
A wearable vision-based system for detecting hand-object interactions
in individuals with cervical spinal cord injury: First results in the home

environment

Andrea Bandini, Member, IEEE, Mehdy Dousty, and José Zariffa, Senior Member, IEEE

Abstract— Cervical spinal cord injury (cSCI) causes the
paralysis of upper and lower limbs and trunk, significantly
reducing quality of life and community participation of the
affected individuals. The functional use of the upper limbs is
the top recovery priority of people with cSCI and wearable
vision-based systems have recently been proposed to extract
objective outcome measures that reflect hand function in a
natural context. However, previous studies were conducted
in a controlled environment and may not be indicative
of the actual hand use of people with cSCI living in the
community. Thus, we propose a deep learning algorithm for
automatically detecting hand-object interactions in egocentric
videos recorded by participants with cSCI during their
daily activities at home. The proposed approach is able to
detect hand-object interactions with good accuracy (F1-score
up to 0.82), demonstrating the feasibility of this system in
uncontrolled situations (e.g., unscripted activities and variable
illumination). This result paves the way for the development
of an automated tool for measuring hand function in people
with cSCI living in the community.

Clinical relevance— The accurate detection of hand-object
interactions in people with cSCI will allow extracting outcome
measures of upper limb function that can be used for planning
interventions and tracking the rehabilitation progress remotely.

I. INTRODUCTION

The functional use of the upper limbs is the top recovery
priority in people with cervical spinal cord injury (cSCI) [1].
However, two main factors may prevent the optimal recovery
of upper limb functions: 1) patients are often discharged too
early, when they may still experience large improvements in
their functional ability [2]; 2) particularly in North America,
the long distances between patients’ homes and rehabilitation
centers make it difficult to accurately track the recovery of
individuals with cSCI [3]. These factors hinder the rehabil-
itation process and do not allow planning optimal treatment
strategies for improving upper limb functions when people
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Fig. 1. Example of egocentric frames obtained from participants with cSCI
while performing unscripted activities in their homes.

return to the community. Hence, there is an urgent need
for novel technologies able to produce accurate outcome
measures of upper limb function in individuals with cSCI.
The ideal solution should be able to track the rehabilitation
progress remotely, producing measures that can be used
by clinicians for planning interventions. It should also be
able to measure how improvements in the upper limb motor
functions actually translate into an increased usage in daily
life (i.e., measuring performance in addition to capacity,
in the terminology of the International Classification of
Functioning, Disability and Health [4]).

Wearable sensors such as accelerometers, magnetometers,
and inertial measurement units (IMUs) have been used to fill
this gap. For example, clinical assessment scales (e.g., the
functional ability scale) were estimated in stroke survivors
by using accelerometer data from upper limb movements [5],
[6], whereas IMUs were used in patients with acute SCI for
monitoring their upper limb and wheeling activities [7], [8].
Although well-established and easy-to-implement for long
and continuous recordings, these systems allow extracting
only global kinematic information of the upper limbs, with
no details regarding hand manipulations or finger move-
ments. Other approaches either combined multiple sensors
(e.g., wrist-worn accelerometer and finger magnetometer [9])
or used sensorized gloves [10] to capture the hand and finger
motion in higher detail. However, their usage may become
inconvenient in people whose hand function and sensation is
already impaired due to cSCI.

Wearable cameras (i.e., cameras mounted on the head)
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and computer vision have emerged as potential candidates
for measuring the hand use at home [11], [12]. From the
egocentric point of view (POV), it is possible to observe the
hands from a perspective that minimizes the occlusions and
focuses on the hands and manipulated objects [11] (Figure
1). This field of research has thrived over the past ten
years, thanks to the availability of action cameras and large
annotated datasets. Several approaches have been proposed
to localize the hands within the egocentric video frames,
understand the type of hand grasps and gestures, predict the
actions and activities involving hand manipulations, as well
as develop applications for human-machine interaction [11].
Recent findings [13], [14] showed that the use of hand and
object cues automatically extracted from egocentric videos
(e.g., color, motion, and edges features) allowed detecting
with good accuracy the presence of hand-object interactions.
This approach can be used to extract novel metrics that,
once validated with clinical gold standards, will constitute
clinically valid outcome measures for upper limb function
in cSCI. However, the approaches proposed so far [13],
[14] were tested only in a home simulation laboratory that,
although realistic, did not present the common issues of
natural environments such as high variability of background,
illumination, objects, and activities.

Building upon the previous results [13], [14], we exploit
the recent advancements in computer vision – in particular
the availability of accurate object recognition convolutional
neural networks (CNNs) – to develop a deep learning-based
approach for detecting hand-object interactions in individuals
with cSCI living in the community. For the first time we
demonstrate its feasibility in individuals with cSCI who
recorded unscripted activities in their homes, without the
supervision of researchers.

II. MATERIALS AND METHODS

A. Data Collection

Ten individuals with cSCI – 8 male and 2 female – were
recruited for this study. Their age ranged between 42 and
63 years old (51.0 ± 8.4 years). Seven participants had a
traumatic injury, whereas for 3 participants the etiology was
non-traumatic. The number of months from the injury ranged
between 18 and 264 (103.6 ± 90.3 months). Before the ex-
periments, participants were assessed using the International
Standards for Neurological Classification of SCI (ISNCSCI)
[15], the Spinal Cord Independence Measure III (SCIM)

TABLE I
CLINICAL INFORMATION OF THE PARTICIPANTS RECRUITED IN THIS

STUDY.

Level of Injury C4 – C8
ASIA Impairment Scale (AIS) A – D

Upper Extremity Motor Score (UEMS) Right: 19.3 ± 6.0
Left: 19.1 ± 6.3

GRASSP Right: 82.8 ± 29.9
Left: 86.6 ± 31.0

SCIM 70.9 ± 29.3

Fig. 2. A diagram of the processing steps for detecting hand-object
interactions from egocentric videos.

[16], and the Graded Redefined Assessment of Strength,
Sensibility and Prehension (GRASSP) [17] (Table I).

Participants recorded activities that involve the use of
hands in their homes using a head-mounted camera (GoPror

Hero 5 Black – Figure 1). They were asked to record 3 videos
of at least 1.5 hours each (over two weeks), during activities
of their normal daily routine. Examples of activities collected
for this study included: feeding; grooming and personal
hygiene (e.g., brushing teeth, washing hands); functional
mobility; home establishment and management (e.g., doing
the laundry, cleaning); meal preparation; and leisure activities
(Figure 1). Videos were recorded at 1080p resolution and 30
frames per second. The study was approved by the Research
Ethics Boards at UHN – Toronto Rehabilitation Institute.
All participants and any household members appearing in
the videos signed informed consent according to the require-
ments of the Declaration of Helsinki.

B. Video Processing – Interaction Detection Evaluation

The hand-object interaction detection pipeline is composed
of two processing steps: 1) the hand localization – to detect
the participant’s hands within each frame and focus the
processing on these regions of interest (ROIs); and 2) the
interaction detection – to predict whether the detected hands
are interacting with objects (Figure 2).

First, we conducted a test to evaluate the performance of
the interaction detection module alone, using the ground truth
bounding boxes (labelled by a trained annotator) as hand
localization result. Specifically, two approaches were imple-
mented and compared: a multistage image processing ap-
proach (baseline) and an end-to-end deep-learning approach
(Hand-Object Interaction Detection Network – HOID-NET).

The baseline approach was previously proposed in [14]
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and exploits color, optical flow, and histogram of oriented
gradient (HOG) features extracted from the hand region, the
region next to the hand (i.e., the manipulated object), and the
background. A random forest classifier was used to detect
the presence of interactions between hands and objects. Our
newly proposed approach – HOID-NET – was implemented
by using transfer learning on the pre-trained MobileNet v1
[18], a compact yet powerful object recognition CNN. We
chose this architecture for its good recognition performance
with low resource devices, which may allow us in the future
to implement the whole processing pipeline on a portable
embedded system. Specifically, we replaced the output layer
with 3 fully connected layers (with 1024, 1024, and 512
neurons, respectively), followed by a softmax layer with 2
neurons to produce the binary predictions (Interaction vs. No
interaction). Starting from the pre-trained ImageNet weights,
we trained the network on our dataset for 20 epochs using
ADAM optimizer. The learning rate was set at 10-3 and
halved every 3 epochs, with batch size equal to 16.

Results obtained with the two approaches were compared
in terms of accuracy, precision, recall and F1-score obtained
on the test set. These measures were calculated on the whole
test set, without distinction of the different activities recorded
by the participants.

1) Dataset: The dataset used for the interaction detection
evaluation was composed of 72,203 frames. All frames
were resized to 720 × 405 pixels. For the HOID-NET, we
considered the frames cropped using the coordinates of the
hand bounding boxes, for a total of 103,741 hand samples.
These images were resized to 224 × 224 pixels to match the
CNN input layer. The dataset was split as follows: training
set – 46,463 frames from 3 participants (plus 17 participants
recorded in a home simulation environment – ANS SCI
dataset [14]), corresponding to 64,979 hand instances; vali-
dation set – 13,999 frames from 3 participants, corresponding
to 24,018 hand images; test set – 11,741 frames from 3
participants, corresponding to 14,744 hand images.

C. Video Processing – Fully Automated Pipeline
After the best interaction detection approach had been

identified, we tested the fully automated pipeline on an
additional participant. The localization of hands was per-
formed using the approach proposed in [19], which exploited
the You Only Look Once (YOLOv2) object detector [20]
trained on the ANS SCI dataset [14], on which it yielded
excellent detection performance (F1-score = 0.88). Moreover,
the binary output of the interaction detection pipeline was
further processed using a moving average filter, in order to
remove short and isolated sequences with Interactions or No
Interactions predictions.

We tested the full pipeline on data from one participant left
out from the experiments reported in Sec. II-B. Specifically,
we considered 31,368 frames, corresponding to 62,707 hand
instances.

III. RESULTS
The performance of the two interaction detection ap-

proaches are reported in Table II. HOID-NET produced

better detection results than the baseline method, suggesting
the feasibility of using a CNN-based approach to infer the
presence of hand-object interactions from egocentric videos
recorded in an uncontrolled environment.

TABLE II
INTERACTION DETECTION PERFORMANCE ON THE TEST SET, WHEN

USING THE GROUND TRUTH BOUNDING BOX TO LOCALIZE HANDS (THE

BEST RESULTS ARE HIGHLIGHTED IN BOLD).

Methods Accuracy Precision Recall F1-score
Baseline [14] 0.6496 0.7533 0.7623 0.7578
HOID-NET 0.7257 0.7831 0.8551 0.8175

Before implementing the fully-automated pipeline we also
evaluated the hand localization performance of YOLOv2 on
data recorded at home (32,013 frames manually labelled
from 9 individuals with cSCI). The F1-score was 0.87,
comparable to the one obtained on the ANS SCI dataset [19].
This result suggests that this algorithm is robust in localizing
the hands even in uncontrolled situations.

The interaction detection performance obtained with the
fully-automated pipeline implemented on the test participant
is reported in Table III.

TABLE III
INTERACTION DETECTION PERFORMANCE ON A TEST SUBJECT, WHEN

USING THE FULLY AUTOMATED PIPELINE (HAND LOCALIZATION =
YOLOV2; INTERACTION DETECTION = HOID-NET).

Accuracy Precision Recall F1-score
0.6745 0.7265 0.7907 0.7573

IV. DISCUSSION

In this paper we proposed HOID-NET, a CNN-based
approach to detect hand-object interactions from egocentric
videos recorded at home by individuals with cSCI. HOID-
NET produced better results than the multi-stage image
processing approach, by using only the color information
from the RGB frames. This indicates that the hand ROIs and
their appearance carry significant information for detecting
whether the hands are interacting with objects, allowing
to simplify considerably the video-processing steps with
respect to [14]. However, as pointed out by recent studies on
action recognition [21], [22], the inclusion of the temporal
information allows improving the recognition performance.
Since our task can be seen as the binary simplification of
action recognition (i.e., we only detect when hand actions
occur), we believe that the use of 3DCNNs and recurrent
neural networks will further boost the detection performance.

The fully-automated pipeline showed good results, with
F1-score around 0.75. The decrease of performance from
the case with ground truth bounding boxes is due to the
error propagation caused by non-perfect hand localization.
However, this result is in line with those previously obtained
with the baseline approach on the ANS SCI dataset (F1-
score between 0.73 and 0.74 [14]) where the illumination
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conditions and activities were the same for all participants.
Thus, it is reasonable to expect that the expansion of the
dataset will help improving the perfomance of the system.
Interestingly, we noticed that both tests (i.e., with ground
truth hand detection – Table II, and YOLOv2 hand detec-
tion – Table III) yielded higher recall than precision. This
indicates that the system is better at recognizing interactions
than no interactions. An explanation for this result can be
attributed to presence of non-standard hand postures and
gestures (e.g., presence of spasticity), which make it difficult
to recognize when the hands are not interacting, leading to
the misclassification of some frames.

The dataset expansion will also allow taking into account
the large inter-subject variability that exists in people with
cSCI. Specifically, the type of gestures and hand postures
with which individuals with cSCI interact with objects
greatly depend on the level and severity of the injury, as
well as on the strategies learned during the rehabilitation
process. Thus, the inclusion of a larger and heterogeneous
sample of participants will certainly have beneficial effects
on the performance and robustness of this system. This is
an important factor that needs to be addressed in view of
developing and automated tool for monitoring upper limb
functions in people with cSCI living in the community.

Besides expanding the dataset and improving the per-
formance of the algorithm through different deep-learning
architectures, the future steps will focus on the clinical
validation of this system. Some simple measures, such as
the number of interactions per unit of time or the duration of
interactions proposed in [14] will be extracted and correlated
with gold-standard clinical scores (e.g., GRASSP, UEMS,
etc), in order to produce validated metrics for monitoring
the upper limb functions remotely.

V. CONCLUSIONS

In this work, we demonstrated the feasibility of using an
egocentric video-based approach for detecting hand-object
interactions in individuals with cSCI living in the commu-
nity. Testing this technology at home is an important step
towards developing an automated tool for monitoring hand
function in people with upper limb impairment due to cSCI.
The expansion of the dataset and the implementation of
temporal models will allow improving the performance of
the video-processing algorithms, with the ultimate goal of
enabling continuous and remote assessment of upper limbs
for individuals with cSCI living in the community.
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