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Abstract— Respiratory rate (RR) is an important vital sign
marker of health, and it is often neglected due to a lack of unob-
trusive sensors for objective and convenient measurement. The
respiratory modulations present in simple photoplethysmogram
(PPG) have been useful to derive RR using signal processing,
waveform fiducial markers, and hand-crafted rules. An end-
to-end deep learning approach based on residual network
(ResNet) architecture is proposed to estimate RR using PPG.
This approach takes time-series PPG data as input, learns the
rules through the training process that involved an additional
synthetic PPG dataset generated to overcome the insufficient
data problem of deep learning, and provides RR estimation
as outputs. The inclusion of a synthetic dataset for training
improved the performance of the deep learning model by 34%.
The final mean absolute error performance of the deep learning
approach for RR estimation was 2.5±0.6 brpm using 5-fold
cross-validation in two widely used public PPG datasets (n=95)
with reliable RR references. The deep learning model achieved
comparable performance to that of a classical method, which
was also implemented for comparison. With large real-world
data and reference ground truth, deep learning can be valuable
for RR or other vital sign monitoring using PPG and other
physiological signals.

Index Terms—Photoplethysmography, Respiratory Rate,
Deep Learning, Convolutional Neural Network

I. INTRODUCTION
Respiratory rate (RR) is a prominent diagnostic marker of

respiratory dysfunction and dysfunction and this crucial vital
sign is also commonly known as breathing rate or breathing
frequency. Abnormally elevated RR is a good predictor
for cardiac arrest and highly correlated with in-hospital
mortality. Consequently, monitoring of RR is fundamental
to assess patient’s health status in hospital and home or
community settings. However, the current clinical practice
usually measures RR by counting chest wall expansion,
which is highly subjective, prone to inaccuracy, and incon-
venient. Unobtrusive continuous measurement of RR has
been evolving using any or a combination of impedance
pneumography (IP), piezoelectric, acceleration, electrocar-
diogram (ECG), and photoplethysmogram (PPG) sensors
applied for research and patient monitoring applications. RR
monitoring is not available in widespread wearable fitness
sensors and smart watches, despite other key physiological
measurements, including heart rate (HR), heart rate vari-
ability, and temperature, are more accessible and useful for
clinical purposes. Therefore, there is a tremendous value in
obtaining reliable RR estimation using biosensor medical
devices and convenient wearable sensors.

A wide range of existing wearable sensors and smart
watches record PPG signal at one or more wavelengths of
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green, red and infrared measuring relative changes in blood
perfusion volume of a local tissue over time. The PPG
is modulated predominantly by respiratory system among
other numerous physiological mechanisms and manifested
as three types of signal modulation: baseline wander (BW)
of the PPG that is influenced by the changes in intrathoracic
pressure and vasoconstriction of arteries during inhalation;
amplitude modulation (AM) of the PPG that reflects the
changes in stroke volume and intrathoracic pressure during
respiratory cycles; and frequency modulation (FM) is nothing
but the respiratory sinus arrhythmia that exhibits HR to
increase during inspiration and to decrease during expiration.
Consequently, RR can be estimated from these respiratory
surrogate signals derived from PPG.

A comprehensive research has been established for PPG-
based RR estimation [1]. RR algorithms commonly involve
digital filtering, time and or frequency domain analysis,
signal decompositions, the fiducial points derived respiratory
surrogate waveforms and features, signal quality estimates
and sensor fusion [2]. The above classical approaches rely
on hand-crafted rules and empirical parameters optimized for
specific algorithmic methods, designed for general or specific
target patient population.

In contrast, deep learning has been recently explored
for numerous biometric analytics involving PPG time-series
signals. Convolutional neural networks (CNN) have been
trained for detecting atrial fibrillation using wavelet trans-
forms of PPG combined with hand-crafted features as inputs
[3] and for estimating HR using the spectrogram of PPG
and accelerometer signals as inputs [4]. Biswas et al. [5]
used PPG data to train a deep neural network combining a
CNN and an recurrent neural network (RNN) for biometric
based personal identification and HR estimation.

One of the limitations of deep learning approach is that
it requires a relatively large amount of annotated data.
Given the limited datasets with RR annotations are publicly
available, generating synthetic data is an effective approach
to mitigate the requirement of a large amount of annotated
data for deep learning approach [6]. The periodic PPG
time-series data have been synthesized for the comparison
of performances of various RR estimation algorithms [2].
Selvaraj et al. [7] also generated a synthetic ECG dataset,
which shares some similar principles to that of synthetic PPG
generation, for the performance validation of RR estimation.

An end-to-end deep learning approach based on convolu-
tional neural network architecture is currently proposed for
RR estimation using PPG. Accordingly, the deep learning
architecture takes raw PPG data as input, learns the rules
through training, and estimates RR values as outputs. The
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deep learning model is trained by adding real-world data,
synthetic data and augmented data to the training dataset
systematically as well as for different combinations. The
systemic improvement in performances for RR estimation
are assessed and also compared to that of a classical method
implemented additionally for RR estimation. The remaining
paper is organized as follows: Section II introduces the
datasets used and describes both the classical method and
the deep learning-based methods. Section III summarizes the
results of our proposed RR estimation methods. The final
Section concludes the paper with limitations and future work.

II. MATERIALS AND METHODS

A. Datasets

A synthetic PPG dataset is currently generated to mitigate
the requirement of a large amount of annotated data for deep
learning. In addition to the synthetic simulated data, two
publicly available datasets, CapnoBase and BIDMC, have
been employed for training and cross validation of deep
learning model. Furthermore details are given below.

1) Synthetic dataset: Synthetic PPG data were generated
as follows. Single PPG cycle templates are controlled to
generate trains of PPG beats with appropriate cycle durations
determined by the desired input HR. Each synthetic PPG
record is produced for a predetermined time duration (e.g.,
60s) and sample rate (e.g., 300 Hz). All the respiratory
modulations (AM, FM, and BW) driven by the desired
input RR are independently added to the PPG data to
generate modulated PPG data (Fig. 1). Furthermore, the
intensities of these respiratory modulations are varied and
Gausssian white noise is added to the synthetic data in order
to mimic realistic variability and inherent noise scenario.
The HR and RR inputs for synthetic data generation were
randomly chosen from the predetermined ranges of 30 to
200 beats-per-min (bpm) and 4 to 60 breaths-per-min (brpm),
respectively. Taking the Nyquist criterion and physiological
variability into consideration [7], a predetermined number of
physiologically possible pairs or combinations of HR and RR
from their respective range are chosen for the generation of
PPG recordings for the synthetic dataset. In the end, a total
of 100,000 recordings are generated for the current example
of deep learning model training.

2) CapnoBase dataset: This dataset [8] contains PPG
recordings and capnography data, both sampled at 300 Hz.
The cases in the dataset were randomly selected from a
larger collection of physiological signals collected during
elective surgery and routine anesthesia. The dataset consists
of 42 recordings of 8-minute duration from 29 pediatric
and 13 adult patients containing quality recordings under
spontaneous and controlled breathing. The gold standard
capnogram waveforms of the database have been manually
labelled for each breath cycle by a research assistant, and the
annotations were used to calculate the reference RR values
based on the time between consecutive breaths.

3) BIDMC dataset: This dataset is extracted from the
MIMIC-II resource [9] and comprised of PPG recordings and
simultaneous IP respiratory signals from 53 adult intensive

Fig. 1. Synthetic data from top to bottom: 1) with no respiratory
modulation, with 2) amplitude modulation, 3) frequency modulation, and
4) baseline wander, and 5) the final synthetic PPG data adding all three
respiratory modulations and additional white gaussian noise.

care patients recorded for about 8-minute duration both at a
sampling rate of 125 Hz. The IP waveforms of each record
were used as the reference respiratory ground truth, where
each breath cycle in the IP signals is manually annotated
by two research assistants independently, and both sets of
annotations are used to calculate the reference RR values.

B. RR estimation methods

The optimal window size for RR estimation can range
from 30s to 90s [10], where lower errors have been reported
at longer window sizes [8], and a shorter window size, on the
other hand, lowers the computational cost with high stability
for RR estimation algorithms. A window size of 60s with 1s
forward shift has been chosen currently for segmentation of
the datasets that results in 100,000 synthetic PPG segments
and 39,995 real PPG segments for RR estimation.

1) Classical method: A classical RR estimation method
has been implemented including a fusion of independent
RR estimates from multiple respiratory signals, as shown
in Fig. 2. More details of such traditional algorithms can be
found in [1]. Briefly, the raw PPG signal was down sampled
and filtered to remove very low frequency components of
the PPG. Then a peak detection method from the Python
PeakUtils package was used to detect fiducial peaks for each
beat with empirical parameters tuned for the PPG signal. The
respiratory signals were extracted using feature-based tech-
niques: 1) BW was extracted as the mean amplitude between
the peaks and preceding troughs; 2) AM was extracted as the
difference between the amplitudes of peaks and proceeding
troughs; and 3) FM was extracted as the inter-peak intervals.
After extracting the above surrogate respiratory signals, a
respiratory peak detection algorithm was used to estimate
the independent RRs from three surrogates signals. Standard
deviation (SD) of RR estimations from respiratory surrogate
signal segments was calculated and the independent RR
estimates were set to be invalid if SD is larger than a
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Fig. 2. Flowchart of the SmartQualityFusion RR estimation method.

predetermined threshold. The intuition is that the RR outputs
from different respiratory signals should not vary too much.
After we examined the variations of the RR estimates, a
quality metric ranging from 0 to 1 [11] was calculated for
each respiratory signal, and the final RR was computed as the
weighted mean of the RR from all three respiratory signals.
This method is referred to as the SmartQualityFusion, as a
combination of Smart fusion [8] and Quality fusion [11].

The public datasets were processed by the implemented
classical RR estimation algorithm and produce the RR esti-
mates for all 60s PPG segments in each record. Meanwhile,
the instantaneous ground truth RR values were averaged to
produce the reference RR values for each 60s segment. Mean
absolute error (MAE) was calculated as a performance metric
in each record by averaging the absolute error between the
RR estimations from the classical algorithm and the ground
truth reference RR values, and as given below:

MAE =
1

N

N∑
i=1

∣∣RRi
est −RRi

ref

∣∣ (1)

where N is total number of PPG segments, RRi
est and

RRi
ref denote the estimated and ground truth RR for the

ith segment respectively.
2) Deep learning method: In this study, a convolutional

neural network (CNN) architecture is input with the contin-
uous periodic PPG time series signal for the determination
of RR as an output measure. To be more specific, a pop-
ular variant of CNN, namely residual network (ResNet), is
currently employed for the measurement of RR using PPG
signals. ResNet [12] inserts shortcut connections into the
convolution layers which turn the CNN network into its
counterpart residual version. Empirical evidence has shown
that ResNets are easier to optimize and can gain performance
boosts with increased network depth while still maintaining
lower computational complexity, which can be substantially
beneficial for real-time respiratory rate monitoring.

In the current study, the one dimensional raw PPG signal
was resampled to 30Hz prior to feeding as an input to
the ResNet model that preserves the PPG signal integrity
well and substantially reduce the computational requirements

Fig. 3. Deep neural network architecture.

and model complexity. The ResNet deep nueral network
architecture is presented in Figure 3.

The deep learning network takes raw PPG data as an
input and the initial convolution layer serves to filter the
raw signal. The subsequent convolution layers increase the
learning capabilities of the model and construct features
throughout the layers. Rectified linear unit (ReLU) is used
as the activation function throughout the entire network
except for the output layer to introduce nonlinearity into the
model. The last dense layer outputs the RR estimation as a
continuous value. The loss function is defined as the mean
absolute error (MAE) (Equation (1)) between the estimated
RR and the ground-truth RR of the input PPG segment.

Selection of optimal hyperparameters is crucial for deep
learning model development, since it ensures the proper
model complexity and optimal learning structure for the
given problem. The Bayesian optimization algorithm [13],
which has shown success in hyperparameter tuning among
various machine learning models, was used to select the
optimal hyperparameters for the network. These hyperpa-
rameters include the number of ResNet blocks (Nres), filter
size (filterc), kernel size (kernelc) for convolution layer,
stride size for convolution layer (stridec) and max pooling
layer (stridep), size of first dense layer (n1

den), etc. Table I
summarizes the hyperparameters and their values tested in
Bayesian optimization. The Adam optimization method [14]
is currently used to optimize this regression problem.

The proposed deep neural network is trained systemati-
cally by adding different datasets such as real-world data,
synthetic data and augmented dataset to the training dataset
one-by-one or in different combinations to assess the sys-
temic improvement in performance for the estimation of RR.
In order to find the best strategy to train the deep learning
model using the above datasets, the following unique ap-
proaches are adapted to train the deep learning models:

• Use real data only to train models (DL:R).
• Use synthesized data to train the models first, and later

5950



TABLE I
HYPERPARAMETERS FOR BAYESIAN OPTIMIZATION

Hyperparameters for tuning Range of values
Number of ResNet blocks 2 . . . 6

Filter size of convolution layer 5 . . . 9
Kernel size of first convolution layer in ResNet

block 3 . . . 5

Stride size of first convolution in ResNet block 2 . . . 5
Stride size of max pooling layer 2 . . . 5

Number of units in first dense layer 15 . . . 30
Whether use BatchNormalization True, False

Learning rate for optimization function 1e-3, 1e-4, 1e-5

adapt the models with real data, similar to the idea of
transfer learning.

– Train models with synthetic dataset with the inten-
tion to use them on real dataset. (DL:S)

– Fine tune the baseline model from DL:S with the
real dataset. (DL:S→R)

• Use hybrid datasets including synthetic, real and aug-
mented datasets for better model training.

– Train models with hybrid datasets comprised of real
dataset and synthetic dataset together. (DL:R+S)

– With real and synthetic datasets, add inverted real
PPG data to further augment the training data.
(DL:R+S+A)

Due to the small sample size of real datasets, group fold
cross-validation was carried out while evaluating our deep
learning models involving real datasets. The real datasets
were randomly split into five folds while any subject’s data
only appeared in 1 fold. Four folds are used for training and
validation (3 folds for training, 1 fold for validation), while
the remaining fold is used for testing. Thus, the training is
performed in total 5 times, so that each fold serves as test
data only once. Synthetic data and augmented data were also
added to the training dataset as needed for different training
approaches. The deep learning models were implemented
in TensorFlow version 2.0. Training and evaluation were
done on Nvidia Tesla V100 GPU with 16 GB of RAM
hosted by AWS EC2 GPU instance. For each experiment,
100 epochs with a batch size of 128 were performed. The
early stopping technique was used during training stage to
reduce overfitting. The model with the lowest validation loss
was chosen and used for testing.

III. RESULTS

The hyperparameters for ResNet deep neural network
optimized by Bayesian optimization are presented in Table
II. The final neural network comprises of five ResNet blocks
following by one MaxPooling layer, one Flatten layer, and
three Dense layers with decreased number of units. Each
ResNet block contains three Convolutional layers with opti-
mized kernel size, filter size, and stride size as listed in the
table, as well as one Merging layer and one Activation layer.

The performances of RR estimation in MAE from cross-
validation in real datasets are presented in Figure 4 and
Table III. The results show that the models trained with
only real data (DL:R) and synthetic data (DL:S) show a
MAE of 3.8±0.5 brpm and 4.2±0.5 brpm, respectively.

TABLE II
OPTIMIZED HYPERPARAMETERS FOR DEEP NEURAL NETWORK

Layer Details

ResNet
blocks
(i=1. . . 5)

1st convolution
kernelc=3, stridec=2,
filteric=6 if i=1 else

2× filteri−1
c

2nd convolution
Same as convolution 1, except

stridec=1
3rd convolution Same as convolution 2

Merge Add function used
Activation ReLU

Max pooling stridep=2

Flatten

1st dense layer n1
den=20

2nd dense layer n2
den=10

3rd dense layer n3
den=1

Fig. 4. Boxplot comparison of mean absolute error for deep learning
methods and SmartQualityFusion method.

Fine tuning of the synthetic data based model with real
data (DL:S→R) decreases the MAE from 4.2±0.5 brpm to
3.4±0.6 brpm. Thus, the transfer learning with synthetic data
training followed by fine tuning with real world data showed
an 11% improvement in MAE from 3.8 brpm to 3.4 brpm.

In contrast, when the synthetic data and real data are com-
bined together (DL:S+R) as training data, the MAE of the
model dramatically decreases from 3.8±0.5 brpm to 2.5±0.6
brpm leading to 34% improvement in MAE as shown in
Table III. Appending the augmented data to the training
dataset did not have any impact for further improvement in
the performance of the model. The best performance result
from the deep learning approach (DL:S+R, MAE = 2.5±0.6
brpm) is found to be comparable to that of the classical
time-domain method (SQF) (MAE = 2.6±0.4 brpm) in these
real datasets. The relationship between the reference and
estimated RR from the best deep learning model is strong
with a high correlation (r=0.96).

IV. DISCUSSION

Abnormal respiration is the first clinical sign of health
deterioration. The RR vital sign is often neglected and
seldom measured in and out of both clinical environment.
Wearable devices integrated with simple PPG sensor have
been increasingly adapted into clinical medicine due to their
pervasive convenience and simplicity, which also provides
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TABLE III
SUMMARY OF THE MAE PERFORMANCE (AVERAGE±STANDARD

DEVIATION FOR ALL METHODS

Method MAE (brpm)

Deep
learning
approach

Train with real data only (DL:R) 3.8±0.5
Train with synthetic data only (DL:S) 4.2±0.5
Fine tune the model in DL:S with real

data (DL:S→R) 3.4±0.6

Train with synthetic data and real data
(DL:S+R) 2.5±0.6

Train with synthetic data, real data, and
inverted data (DL:S+R+A) 2.6±0.6

SmartQualityFusion method (SQF) 2.6±0.4

the opportunity to bridge the gap for objective and unob-
trusive vital sign measurements. Current PPG based RR
estimation methods rely heavily on hand-craft rules and
parameters tuned for specific settings. The study presented a
novel end-to-end learning approach based on deep learning
(ResNets) to estimate RR from PPG, and demonstrated
clinically reasonable performance.

Proper training of deep learning model requires relatively
large amount of PPG data with RR annotations. Standard
respiratory signals such as capnograms are obtrusive and less
accessible, and generating RR annotations are laborious and
expensive. In order to mitigate such problem, a synthetic
PPG dataset was effectively generated, in the current study,
to facilitate the deep learning model training process and the
preliminary performance results are promising.

As compared to the baseline model trained without any
synthetic data, the cross-validation results show that aug-
menting the real dataset with synthetic dataset enhanced
the MAE from 3.8 brpm to 2.5 brpm. Thus, the proposed
training strategies of deep learning model with synthetic
data generation demonstrated substantial improvement for
accurate determination of RR. Also, this performance is
comparable to that of the state-of-the-art RR estimation
method [8] and the SQF method currently implemented
for additional comparison (MAE of 2.6 brpm), despite the
limited availability of real world data with annotations for
deep learning approach for RR estimation; and the deep
learning performance can be drastically improved further
with abundant high quality real-world labeled data.

On the other hand, the real datasets employed in this study
are mostly, if not all, stationary data. Subsequently, both the
present deep learning model and the classic method might
not generalize well to the ambulatory PPG data from physical
activities. However, this problem can be mitigated by feeding
annotated PPG data with motion artifact via online learning
or retraining, when such data become available in the future.
Furthermore, the synthetic data can include different levels of
motion activity to mimic more realistic real-world scenarios
by learning the data collected from controlled experiments.
Although the deep learning models’ training requires so-
phisticated computational infrastructure, the computational
cost for the model’s inference is much less, which can be
beneficial for embedded applications.

Despite the labeled PPG data for current RR estimation
are limited, a vast unlabeled PPG data from the widespread

use of PPG sensors in fitness devices and smart watches can
be very useful for unsupervised or semi-supervised machine
learning approaches to learn the representation and input for
deep learning-based RR estimation. Also, the signal quality
of the PPG data can be assessed before we feed the PPG
data to the deep learning model. This can help us reject
some inaccurate RR estimations or provide confidence scores
for the RR estimations, and thus can further improve the
performance of the model.

In summary, with sufficient real-world data and reference
ground truth, the proposed deep learning approach can be
valuable for RR or other vital sign monitoring using PPG
and other physiological signals.
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[10] A. Schäfer and K. W. Kratky, “Estimation of breathing rate from
respiratory sinus arrhythmia: comparison of various methods,” Annals
of Biomedical Engineering, vol. 36, no. 3, p. 476, 2008.

[11] A. M. Chan, N. Ferdosi, and R. Narasimhan, “Ambulatory respiratory
rate detection using ECG and a triaxial accelerometer,” Proceedings
of the Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, EMBS, vol. 79, pp. 4058–4061, 2013.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” Multimedia Tools and Applications, vol. 77, no. 9,
pp. 10 437–10 453, dec 2015.

[13] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian op-
timization of machine learning algorithms,” in Advances in neural
information processing systems, 2012, pp. 2951–2959.

[14] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic opti-
mization,” 3rd International Conference on Learning Representations,
ICLR 2015 - Conference Track Proceedings, pp. 1–15, 2015.

5952


