
 

 

 

  

Abstract— Street crossing can be a significant challenge for 

visually impaired people, limiting their mobility especially in 

urban environments. To date, there are few solutions for this 

significant problem. Current approaches for guiding blind 

pedestrians in crosswalks have mainly focused on detection of 

crosswalks and crosswalk signals. Few studies have taken into 

consideration the mobility of a visually impaired person while 

street crossing. We programmed a commercially available,  

wearable goggle system to detect crosswalk signals, to plan a 

path across the street, and to provide verbal guiding cues with 

real-time semantic features to keep the user on the correct path. 

During verification testing, we found crosswalk signal detections 

were typically reliable but depended on hyper-parameters to 

reduce false positive errors in the crosswalk signs in a small 

number of cases. Testing with visually impaired subjects 

resulted in successful guidance at an outdoor crosswalk. 

 
Clinical Relevance— Independent and safe mobility is a 

significant problem for people with visual impairment. Our 

work shows a way to improve the safety of blind travelers by 

guiding them at street crossings. 

I. INTRODUCTION 

People with visual impairment (VI) report challenges such 
as the ability to travel independently which further limited 
their mobility and led to loss of independence, depression, 
reduced quality of life and an overall decline in health [1]. To 
address this important issue, we propose a wearable assistive 
technology that could guide orientation and mobility (O&M).  
for individuals with VI. The specific module we report here 
aids street crossing at signalized crosswalks. Using the system 
that we describe in this paper, algorithms interpret the 
environment, plan a path, and provide simple cues to the user 
about when and how to proceed. We use crosswalk navigation 
as a specific scenario that requires several visual tasks: 
locating the crosswalk signal, determining the state of the 
signal, and walking from one end of the crosswalk to the other. 
We tested our device in blind users and demonstrated 
successful crosswalk guidance and important design 
considerations for future systems. 

Several prototype devices for crosswalk navigation have 
been reported. CrossNavi detects the large white stripes found 
in many crosswalks using a smartphone camera and app. The 
system maintains subject heading within the detected 
crosswalks with a customized cane [2], but does not detect the 
state of the crosswalk signal. Cross-safe uses a commercial 
stereo vision device to help detect the state of crosswalk signs, 
using neural networks[3]. It did not provide feedback guidance 
for mobility. Cross-safe was not tested on visually impaired 
subjects [4].  
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Our research is unique in that we created a completely self-
contained detection and guidance system on a commercial, 
wearable HMD. No special infrastructure (e.g. beacons), bulky 
hardware and sensors, or wireless connectivity was required. 
Our system has been tested with visually impaired subjects in 
both simulated and real crosswalks.   

II. METHOD 

Our navigation assistive device utilized a commercially 

available smart goggles, programmed with a custom set of 

algorithms. The algorithms had two main tasks: 1) detection 

and classification of crosswalk signals (see II.A) and 2) 

guiding users to their destination (across the target crosswalk) 

(see II.B). These two modules were implemented on the ODG 

R7 smart glasses (Osterhout Design Group see Fig. 1). Fig. 2 

shows the block diagram of a full software pipeline. The 

pipeline operated in near real-time at 10 frames/second, which 

is adequate for this application. 

 
Fig. 1: ODG R7 smart glasses. The smart glasses had a Qualcomm 

Snapdragon 805 2.7 GHz quad-core processor, a monocular camera, diagonal 
30-degrees field of view, 10-degree vertical field of view, a Bluetooth link, 

and an Inertial Measurement Unit (IMU) sensor. 

 

 
Fig. 2: Block diagram of full pipeline of the system. The new frame was the 

input frame from the smart glasses. Each module ran dependent on its current 
state. 

A. Detection and Classification Module 

The detection and classification module contained a 

cascade classifier [5] using LBP features [6] to set a region of 

interest (ROI) for the crosswalk signals, which were classified 

as “safe-to-cross” or “do-not-cross”. Both ROI detection and 

signal classification required high accuracy and real-time 

performance. This was important because wrong 

classification could cause the user to move forward despite a 

“do-not-cross” signal. Furthermore, real-time performance 
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was needed since delays could result in the detection of the 

“safe-to-cross” sign being missed. 

1) Classification of ROI 

A simple convolutional neuron network (CNN) was used 

to classify the ROI. The network’s structure had four blocks 

consisting of two convolution layers and a max-pooling layer. 

A batch normalization layer [7] was inserted after every 

convolution layer and a dropout layer attached after each max 

pooling layer. There were two fully connected layers to 

classify the inputs. Three different classes were used: “do-not-

cross”, “safe-to-cross”, and “background”, utilizing transfer 

learning with VGG16 parameters [8]. Any input not classified 

as “do-not-cross” or “safe-to-cross” was classified as 

“background”. The background training data avoided 

overfitting as our target images did not have many features 

and the network was liable to overfitting. More sophisticated 

CNN are available (e.g. Yolov3 [9]), but could not be used 

due to computational resource limits on the R7 glasses. For 

CNN training and testing, ten video sets were recorded, each 

video set had 8different crosswalks. 12,450 images were used 

for training and 791 sets were used for testing. 

2)  Tracking 

The ROI tracker combined the Median Flow tracker [10] 

and a cascade classifier with classification by CNN to adjust 

for the different zoom levels between the two task modules 

and to set the crosswalk signal as a landmark. The tracker was 

used for both tasks: 1) detection and classification and 2) 

navigation (Fig. 4). If the cascade classifier detected the ROI, 

then this location was used for localization. In cases when the 

cascade classifier did not detect the ROI in a given frame, then 

the ROI was tracked only by the Median flow tracker. 

B. Navigation Module 

The navigation module localized the user relative to the safe 

path and provided real-time audio feedback to keep the user 

within the safe path boundary. Red texture plates at each end 

of the crosswalk were used as start and end points.    

1) Visual-Inertial Odometry with Geometry Constraints. 

Visual- Inertial Odometry was used to localize the user’s 

current position, which was mapped onto a grid for path 

planning. Geometry constraints were determined by detected 

crosswalk signs as a landmark. To update the user’s position 

as they walked, a Visual-Inertial Odometry estimator was 

used, based on the quaternion kinematics error-state extended 

Kalman filter [11]. Updating user position involved a 

prediction step and a correction step. IMU pre-integration 

with sensor fusion of accelerometer and gyroscope was 

utilized in the prediction step of the Kalman Filter. Results 

from solving the perspective-n-point problem with matched 

3D virtual coordinate of the detected crosswalk sign and 2D 

image pixel points were applied in the correction step of the 

Kalman filter.  

2) Path Planning 

The goal of path planning was to keep the user on a safe 

path. The local area was divided into a 31 x 50 grid for the 

outdoor crosswalk. Each grid was 50 cm x 50 cm. For every 

pose estimation, an A* algorithm [12] was performed 

iteratively. The A* search was used to find a path with the 

least nodes using path cost and heuristics. A difference 

between the current grid and desired grid on the preferred path 

prompted cues such as “veer left” or “veer right” to direct the 

user back to the safe path.  

3) Audio Feedback 

Audio feedback was incorporated as system guiding cues. 

The following five verbal commands were electronically 

synthesized to guide the user while street crossing: standby, 

veer left, veer right, forward and arrived. The commercially 

available smart glasses included ear buds that magnetically 

attached to the headset to provide audio to the user.   

III. RESULTS 

A. Verification with sighted subjects 

Two sighted persons were tested as controls. They verified 

the systems correct operation in both indoor (Fig. 3) and 

outdoor (Fig. 4) settings, in different seasons and weather 

conditions and at multiple crosswalks.  

B. Accuracy of region of interest classification 

Table 1 shows the confusion matrix results for the ROI 

classification accuracy for two test sets: 1) a collection of 

crosswalk signal images including purposefully distorted or 

badly cropped images and 2) frames from video recorded 

during outdoor testing in sighted persons on three different 

days. The outdoor crosswalk signal results show that the 

classification algorithm worked correctly in a variety of 

weather, time, brightness, and scale of the ROI.  

 
Table 1: The plain text showed the results when purposefully distorted test 

images were included. The bold text shows the classification results at 15 
different outdoor crosswalks at 3 different intersections on 3 different days. 

 

labels 

Results of Classification 

safe-to-cross do-not-cross Background 

“safe-to-

cross” 

197/217 

(90.7%) 

60/60 

(100%) 

5/217 

(2.3%) 

0/60 

(0%) 

15/217 

(6.9%) 

0/60 

(0%) 

“do-not-

cross” 

1/304 

(0.003%) 

0/975 

(0%) 

257/304 

(0.845%) 

975/975 

(100%) 

46/304 

(0.151%) 

0/975 

(0%) 

Background 

4/270 

(0.148%) 

0/5 

(0%) 

1/270 

(0.003%) 

0/5 

(0%) 

265/270 

(0.981%) 

5/5 

(100%) 
 

C. Experiment with visually impaired subjects 

The University of Michigan Institutional Review Board 

approved the study. After informed consent, three visually 

impaired subjects participated in the study. All had self-

reported difficulty with street crossing. Two of the subjects 

used guide dogs and one used a cane; their testing was 

performed both in indoor and outdoor settings, at a single 

crosswalk. Indoor testing (Fig. 3) was a 8.87m simulated 

crosswalk in a conference room. A video of the crosswalk 

signals was displayed to mimic an outdoor crosswalk.  A real 
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crosswalk was used for outdoor testing and was 14.87 meters 

in length. For safety, several experimenters flanked the user 

while they were in the crosswalk and were ready to intervene 

if any hazardous situation arose. Successful completion of a 

trial required the subjects to start at the correct time and finish 

at the specific endpoint. Hardware failures (e.g. dead battery) 

were not included as trials. 

 

 
Fig. 3: Indoor crosswalk testing environment used to train the subjects. The 

monitor displayed a video of the crosswalk changes from “do-not-cross” to 
“safe-to-cross” 

 

 
Fig. 4: System verification test carried out in winter, with sighted subjects. 
(Top Left) – The crosswalk signal has been located and the safe-to-cross 

symbol detected. The system provides the verbal cue “forward”, which is also 

displayed at the center of the screen. (Top Right) The subject has drifted to 
the left of the preferred path. The system detects the position and provides 

the verbal cue “veer right”. (Bottom Left) The user has responded to the cue 

and is now on the correct heading, which is confirmed by the verbal cue 
“forward”. (Bottom Right) The user has reached the destination and is 

provided the verbal cue “stop”. 

Subject S001 had retinitis pigmentosa with visual acuity of 

20/800. He uses a guide dog but did not use the animal during 

testing. He could locate the indoor monitor but could not see 

details of what was displayed. During outdoor crosswalk 

testing, he used the sound of the traffic as a guidance cue. 

S001 completed 7/11 indoor trials and 4/4 outdoor trials. 

Battery loss limited this subject’s outdoor trials to 4. 

 Subject S002 had severe retinitis pigmentosa with bare 

light perception vision. He had an Argus 2 retinal prosthesis 

(which was not powered during the testing). He navigated 

with the aid of a guide dog but chose not to use the animal 

during testing. The guide dog required handling which led to 

1) diverted attention 2) sudden movement which resulted in 

loss of crosswalk signal tracking and 3) the dog being 

uncomfortable indoors. Initially, S002 walked slowly and 

cautiously and “side-stepped” during his experiment but 

adapted in later trials. Comparing the number of steps taken 

on the indoor course, S002 needed more steps than either 

S001 or S003 (see Fig. 5). He completed 8/11 indoor trials. 

His outdoor crosswalk testing was unsuccessful. He had 

difficulty when attempting to position the crosswalk signal in 

the camera’s FOV due to his extreme blindness. Also, weather 

conditions reduced the ROI detection rate (bright sunlight on 

the crosswalk signal which reduced contrast).   

Subject S003 had no measurable visual acuity (best vision   

was detection of motion) from combined retinopathy of 

prematurity and secondary glaucoma. He could not see the 

crosswalk sign but could see the stripes in the crosswalk, 

which he used as orientation cues, in addition to a white cane 

to navigate. He completed 8/11 indoor trials and 7/10 outdoor 

trials. In the three failed outdoor trials, the subject received a 

stop command prior to reaching the endpoint, due to 

inaccurate position estimation. The investigators walking 

with him instructed him to take a few more steps, which he 

did to reach the endpoint. 

Both S001 and S003 were able to complete the outdoor 

crosswalk in the time allowed by the crosswalk, meaning the 

signal was either “safe-to-cross” or blinking “do-not-cross” 

while they were navigating. 

IV.   DISCUSSION 

A crosswalk navigation system was demonstrated in 

visually impaired patients. The users however needed 

assistance for proper alignment with the crosswalk since the 

magnified camera setting needed for signal classification 

resulted in a narrow camera field of view. During training, the 

subjects learned how to adjust their mobility based on audio 

feedback received. For example, when the subjects’ made 

sharp turns, tracking of the crosswalk sign was lost, which led 

either to lost time when attempting to recover to the crosswalk 

path or to experiment failure due to lost tracking. For 

example, S003 initially interpreted the “veer left” command 

as a 45 degree turn. To train them on how to respond, we used 

a sighted guide approach, where the user held the arm of an 

investigator, who spoke commands and demonstrated the 

degree of turn they should use. This helped the users adjust 

their responses. After training, simple verbal cues were 

effective in guiding the subjects, consistent with our earlier 

studies [13]. Use of bone conduction headphones is 

recommended so that the ear canal, and natural hearing, are 

available for the users since they often rely on environmental 

cues for navigation. 

We demonstrated some key requirements for a crosswalk 

navigation system, which included performing verification 

testing at the crosswalks in different conditions. Test data the 

included distorted images resulted in 91% accuracy, a number 

which was too low for a safety critical function. However, 

improved ROI detection allowed 100% accurate classification 

of “safe-to-cross” and “do-not-cross” states under a variety of 

conditions and novel crosswalks not used in classifier 

training. In spite of our effort to gather training data under a 

wide range of conditions, a novel condition was encountered 

(bright sunshine on the crosswalk sign) that decreased the 

ROI detection rate for S002 outdoor testing. Methods for 

improving ROI detection are needed for future systems. 
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Fig. 5: Footstep maps from indoor (left) and outdoor (right). Top view of each 

course. Each shape represents a step taken by the user while completing the 
trial. Representative data shown. Indoor Maps. The filled shapes represent 

trial 1 and the open shapes represent trial 2 (from 11 trials indoors). The light 

grey, open rectangles indicate floor plates, which were used as reference 
points for analysis of video. The light grey, filled rectangle on the top 

represents the end point. In trial 1, Subject S002’s steps were closer together 

and he required more steps vs. S001 and S003. S002 adapted quickly, as 
shown in trial 2. Outdoor Maps. S001 and S003 maps.  Three trials are 

shown with colors indicating different trials. The pink rectangles represent 

the start and end points and the white rectangles represent the crosswalk 
stripes. During 1 trial (green boxes), S003 walked out of crosswalk but 

recovered his path using guiding cues. 

During testing in sighted persons, there was no loss of 

crosswalk signals because the subjects’ movements were 

stable. On the other hand, visually impaired users lacked 

visual feedback required to point the camera towards the 

crosswalk signal. This required the investigators to guide the 

subjects’ heads until the crosswalk signal was in view of the 

camera. In the case of S002, this was not possible. Cameras 

with both higher resolution and wider FOV are needed to 

address this issue, so that magnification is not required to find 

the ROI. However, the larger image size will increase 

computational demand. The use of prior maps and algorithms 

for localization of the user within these maps, regardless of 

head position, is the ultimate solution to the localization 

problem. Collision avoidance was not considered, that is we 

assumed the crosswalk would be a free path. Other 

pedestrians and cars encroaching on the crosswalk are 

potential hazards.  Although it is well known that sighted 

pedestrians typically will yield to users of a white cane or a 

guide dog, real-time obstacles detection must be added to our 

system to account for dynamic changes in the environment 

and path correction based on these changes. 

V.  CONCLUSION 

In summary, our crosswalk navigation system was able to 

guide blind users safely at a crosswalk. Signal state 

classification was excellent but depended highly on 

successful ROI detection. In the controlled indoor setting, 

detection was more consistent and such a setting may be an 

important first step for training people to use such a device. 

Navigation utilizing simple verbal cues was effective, once 

the users were trained. However, we uncovered some 

challenges and limitations to the current approach. Proper 

aiming of the camera was difficult due to magnified camera 

settings and lack of visual feedback in the VI test subjects. An 

extensive training set is needed to ensure robustness under a 

wide variety of conditions which can affect image contrast. 

These findings will incorporated into the redesign of our 

system, followed by testing in a wider pool of individuals. 
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