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Abstract— We have developed a series of 3D endoscopic
systems where a micro-sized pattern projector is inserted
through the instrument channel of the endoscope and shapes
are reconstructed by a structured light technique using
captured images of the endoscopic camera. One problem of the
previous works is that the accuracy of shape reconstruction is
low, because the projector cannot be fixed to the endoscope,
and thus, the pose of the pattern projector w.r.t. the camera
cannot be pre-calibrated. In this paper, we propose a method
to auto-calibrate the pose of the projector without using any
special devices nor manual process. Since the technique is
one-shot, multiple shapes can be reconstructed from an image
sequence and a large 3D scene can be recovered by merging
them. Experiments are conducted using the real system.

Clinical relevance— For endoscopic diagnosis and treatment,
accurate size measurement of tumor is important, i.e., size
less than 5mm is recommended to be resected with standard
protocol. The technique can be contributed to the purpose.

I. INTRODUCTION

For endoscopic diagnosis and treatment, accurate size
measurement of tumor and organs is important and 3D
endoscopic system has been researched [2], [3], [5]. To make
the systems practical, they are usually based on triangulation,
where micro-sized pattern projector is inserted through the
endoscope’s instrument channel. One problem is that the
pattern projector is not fixed to the endoscope’s head, and
thus, pre-calibration of extrinsic parameters is not possible.
Simple solution is to add markers in the pattern and detect
them to conduct auto-calibration [3]. However, robust marker
extraction cannot be always achieved and it frequently fails
to calibrate in real systems. Another possible solution is to
use multiple frames to estimate calibration parameters as
well as scene shapes simultaneously [5]. However, since
it is essentially difficult to retrieve correspondences be-
tween a projector and a camera, it requires iterative steps
for convergence, resulting in high computational cost. In
this paper, we propose a robust auto-calibration method
which requires just a single image without necessity of
special markers in the pattern. The proposed method is
based on graph convolutional network (GCN) to efficiently
find correspondences between projector pattern and captured
image. Once correspondences are retrieved, auto-calibration
can be conducted used them and subsequently 3D points
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are reconstructed from the correspondences by triangulation.
In the experiments, proposed method is compared with
previous methods using the real endoscopic systems with
phantoms, confirming the effectiveness of our method. It is
also demonstrated that the inside shapes of pig’s stomach
(ex-vivo) are successfully recovered with our method.

II. RELATED WORKS

The structured light technique has been used for practical
applications for 3D scanning purposes [9]. For endoscope
systems, since endoscope head always moves, the system
should be realtime, and typical solution is oneshot scanning
techniques [12], [6], [11]. One severe problem for oneshot
scan is that they encode positional information into small
regions, patterns tend to be complicated and easily affected
and degraded by environmental conditions, such as noise,
specularity, blur, etc. Recently learning based techniques ares
proposed [3].

U-Net [8] is a standard architecture of FCNN (Fully
convolutional neural network), which can receive an image
and produces a labeled image. Song et al. [10] proposed
to decode active stereo pattern using a CNN. They use
conventional methods for grid detection, and a CNN is
used for classifying specifically designed 256 characters
embedded into the grid pattern. We also use U-Net for pattern
detection in our method.

Recently, DNN based approach to efficiently find corre-
spondences are proposed and GCN is most recent solution
for the purpose [1]. In the paper we also use a full advantage
of GCN to find correspondences between projected pattern
and captured image.

III. SYSTEM OVERVIEW

For this study, a projector-camera system was constructed
by inserting a fiber-shaped, micro pattern projector into the
instrument channel of a standard endoscope. We used a
Fujifilm EG-590WR endoscope and a pattern projector with a
diffractive optical element (DOE) to generate structured-light
illumination. The pattern projector can be inserted into the
endoscope’s instrument channel and patterns are projected
from the projector to surfaces in front of the head of the
endoscope as shown in Fig. 1. As shown in Fig. 1(b), we used
a grid pattern that is robust against subsurface scattering [4].
All vertical edges are connected; horizontal edges have small
gaps, representing code symbols S, L and R as shown in
Fig. 1(c), where red dots mean that the right and the left
edges of the grid point have the same height (code S) blue
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Fig. 1. System configuration and projected pattern: (a) System configura-
tion; (b) Projected pattern with 9 bright markers and gap coding; (c) Codes
embedded as gaps at grid points of the projected pattern.
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Fig. 2. Training data for U-Nets: (a) Captured image; (b) Manually
annotated vertical lines; (c) Labels for training vertical-line detection; (d)
Labels for horizontal-line detection; (e) Labels for for code detection.

means the left side is higher (code L), and green means
the right is higher (code R). If the system is completely
calibrated, by using the connectivity between nodes as well
as code at each node, correspondences are efficiently found
by 1D search along Epipolar line. Once they are retrieved,
3D points are recovered by triangulation.

IV. FEATURE DETECTION FROM
PATTERN-ILLUMINATED IMAGES

As described previously, the projected pattern is a grid
structure with code symbols {S,L,R} associated with the
grid points. We extract the grid-structure and gap-code
information using U-Nets [8]. U-Nets uses global image
structural context information to detect local features. Since
the projected pattern has global grid structures, it can be
expected that U-Nets will use such “global” structure to
detect “local” line features.

The process of training a U-Net to detect vertical lines is as
follows. First, sample images of the pattern-illuminated scene
are collected. Then, vertical line locations for the samples are
drawn manually as single pixel width curves. Since a single
pixel width curve shown in Fig. 2(b) is too narrow to be
directly used as training label regions, two new regions with
five pixel width are generated on the both sides of the single
pixel curves (Fig. 2(c),(d)) By applying the trained U-Net to
the endoscope images, curves are detected by extracting the
borders between the regions of left and right.

In the paper, to increase the robustness, we also add 9
bright markers into the projected pattern as shown Fig. 1(b)
white dots. To utilize these markers in our method, we train
CNNs to to classify each of the markers into 5 classes (up
to rotational symmetry, 9 markers can be classified into 5
classes). By applying the trained CNNs, every pixel of the
captured frames is classified into 6 classes (5 plus one for
non-marker).

(a) (b) (c)

Fig. 3. Training data for GCN: (a)Sample image for GCN training; (b)Grid
detection result; (c)Annotation image for correspondence.

…

𝐻(0)

𝐴0, 𝐴1, 𝐴2, 𝐴3

𝑊0
(0)

,𝑊1
(0)

, 𝑊2
(0)

, 𝑊3
(0)

Connection matrices with 4 directions

GCN weights with 4 directions

𝑓
…

𝐻(1)

Batch 
Norm

…
…

𝐻(5)

Linear 
transform

+
softmax

…

Probability vectors
for grid labels

…

GCN

Fig. 4. Network architecture of GCN for correspondence estimation. f is
the GCN and an activation function.

In the output image from U-Net, the lines of the grid
can be extracted as the boundaries between the two regions.
By performing 8-neighbor labeling process on extracted
boundary curves, different labels are assigned for each curve.
Then, intersections between vertical and horizontal curves
are extracted as grid points. By sorting the set of grid
points on one vertical curve by y coordinates, the adjacency
relationships between these grid points along the vertical
curve is determined. By applying this process for all both
vertical and horizontal curves, the grid structure of the
extracted curves can be represented as a graph.

For each grid point, a feature vector is assigned using
outputs of U-Net, such as 2D coordinates on the image,
estimated code and estimated marker class. Fig. 3(a),(b) show
an example of an image and a graph extracted from the
image. This attribute is embedded in feature vectors of 2 +
4 + 6 dimensions (2D coordinates, 4D code classes (3 types
of codes + unknown code), 6D marker classes (5 types of
markers and non-markers)).

V. CORRESPONDENCE ESTIMATION USING GCN

For 3D measurement, the detected grid points should be
assigned to the grid points of the projected pattern shown in
Fig. 1(b) as known as correspondence problem for stereo. In
this study, we propose a method to estimate this assignment
using Graph Convolutional Network (GCN) [1].

A graph extracted as Sec. IV typically has the following
characteristics. (1) It is a grid graph with several extra edges
and nodes by some errors. (2) For each grid point, the
positions, the code information, and the marker information
as well as its connected grid point’s IDs are given as
attributes. (3) The extra edges and nodes are generated by
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erroneously detected grid points or an incorrectly connected
edges. Similarly many graph structures might be missing due
to occlusions or serious noises. Also, the code and marker
information of the grid points include errors. (4) Although
the code is a significant clue, it is difficult to determine the
correspondence only from codes, because the code pattern
has repetitions as shown in Fig. 1(c).

In [4], the correspondences were estimated using both
code information and epipolar constraints. However, if the
extrinsic parameters of the projector are unknown or have
large errors, the epipolar constraint cannot be used. In this
research, we propose to solve this problem by applying
GCN on the grid graph without using the epipolar con-
straint. Note that there are alternative methods to GCN,
such as MRF(Markov random field) approaches as belief
propagation, or converting the grid graph to 2D image-like
data applying 2D CNNs. However, we adopted GCN over
these approaches due to the following reasons. (1) In MRF
approach, it is necessary to design a cost function to be
optimized, which is not easy in this problem. (2) Due to
defects of grid structures of the graph, and it is often difficult
to convert it to 2D image-like data. Whereas, A GCN can
be applied to the observed graph itself without conversion to
2D data. (3) A GCN can use information of both the grid-
point properties of each grid point as well as the adjacent
grid points simultaneously without manually designing a cost
function.

The layer operation of a GCN is applied to a data matrix
H(l), where l-th layer feature vectors of all the grid points
are stacked to one matrix, and produces H(l+1), which is
(l + 1)-th layer data matrix. It can be represented as

H(l+1) = f(H(l), A,W (l)) = σ(D̂−1/2ÂD̂−1/2H(l)W (l)),

where Â = A + I is the adjacency matrix of graph G with
added self-connections, I is the identity matrix, D̂ is the
degree matrix of Â, W (l) is the Weight matrix of this layer,
and σ is an activation function (LeLU).

In [1], the network is an undirected graph, but in the
case of this research, the information of a grid point can be
obtained from adjacent nodes of 4 directions of top, bottom,
right and left, and information from different directions
has different meanings. Thus, for treating the 4 directions
differently, we set A0, A1, A2, A3 as the adjacency matrix of
the directed graph that includes only the connections of top,
bottom, right, and left directions, respectively. Calculation of
H(l+1) is performed by the following formula.

H(l+1) =

3∑
d=0

f(H(l), Ad,W
(l)
d ), (1)

where W
(l)
d is the weight matrix of layer l specific to

direction d ∈ {0, 1, 2, 3}.
After repeating Eq. (1) and batch normalization by 5

times, two 22-class probability vectors are calculated from
the latent variable vectors H(5) by the fully connected
linear transformation, and the softmax function(Fig. 4). The
classification into 22 classes is because the original pattern

has 21 types of vertical and horizontal lines, respectively, and
the ”unknown” class has been added for each of the vertical
and horizontal lines. By applying the GCN to the feature
vectors and the adjacency matrix of the graph, classes of
vertical and horizontal lines are estimated for the grid points.

Training of the GCN is done by supervised manner. First, a
graph structure is extracted from an actual endoscopic image
using U-Net. Separately, for the same endoscopic image, the
class IDs of both vertical and horizontal lines are manually
annotated as shown in Fig. 3 (c), which are used as a teacher
data.

VI. AUTO-CALIBRATION OF PROJECTOR

In this research, it is assumed that the intrinsic parameters
of the endoscope camera are known, since there are many
tools for camera calibration. On the other hand, projector
calibration is not common and still challenging especially
for a static pattern. In our method, three intrinsic parameters,
such as focal length, two principal points for xy, and the six
extrinsic parameters of the projector will be auto-calibrated.
In terms of intrinsic parameters, once they are calibrated,
they never change, and thus, it is necessary just once before
operation. In terms of extrinsic parameters, since the pattern
projector is inserted through the instrument channel, the
projector pose may change all the time and should be
calibrated at each frame. In addition, since the motion can
be mostly explained by two degrees of freedom, such as
one-dimensional translation along the channel and rotation
about the center line of the channel [2], the rest 4-DOF
changes other than the above two DOF from a 6DOF of
rigid transformation. Such restriction also allows the scale
to be determined, which is normally impossible for auto-
calibration, and leads to stabilization of the auto-calibration.

In the common calibration method, the correspondence
problem is usually solved by using the epipolar constraints.
In the method, even if the projector is uncalibrated, since
correspondences are acquired by the aforementioned method,
auto-calibration of the projector can be performed. Since the
corresponding points determined by GCN include outliers,
the Random Sample Consensus (RANSAC) algorithm is
used to efficiently exclude the outliers. In this research, we
estimate the projector parameters using 10 corresponding
points, and if the number of inliers that match the estimation
result is more than a threshold, we re-optimize the parameters
using the all inliners and estimate the error. This is repeated,
and the parameter set with the minimum error becomes
the result. Once the parameters of projector is estimated as
above, outliers can be determined by checking the epipolar
error.

After the first auto-calibration is performed, if the pa-
rameters of the projector pose due to the operation of
the endoscope, and the error of the epipolar constraint
exceeds a threshold, the pose parameters are re-calibrated
by minimizing the epipolar errors. Since the outliers of the
correspondences can be determined by epipolar constraint,
it can be updated without using RANSAC. For each pair
of corresponding points, an error of epipolar constraint is
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(a) (b) (c)

Fig. 5. Correspondence labeling result; (a) Source image; (b) Extracted
grid graph with codes and marker estimations; (c) Labeling result of vertical
positions (colors can be compared with the scale at the right-side border).

calculated with respect to the above nine parameters, where
the cost is the squared distance between the epipolar line
of the projector point drawn to the camera image and the
corresponding camera point. Since the GCN does not use
epipolar constraint, correspondences from the GCN that is
epipolar constraint inlier are considered to be correct with
strong certainty. By triangulation of these corresponding
points, three-dimensional point information can be obtained.

VII. RESULTS

Fig. 5 shows an example of the correspondence estimation
results of the proposed method. The source images are
surfaces inside a pig’s stomach (ex-vivo). We confirmed that
the obtained correspondences were mostly correct, in spite
of occlusions shape discontinuities, and large specularities.

Next, we measured a surface of a stomach phantom model
( Fig. 6 (a)). The shape of the phantom is also measured by
gray-code projection as a ground-truth shape. We conducted
a pre-calibration of the projector-camera parameters using a
sphere using method of [2]. Next, we bended the endoscope
so that the fiber-shaped projector moves inside the instrument
channel. Then, we conducted the auto-calibration method
and measured a surface on the phantom. To compare the
result with the ground-truth shape, we captured multiple
frames of shape by moving the endoscopic head, scanning a
small region on the phantom shown in Fig. 6 (a). We fused
the multiple shapes using KinectFusion[7] and compared
the fused shape with the ground truth shape. Fig. 6 (b) is
an orthographic view with the ground truth shape, and we
confirmed that the shape and the size of the fused shape was
almost the same as the ground truth shape. On the contrary,
without either initial auto-calibration using RANSAC nor
calibration updating, did not output a proper shape (Fig. 6
(c) ). It is because, while scanning around the region, the
projector was rotating inside the instrument channel.

We also conducted a simple validation of using all the cor-
respondence points utilizing GCN-based estimation, instead
of just using markers. In the case of Fig. 6, auto-calibration
was also possible by only using marker positions. However,
by adding random outliers by 30% onto the correspondence
data, the RANSAC calibration failed, since the number of
sample pairs was too small (60 pairs for 10 frames).

VIII. CONCLUSION

In the paper, we propose an efficient correspondence
search algorithm based on GCN, which allows auto-

(a) (b) (c)

Fig. 6. 3D measurement of a phantom: (a)The phantom shape and the
scanned region; (b) An orthographic view of the fused shape on the ground-
truth shape as a background; (c) Output shape of KinectFusion where
calibration parameters were not updated.

calibration without any manual process nor calibration tools.
By using the real endoscopic system where the projector is
not fixed to the head of it, we successfully reconstructed 3D
surfaces inside a pig’s stomach from a sequence of images
of over 200 frames. We also demonstrated to acquire an
unified and wide shape inside the stomach by merging the
reconstructed shapes.
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