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José Raniery Ferreira Junior1,#, Diego Armando Cardona Cardenas1,#, Ramon Alfredo Moreno1,
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Abstract— Pneumonia is one of the leading causes of child-
hood mortality worldwide. Chest x-ray (CXR) can aid the
diagnosis of pneumonia, but in the case of low contrast
images, it is important to include computational tools to aid
specialists. Deep learning is an alternative because it can
identify patterns automatically, even in low-resolution images.
We propose herein a convolutional neural network (CNN)
architecture with different training strategies towards detecting
pneumonia on CXRs and distinguishing its subforms of bacteria
and virus. We also evaluated different image pre-processing
methods to improve the classification. This study used CXRs
from pediatric patients from a public pneumonia CXR dataset.
The pre-processing methods evaluated were image cropping
and histogram equalization. To classify the images, we adopted
the VGG16 CNN and replaced its fully-connected layers with
a customized multilayer perceptron. With this architecture,
we proposed and evaluated four different training strategies:
original CXR image (baseline), chest-cavity-cropped image
(A), and histogram-equalized segmented image (B). The last
strategy method (C) implemented is based on ensemble between
strategies A and B. The performance was assessed by the area
under the ROC curve (AUC) with 95% confidence interval (CI),
accuracy, sensitivity, specificity, and F1-score. The ensemble
model C yielded the highest performances: AUC of 0.97 (CI:
0.96–0.99) to classify pneumonia vs. normal, and AUC of 0.91
(CI: 0.88–0.94) to classify bacterial vs. viral cases. All models
that used pre-processed images showed higher AUC than base-
line, which used the original CXR image. Image cropping and
histogram equalization reduced irrelevant information from
the exam, enhanced contrast, and was able to identify fine
CXR texture details. The proposed ensemble model increased
the representation of inflammatory patterns from bacteria and
viruses with few epochs to train the deep CNNs.

Clinical relevance— Deep learning can identify complex
radiographic patterns in low contrast images due to pneumonia
and distinguish its subforms of bacteria and virus. The corre-
lation of imaging with lab results could accelerate the adoption
of complementary exams to confirm the disease’s cause.

I. INTRODUCTION

The World Health Organization (WHO) states that pneu-
monia is a major pediatric problem and one of the lead-
ing causes of childhood mortality worldwide, especially in
Africa, South America, and Southeast Asia [1][2]. At least
90% of newly diagnosed cases occur in those developing
regions where medical resources are limited, and every year
about two million children under five years old die due to
pneumonia [3]. Bacterial and viral microorganisms are the
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most common etiologic agents responsible for community-
acquired pneumonia, but the identification of those pathogens
remains challenging [4]. Moreover, bacteria and virus need
different treatments, but the former may require more urgent
referral due to antibiotic intervention [2].

Chest x-ray (CXRs) is a low-risk and accessible exam
that represents an essential component to evaluate patients
with a suspicion of pneumonia. Radiography, along with
computed tomography, can aid the diagnosis of pneumonia
in conjunction with clinical and laboratorial data, according
to the American Thoracic Society (ATS) [5]. The ATS also
recommends CXRs to assess the extent of the disease and to
detect complications (e.g., abscess formation) [4]. However,
the detection of pneumonia in CXRs is still largely dependent
on the skills of physicians, and it is not always possible
to produce the image reports quickly as it relies on the
availability of expert radiologists [3].

Furthermore, radiographic patterns (like opacities) of
pneumonia are often related to the causative agent. Bac-
terial pneumonia typically exhibits a focal nonsegmental,
homogenous lobar inflammation consolidation (focal opac-
ities), whereas viral pneumonia generally manifests as more
diffuse bilateral interstitial or interstitial-alveolar patterns in
both lungs [2][4]. The radiographic appearance of it can
overlap with other diseases, and it can mimic other lung
consolidations and opacities due to low contrast of CXR,
especially from children because of the dose of radiation
received by the patient is relatively low, under normal cir-
cumstances [3][6]. Therefore, it is vital to include computer-
based tools to aid physicians in detecting diseases early and
potentially provide further information such as the type of
the infection (i.e., bacterial or viral), as they can improve
the accuracy and consistency of medical image diagnosis
through computational support used as a reference [7].

Some works have used computational tools to classify
pneumonia patients and normal subjects. For instance, Sousa
et al. [8] extracted wavelet features from CXRs and used as
input to three different machine learning methods. Chandra
et al. [9] extracted histogram features and used five different
image classifiers. However, they used hand-crafted image
features, which is a time-consuming and labor-intensive
task. Recently, the use of deep learning has been gaining
importance in solving this type of problem. Deep learning,
in particular convolutional neural networks (CNNs), is a
machine learning branch that uses raw data (i.e., image
pixels) as the algorithm input and abstracts layer-wise the
original imaging data into the final feature vector without
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requiring manual procedures [2]. The automated pattern
recognition and classification based on deep learning could
significantly mitigate problems caused by visual assessment
(e.g., subjectivity and time) and improve the efficiency of
specialists, reduce medical costs, and support the diagnosis
and treatment decisions of pediatric pneumonia [3][7].

In this context, this work evaluated the performance of
deep learning methods in the detection of pneumonia and to
distinguish between viral and bacterial pneumonia. Due to
low contrast between soft tissues and the nature of the CXR
exam to show overlapped structures, we hypothesize that
medical image pre-processing may enhance and highlight
CXR features to improve the classification tasks. Therefore,
we also aim to evaluate image processing methods to im-
prove recognition of radiographic patterns of pneumonia.

II. MATERIAL AND METHODS

A. Pneumonia CXR Dataset

This study used anteroposterior images from patients of
one to five years old from a public dataset (the Guangzhou
Pneumonia Chest X-ray dataset) [2], and hence, no Insti-
tutional Review Board approval was needed. CXR images
were used in experiments according to the original dataset
split training set: 2,538 bacterial pneumonia, 1,345 viral, and
1,349 without findings; testing set: 242 bacterial pneumonia,
148 viral pneumonia, and 234 without findings [2].

B. Image Pre-Processing

One of our hypotheses is that removing anatomical re-
gions from the CXR that are not relevant to pneumonia
detection would improve the training ability of deep CNNs,
and consequently, the classification performance. For this
purpose, an algorithm based on the U-Net CNN [10] was
developed to crop the chest cavity from the radiograph
images. This algorithm first segments the lungs from the
CXR using pre-trained U-Net weights and a transfer learning
approach to create a binary mask [11]. It then creates a
region of interest (ROI) from the extreme points on the
lungs mask and generates a bounding box to finally crop
the chest cavity (Figure 1-I), removing regions that are not
important for pneumonia detection, such as head, neck, arms,
and exam objects. In some cases, due to large opacities in
lung regions, the U-Net cannot detect one of the two lungs,
and the consequent extreme points on the binary mask do not
represent the extreme points on the chest cavity (Figure 1-II).
In order to identify these cases, a simple rule was created.
When the width of the chest cavity in the binary mask (wref

in Figure 1-II)) is not greater than the half-width of the
image (w), the distance wref is considered miscalculated.
To recalculate the width of the chest cavity (wref ), we take
as reference the minor distance between the image’s vertical
borders and the extreme points (a in Figure 1-II). This value
(a) will be the distance between the vertical borders of the
ROI and the image, and wref = w − 2a.

We also hypothesize that enhancing the ROIs by tradi-
tional image pre-processing would also improve radiographic
feature representation and pattern recognition. To increase
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Fig. 1: Image cropping process.

the contrast of the overlapped projection of soft tissues, his-
togram equalization by contrast-limited adaptive histogram
equalization (CLAHE) was then performed. CLAHE is a
powerful procedure to locally enhance image patterns by
limiting contrast amplification at a predefined value (in
this work, 0.01) on the histogram before computing the
cumulative distribution function [12].

C. Multi-View Ensemble Convolutional Neural Network

For classification purposes, we adopted the VGG16 CNN
[13] and replaced its fully-connected layers with a cus-
tomized multilayer perceptron (MLP) with three layers of
1024, 512, and 2 hidden neurons. VGG16 is a reasonably
simple, widely known neural network with only 19 convo-
lutional and pooling layers that was formerly used on CXR
classification [3][14]. The VGG16 convolutional layers were
initialized with weights trained on the ImageNet dataset [15]
and the MLP with random weights. Between each MLP-
layer, a Dropout Regularization layer was added with a rate
of 30%. The MLP used the ReLU activation function, except
the last layer, where the activation function was a softmax.

To evaluate the influence of pre-processing techniques
on classification performance, we proposed three different
training strategies, besides the baseline using original images:

• A: uses cropped images, as described in II.B;
• B: uses cropped images followed by histogram equal-

ization using the CLAHE method;
• C: the ensemble of the strategies A and B (Figure 2).

This strategy has an extra 3-layer MLP with 4, 10,
and 2 hidden neurons. Here, the strategies A and B,
composed by different gray-level intensities of the CXR
(i.e., normal and equalized, forming the multi-view
approach), are frozen, and their softmax probabilities
are concatenated in the first MLP-layer.

In this work, we did not use data augmentation to balance
the dataset. The training of the CNN and extra MLP of
the ensemble strategy were performed with thirty and ten
epochs, respectively. All training strategies were performed
by stochastic gradient descent in batches of 16 images per
step using an RMSprop Optimizer with a learning rate of
0.0001. As input, all images were resized to 224×224 pixels.

The metrics of the area under the ROC curve (AUC),
sensitivity, specificity, accuracy, and F1 score assessed the
performance of the four strategies. The Keras framework
v2.2.5 with TensorFlow backend v1.14.0 was used for deep
learning. Statistical analysis was performed by the DeLong’s
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Fig. 2: Multi-view ensemble deep learning model for pneu-
monia classification. Different input images compose the
proposed strategy of multi-view ensemble learning of CNNs.

test using R v3.4.4. The experiments were performed on
Foxconn HPC M100-NHI with an 8-GPU cluster of NVIDIA
Tesla V100 16GB cards. This computing infrastructure al-
lowed the improvement in processing time of at least 7x in
comparison with a workstation of 12 cores of 3.2 GHz (16
Gb RAM) and NVIDIA GeForce GTX 1050 with 4GB.

III. RESULTS

Table I presents the results for two classification tasks
(normal vs. pneumonia and bacteria vs. virus). The ensemble
strategy C yielded the highest performances for both binary
tasks. This strategy combines the best properties of strategies
A and B, improving classification efficiency, according to the
statistical difference from the baseline. Due to the CLAHE
local enhancement mechanism, opacities can get more ho-
mogenous for bacteria and virus, making the classification
task more difficult between those patterns.

TABLE I: Performance obtained in the classification. AUC
is presented with 95% confidence interval (CI). The asterisk
indicates statistical difference from the baseline.

Strategy Baseline A B C
Pneumonia AUC 0.87 0.95* 0.96* 0.97*
vs. Normal CI 0.85-0.90 0.93-0.97 0.95-0.98 0.96-0.99

Bacteria AUC 0.85 0.88 0.83 0.91*
vs. Virus CI 0.81-0.88 0.85-0.92 0.80-0.87 0.88-0.94

Figure 3 shows models’ class activation maps (CAMs) to
corroborate that image cropping could leverage the detection
of diseases on CXR as the regions of interest are more rep-
resentative due to less information to be recognized. Image
cropping also reduced irrelevant information from the exam
and improved the representations of the region of interest
(i.e., chest cavity and lungs). Figure 4 presents an example in
which strategies A and B misclassified a patient with pneu-
monia as normal. However, strategy C correctly classified
the patient, which could indicate multi-view ensemble deep
learning may produce more reliable classification results, as
it would not consider the information of only one ”observer”.
Tables II and III present the performance comparison of the
proposed method and the methods in the literature for the
same dataset to classify pneumonia vs. normal patients and
bacterial vs. viral pneumonia cases, respectively.

IV. DISCUSSION

Some works have already evaluated deep learning models
in the detection of pediatric pneumonia on CXRs. Kermany

TABLE II: Comparison with the literature using the same
dataset of normal vs. pneumonia classification.

Article AUC Sensitivity Specificity Accuracy F1 Score
Kermany [2] 0.968 0.932 0.901 0.928 -

Liang [3] 0.953 0.967 0.803 0.905 0.927
This work 0.973 0.979 0.966 0.974 0.979

TABLE III: Comparison with the literature using the same
dataset of viral vs. bacterial pneumonia classification.

Article AUC Sensitivity Specificity Accuracy F1 Score
Kermany [2] 0.940 0.886 0.909 0.907 -

This work 0.907 0.963 0.851 0.921 0.890

et al. [2] adapted an Inception V3 architecture pre-trained
on the ImageNet dataset. A hundred epochs were used,
and it is not clear if they used or not data augmentation
techniques. Liang et al. [3] proposed an architecture based
on CNN and residual network. They trained for 100 epochs
and used data augmentation in images of 150x150 pixels to
balance the dataset. Moreover, they used the ChestXray14
dataset for transfer learning [16]. The proposed methods by
Kermany et al. and Liang et al. yielded AUCs of 0.968
and 0.953, respectively, in the classification of normal and
abnormal children’s exams over the same dataset. Kermany
et al. also subclassified pneumonia cases (bacterial vs. viral)
and yielded AUC of 0.940. However, all of those models
were trained with single architectures, which can lead to
limited prediction accuracy, even with optimum parameters.
To decrease this limitation, we proposed in this work a multi-
view ensemble CNN model to classify pneumonia.

(a) (b)

(c) (d)

Fig. 3: CAMs show the most informative regions for clas-
sification: (a-b) CAMs from original and cropped images,
respectively, of a patient with bacterial pneumonia; (c-d)
CAMs from original and cropped images, respectively, of
a patient with viral pneumonia.

Our model achieved a performance of AUC of 0.973,
sensitivity of 0.979, specificity of 0.966, accuracy of 0.974,
and F1 score of 0.979. This approach also can distinguish
its subforms of bacteria and virus with an AUC of 0.907.
For the best of our knowledge, the proposed method yielded
higher AUC for the classification of normal and patients with
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pneumonia when compared with the literature for the same
dataset. Unlike the literature [3], we adopted the VGG16
architecture with its default input size [13], which potentially
extracted more efficiently the network standard information.
A different VGG16 input size could limit network train-
ing and reduce image characterization potential. ImageNet
weight initialization was an easy method to initialize the net-
work, potentially enabling rapid convergence [15]. Moreover,
only 30 epochs were necessary to achieve this convergence.

(b)

(d)

(a)

(c)

Fig. 4: Classification results of a patient with pneumonia:
(a-b) cropped and CAM images, and (c-d) equalized and
CAM images, respectively. Strategies A and B misclassified
the patient as normal (false negative), while the proposed
strategy correctly classified it as a true positive.

Overall, pre-processing techniques yielded the highest
performances in binary classifications. Specifically, image
cropping reduced irrelevant information from the exam and
improved the representations of the region of interest (i.e.,
chest cavity and lungs). Histogram equalization enhanced
contrast of soft tissues and was able to identify fine tex-
tures from CXR. This multi-view approach with both pre-
processing methods (ROI cropping and CLAHE) is simple
to implement, and each method offers a different advantage
to the training, yielding better results on the classification
when compared with the use of the original CRX (baseline).

The external generalization using multi-view ensemble
CNN has potential due to the extra MLP that takes advantage
of the different features extracted from the original intensity
and histogram-equalized gray levels, and it learns to weigh
and associate the probabilities of different training methods
on the classification task. For these reasons, we highlight
the need for pre-processing of input medical images for
performance improvement of the VGG16 network.

Our main limitation was the lack of an independent exter-
nal dataset for generalization purposes. There are other pub-
licly available CXR datasets on the literature, i.e., ChestX-
ray8 and CheXpert [16], [17]. However, neither includes ex-
ams from pediatric patients. Moreover, they are known to be
inconsistent as the image labeling procedure was performed
by natural language processing on radiology reports, which
could lead to text-mining errors as labels may not accurately

reflect the visual content of the images [14][18].
We propose for future works to evaluate the generalization

of the multi-view ensemble deep learning model with other
cohorts and expand the investigation to include adult exams
from patients with pneumonia.
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