all the stride lengths from IMU should be the same
as the ones from the gold standard system, resulting in a
regression line of y = x+0 and correlation coefficient of 1.
Other commonly used metrics to compare the evaluated gait
parameters estimated by an algorithm and measured by the
reference system include: comparing means, significance
tests, intra-class correlation coefficient (ICC), mean error
and standard deviations [15].

C. Aim of the Study

The aim of the study is to validate the accuracy of the
gait analysis algorithm proposed by Tunca et al. [10], and
evaluate its potential to be used in daily life. This algorithm
provides an extensive set of gait parameters, and the authors
reported high accuracy for both spatial- and temporal gait
parameters compared to similar studies [16]. However, one
limitation of the study is that the gait parameters were
validated with a Kinect camera and a slow-motion camera,
both of which lack proof of their own accuracy.

Therefore, in this study, we validated spatio-temporal
gait parameters calculated from the algorithm by comparing
them to a gold standard. By analyzing different stride
lengths (short, normal, long) that were made intentionally
by the same subject, we investigated the ability of the
algorithm to account for large intraindividual variations
in the gait pattern, which might occur in daily life situations.

II. METHODS

A. Experimental Setup

Physiolog R©5 IMUs (Gait Up, Switzerland) were used
for data collection, with sampling rate at 128 Hz. The
Gait Up company also provides a comprehensive gait
analysis solution (PhysiGait Lab), which has been validated
and used in large number of studies [17][18]. Since we did
not intend to reevaluate the Gait Up algorithm, only the raw
data from the IMUs, but not the PhysiGait Lab analysis
results, were used in the current study.

An OptoGait system (Microgait, Italy) was used as
a reference for assessment of the spatio-temporal gait
parameters [19][20]. The system consists of two 10-meter
photoelectric cell bars, one for signal transmission and
the other one for signal reception. Once the recording is
initiated, the system detects the time and location of signal
interruption - caused by subject’s feet movement while
walking between the bars - and outputs spatio-temporal gait
parameters, such as stride length, stance- and swing times,
and walking speed. The optical sensors have a sampling
rate of 1000 Hz and spatial resolution of 1.041 cm [13].

Five young, healthy subjects were recruited for the
experiments. In each experimental session, two IMUs were
fixed on the top of the left- and right shoes of the subject.
Upon receiving detailed instructions about the procedure,
subjects walked between the OptoGait bars six times for a
total distance of 60 m and stopped outside of the OptoGait
area. Each subject was asked to perform three walking
sessions in total: 1) short strides, without the feet overlapping
in the anteroposterior direction during double-support phase,
as this might cause problems for the OptoGait foot detection
mechanism, 2) normal strides, 3) long strides, but still
with double-support (not running). Apart from the above
mentioned restrictions, subjects were allowed to walk with
their own preferred patterns. This protocol helps to create
more variations of gait patterns, thus simulating possible
strides in daily life. Whenever applicable, the study design
was in line with the guidelines for clinical applications of
spatio-temporal gait analysis [21]. The study was approved
by the ethics committee of the University of Potsdam and
all experiments were conducted according to the latest
revision of the declaration of Helsinki. Fig. 1 shows the
experimental setup.

B. Data Analysis

IMU data was analyzed using a gait analysis algorithm
based on the study by Tunca, et al. [10]. In short, the
method takes raw acceleration and gyroscope data as
input, identifies stance phases using zero-velocity update,
and employs an error-state Kalman filter to estimate the
3D positions over time of the feet for each stride. Foot
orientation was determined by a particle filter, thus the
turning steps made by the subject outside the OptoGait area
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Fig. 1: Experimental Setup. Left: the 10-meter OptoGait walkway. Right:
the IMUs were fixed on top of the shoes.

could be recognized and excluded from our analysis. A set
of spatio-temporal gait parameters such as stride length,
stride time, clearance and stance /swing ratio could be
obtained for each stride. By aggregating individual stride
data, it also is possible to obtain information about average
values, variations, and left-right asymmetries.

In this study, we compared the stride lengths as well as the
stride times calculated from the gait analysis algorithm with
those measured by the OptoGait system using correlation
analysis and Bland-Altman plots. The validation of swing
times, instead of stride times, was reported in the original
study of the gait analysis algorithm [10]. However, for
the OptoGait system, the optical centre of the sensors are
elevated to 3 mm above the lower edge of the bars (i.e.
ground level), this causes the system to detect ground
contact slightly earlier than the actual time (when the foot
hits the ground), and foot-off later than the actual time, thus
resulting in a shorter swing phase and longer stance phase.
Therefore, the gait cycle time (sum of stance- and swing
phase) will be a more reliable parameter for validation. The
strides calculated from the gait analysis algorithm and those
detected by the OptoGait system were matched using the
timestamps of ground contact recorded from the IMUs and
the OptoGait system. The first and last strides made at the
ends of the OptoGait walkway were discarded, since some
of these strides were only partially inside the OptoGait
walkway, and the gait parameters (e.g. stride length, stride
time) were incomplete.

III. RESULTS
In total, 729 strides were used in this study to validate

the stride lengths and stride times estimated from the
IMU algorithm. Table I summarizes correlation as well as
agreement between the two measurements.

Fig. 2 shows the validation for stride lengths. Linear
regression indicated high correlation between the stride
lengths from IMU algorithm and from the OptoGait
measurement. The correlation coefficient was 0.99, and
the regression line was y = x − 0.05, with root mean

square error (RMSE) of 0.05 m (3%). The average limits
of agreement (LoA) from Blant-Altman plot was 0.09 m
(6%). The results highly agree with the original study of
the algorithm, where the authors reported r2 of 0.98, the
regression line at y = 0.97x+ 0.02, with RMSE of 0.05 m,
and the LoA was 0.09 m [10]. Since the algorithm relies
on a fixed sampling rate, the bias of 0.05 m in our analysis
could be the result of a small error in the real sampling
rate of the IMUs. Once the exact error is identified and
corrected, the stride length calculations could be improved.
It is worth noting that the original study only included
strides with lengths less than 1.5 m, but not the large
strides (mostly 1.5 m to 2 m) analyzed in this study. In our
analysis, the larger errors of the long strides reduced the
accuracy of the overall stride length estimations. The fact
that the overall accuracy of stride length estimations from
our analysis matched those of similar studies, despite larger
variations in stride characteristics, indicates the robustness
of the algorithm for real-life scenarios.

Fig. 3 shows the validation for stride times. The
correlation analysis and the Blant-Altman plot also showed
high accuracy of the selected temporal parameter, with
a correlation coefficient of 0.95, the regression line of
y = x + 0.01, RMSE of 0.04 s (4%), and the LoA of
0.08 s (7%). The stride time is larger than swing time,
resulting in larger error values for the same measurement
accuracy. Therefore, the results here for stride time were
also consistent with those for swing time reported in the
original study, where the r2 was 0.95, the regression line
was y = x + 0, RMSE was 0.02 s, and the LoA was
0.04 s. Similar to the results for stride lengths above, the
errors from the stride times were larger for big strides, and
the overall accuracy for the gait analysis algorithm was
comparable to similar studies, indicating that the algorithm
is robust for daily life gait measurements.

Overall, the results from our study are also comparable
to similar IMU gait analysis algorithms. Since studies
measured different populations and gait paramters, and
various metrics could be used for evaluation of the gait
parameters, one-to-one comparisons between studies are
not always possible. As examples of comparable results for
young healthy subjects, Yeo et al. reported average LoA of
0.08 m for stride length and 0.08 s for stride time [16], and
Hori et al. reported correlation coefficient of 0.98 for stride
length and 0.99 for stride time [22].

IV. CONCLUSIONS

In this study, we validated a double-integration based
algorithm proposed by Tunca et al. [10] and showed
that the spatio-temporal gait parameters estimated by the
algorithm have high accuracy compared to a gold standard
dedicated to measuring spatio-temporal gait parameters. In
contrast to the great majority of gait analysis studies where
subjects were asked to just walk normally, the current study
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Fig. 2: Validation of stride lengths by comparing values from IMU and
OptoGait. Left: Correlation plot, Right: Bland-Altman plot. S: short strides,
N: normal strides, L: long strides

Fig. 3: Validation of stride times by comparing values from IMU and
OptoGait. Left: Correlation plot, Right: Bland-Altman plot. S: short strides,
N: normal strides, L: long strides

explored possible variations of walking patterns by asking
the same healthy subjects to walk with short-, normal-, and
long strides. It is worth emphasizing that the long strides
showed larger deviations from the OptoGait measurements
for both stride length and stride time compared to other
strides. Nevertheless, our analysis demonstrated that the
current algorithm is capable of estimating spatio-temporal
gait parameters with high accuracy comparable to similar
studies which only evaluated short- and normal strides.
Therefore, the evaluated IMU gait analysis algorithm is
robust against intraindividual gait variations and is suitable
for gait monitoring in daily life situations. Due to the rather
smal sample size of this study, we interpret our findings
as preliminary and suggest that they should be verified in
future studies.
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