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Abstract— This paper presents a proof-of-concept for con-
tactless and nonintrusive estimation of electrodermal activity
(EDA) correlates using a camera. RGB video of the palm
under three different lighting conditions showed that for a
suitably chosen illumination strategy the data from the camera
is sufficient to estimate EDA correlates which agree with
the measurements done using laboratory grade physiological
sensors. The effects we see in the recorded video can be
attributed to sweat gland activity, which inturn is known to
be correlated with EDA. These effects are so pronounced that
simple pixel statistics can be used to quantify them. Such a
method benefits from advances in computer vision and graphics
research and has the potential to be used in affective computing
and psychophysiology research where contact based sensors
may not be suitable.

Index Terms— electrodermal activity, non-intrusive, camera-
based, remote psychophysiology, affective computing

I. INTRODUCTION

Electrodermal activity (EDA) refers to changes in the
electrical properties of the skin. These changes are attributed
to variations in eccrine sweat gland activity which in turn
is modulated by the sympathetic nervous system. EDA has
been shown to have strong correlation with emotional arousal
and the affective state of a person and is consequently a
commonly used measure of the same in psychophysiological
and neurophysiological studies [1], [2]. This has lead to EDA
being used in several applications across various disciplines,
both clinical and non-clinical.

Different methods can be used to measure EDA; all
of which require electrodes that make contact with skin.
Thus making them noninvasive but intrusive methods. The
electrodes, which measure skin conductance, are generally
placed at locations with high density of eccrine sweat glands,
such as the palmar surface of the hand. Detailed information
on how EDA is measured can be found in [1]. Recording
EDA using electrodes requires the subject to keep the hand
relatively stable for the duration of the recording as it is
quite sensitive to motion. This limits its use to controlled
environments. Although wearable EDA devices have become
popular in recent years they may still be unsuitable in situ-
ations where having contact based sensors are undesirable.
For instance, in automotive applications, EDA is known to
correlate with motion sickness [3] and driver stress [4]. In
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such cases, it is desirable to have a system that is able to
remotely estimate the EDA.

Visual computing based methods are no novelty to psy-
chophysiological and affective computing research. Emo-
tion and affective state can be communicated using facial
expressions and body gesture among other modalities [5].
There exists rich literature on the applications of facial
expressions and body gesture in affective computing such
as in [6], [7]. Despite significant improvements in camera
and computer vision technologies, researchers still prefer
using physiological data such as EDA because data from
cameras, due to different factors such as errors in tracking
and detection and large inter-subject variations, can often be
ambiguous and lacks in quality compared to raw signals from
physiological sensors. EDA continues to be the gold standard
in psychophysiological research.

Thermography is another visual computing based tool that
is popular among psychophysiology and affective computing
researchers. This is motivated by the fact that the primary
function of eccrine sweat glands is actually thermoregulation
which causes changes in skin conductance due the nature of
its function. Eccrine sweat gland activity is also shown to be
modulated by affect and emotions [1], [8]. Among the many
psychophysiological studies that use thermography, some of
the most interesting to us are the works of Shastri et al.
[9] and Krzywicki et al. [10]. In [9] we see the possibility
of detecting peripheral sympathetic responses using only
thermographic imaging of the face and in [10] they use
high resolution thermography to quantify eccrine sweat gland
activity which was shown to be positively correlated to the
skin conductance response. One issue with thermography is
that high resolution thermal cameras are relatively expensive
compared to their visible (RGB) or near-infrared (NIR)
counterparts and may not be suitable in all situations. A
state of the art survey on the use of thermography in
psychophysiological research can be found in [11].

In this work we show what is to our knowledge for
the first time (early 2020), that correlates of EDA can
be estimated nonintrusively using commercially available
RGB sensors. Our hypothesis for this work is that EDA
variations due to sweat gland activity can be estimated using
a camera monitoring the skin. Such image based approaches
can benefit from recent advances in computer vision and
graphics research such as in [12], [13], [14]. Our setup uses a
machine vision RGB camera and three white LED spotlights
to illuminate the scene (in our case, the left palm) from three
different angles. We also record the EDA using laboratory-
grade sensors as the ground truth. An interesting observation
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from the recorded data is that the effects of strong EDA
changes are visible in the video with minimal processing.

The rest of this paper describes our setup, measurement
procedure and discusses the preliminary findings of our ex-
periments. Specifically, Section II has the description of the
setup and the measurement paradigm. Section III discusses
the results of the experiments and the evaluation of the
gathered data and in Section IV, we conclude this paper after
briefly mentioning the future direction of this study.

II. MATERIALS AND METHODS

A. Imaging System

We use a machine vision camera with a 1.3 Megapixel
(1280 × 1024) CMOS RGB sensor with 24 bits per pixel
(8 bits per for each R, G and B channel) and a 35mm
F1.4 lens. We use three commercially available DMX512
controllable 15 W white LED spotlights for the illumination.
The spotlights are set at different angles, therefore each light
strongly illuminates a different region of the palm. As we see
in the left column of Figure 2, light 1 strongly illuminates the
hypothenar region, light 2 the middle of the palm and light
3 illuminates the thenar region. Figure 1 shows the lights
and camera arrangement we use. We record a video of the
subject’s palm with a sequence of three time multiplexed
light sources. Since the video capture rate is around 30 Hz,
the scene is illuminated with one of the three lights every
10th of a second.

Light 3Light 1

Light 2

Thermal CameraRGB Camera

Cushioned Armrest

Fig. 1: Our setup records a time-multiplexed video with
three different lighting conditions. Light 1 illuminates the
hypothenar region, light 2 the middle of the palm and light
3 illuminates the thenar region.

B. EDA Measurement and Data Processing

The EDA measurement setup consists of EDA sensors and
a biosignal amplifier. The device measures exosomatic skin
conductance using a constant DC voltage of approximately
400 mV with a sampling frequency of 512 Hz. The electrodes
are placed on proximal phalanges of the index and middle
fingers of the non-dominant hand (in this case left) and fixed
with hook-and-loop fasteners.

The EDA data is then bandpass filtered with cut-off
frequencies 0.01 and 40 Hz to remove low frequency noise
and include high frequency phasic activity.

C. Measurement Paradigm

To minimize the impact of outside light, the measure-
ments are done in a darkened environment. The image
acquisition system was started simultaneously with the EDA
data recorder. The overall duration of the measurement is
about twenty minutes and follows a paradigm designed to
elicit strong electrodermal responses using audio, video and
physical stimuli. This measurement protocol was approved
by the Medical Chamber of Saarland (Ärztekammer des
Saarlandes).

At the very beginning of the measurement, a five minute
long calming video of a creek was shown. This was done to
get the baseline measurement. The first task was to perform
three repetitions of a version of the Valsalva maneuver, which
is a commonly used maneuver to evaluate the functioning of
the autonomic nervous system and results in strong electro-
dermal activity. Each maneuver lasts 10 seconds followed
by a recovery phase (RP) of 1 minute. Next, the subject was
presented with visual stimuli from the International Affective
Picture System (IAPS) [15]. Following this was a mix of
pleasant and unpleasant auditory stimuli from International
Affective Digitized Sounds (IADS -2) [16]. All stimuli and
tasks had appropriate breaks between them.

D. Image Data Processing

Each frame in the video is an image of the scene with
only one of the three spotlights active. Visual inspection
of the recorded video shows that the number of specular
points (shiny pixels) is higher in some frames than others.
In Section III we show that these frames correspond to
strong changes in the electrodermal activity. The position
and intensity of such specular points depends on the surface
normal (which is a function of the curvature of the palm),
the viewing angle and the angle of illumination, therefore
it becomes difficult to establish a good mapping of points
between the frames with different illumination conditions.
To enable reliable analysis, we use an optical flow based
approach to stabilize the video frames. We do this separately
for each lighting angle. We start with light 1, and initialize
the flow for light 2 and light 3 by linearly interpolating the
displacements of light 1. This linear assumption holds true
for the almost the entire recording as the subject’s hand was
relatively stable for the duration of the measurement. We
remove any residual motion from light 2 and light 3 with
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explicit motion compensation. We carry out all our analyses
and evaluations on these motion compensated frames.

Light 1

Light 2

Light 3
Fig. 2: Left: Consecutive frames from time multiplexed video
capture with three different lighting conditions during the
baseline measurement. Right: Maximum intensity projection
of the stabilized video in the temporal dimension.

III. EVALUATIONS AND RESULTS

For our preliminary analysis, we split the video into three
independent sets of frames, each set associated with one of
the three light sources. In Section II-D we mention briefly
that the number of specular (shiny) pixels is higher at certain
points in time. We quantify the occurrence of specular pixels
by their count, which we shall call Specular Pixel Count. The
location of increased specular pixels depends on the direction
of the light source associated with the frame. Although the
lights are adjusted to uniformly illuminate the palm, we see
higher specular pixel count in the hypothenar region of the
palm due to the light 1, the middle of the palm due to light 2
and the thenar region due to light 3. This is due to the natural
geometry of the palm, which is a not a flat surface but has a
curvature. We identify these pixels in the Hue Saturation
Value (HSV) color space. This gives us three values per
pixel: Hue (H), Saturation (S) and Value (V). Specular pixels
have low saturation (S) and high value (V). We consider all
those pixels with S < 0.4 and V > 0.5 as being specular.
These values are chosen to maximize the correctly detected
specular pixels and minimize false detections due to noise.

The specular effects are strongest in the hypothenar region
and therefore for the preliminary analysis we only consider

the subset of frames that are associated with light 1, that
is, frames where the hypothenar region is most strongly
illuminated. In Figure 3 we show a comparison of the
specular pixel count from the hypothenar region with the
skin conductance values from the EDA measurements. We
see that there is an increase in specular pixel count at those
points in time where there are strong changes in the SC
values. This is in agreement with the fact that changes in skin
conductance occur due to variations in sweat gland activity.
The increase in specular pixel count can be attributed to
the formation and quick evaporation of tiny sweat droplets,
which inturn cause noticeable changes in the appearance of
skin in the video.

Looking at Figure 3, not only do we see correlating
activity for the important events of the experiment, but there
are many small peaks of activity in the EDA with a correlate
in the specular pixel count. The sweat droplet formation and
evaporation effects are quick enough such that we are able to
identify some phasic activity from this relatively unprocessed
data. For instance, we see a sharp increase in the specular
pixel count at those points which mark the beginning of a
section (such as the onset of the Valsalva maneuvers) which
is also marked by a surge in skin conductance. Interestingly,
a quicker drop in the specular pixel count can also be seen as
the skin conductance levels gradually return to the baseline.

In last section, marked by the end of the paradigm, we see
heightened electrodermal activity due to the subject being
aroused after being informed about the completion of the
recording. We see these changes in the specular pixel count
as well. This is quite interesting as this was initially not
expected at all.

Our preliminary analysis only considers those frames
when light 1 was active because the aforementioned effects
are best visible in the hypothenar region. While similar
effects can be also be seen in other regions of the palm
(see right column of Figure 2), many frames from the light
2 and light 3 subsets had to be discarded due to occlusions
and shadows caused by movements of the thumb.

IV. CONCLUSION AND FUTURE WORK

In this paper we showed that is possible to estimate
correlates of EDA using RGB cameras. While it is known,
that changes in the skin properties can be monitored, we
did not expect the effects in the video to be strong enough
to be visible to the naked eye and to be easily quantifiable
with a combination of motion compensation and simple pixel
statistics.

Our findings from this pilot study serve as valuable inputs
for the next steps in this direction. In a larger follow up
study, we are currently investigating how common the effects
are and whether we can find a relationship of the observed
specular reflections and the EDA signal that is valid for a
larger study population. Looking at the preliminary results,
the reason for the different dynamics in specular reflection
and EDA is a candidate for further analysis.

While for the data presented here, simple pixel statistics
were sufficient, subjects with smaller responses in the video
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Fig. 3: Comparison of skin conductance (in red) measured using laboratory-grade EDA sensors and the specular pixel count
(in blue) due to Light 1 computed from the video frames. We clearly see an increase in the specular pixel count during
the events of the experiment with heightened skin conductance levels. We also see many peaks in the specular pixel count
which correlate with the skin conductance levels. The specular pixel count has been logarithmically scaled to adjust for the
large activity towards the end of the experiment.

and more complicated conditions such as recordings from
the face will require models from computer graphics which
account for the layered nature of skin and the interaction of
light with skin, such as [17], [13], [18] to obtain parameters
which can be investigated for correlation with EDA. Such
models would open the way for robust, contactless EDA
measurements with the ultimate goal of EDA estimation from
facial videos in a natural environment. This has the potential
to unlock new areas where the results from affective EDA
research can be applied and where contact based sensors are
not suitable.
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