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Abstract— Clinicians often use speech to characterize neu-
rodegenerative disorders. Such characterizations require clin-
ical judgment, which is subjective and can require extensive
training. Quantitative Production Analysis (QPA) can be used to
obtain objective quantifiable assessments of patient functioning.
However, such human-based analyses of speech are costly and
time consuming. Inexpensive off-the-shelf technologies such as
speech recognition and part of speech taggers may avoid these
problems. This study evaluates the ability of an automatic
speech to text transcription system and a part of speech
tagger to assist with measuring pronoun and verb ratios,
measures based on QPA. Five participant groups provided
spontaneous speech samples. One group consisted of healthy
controls, while the remaining groups represented four subtypes
of frontotemporal dementia. Findings indicated measurement of
pronoun and verb ratio was robust despite errors introduced
by automatic transcription and the tagger and despite these
off-the-shelf products not having been trained on the language
obtained from speech of the included population.

Clinical relevance Linguistic differences in individuals with
neurodegenerative disease can be subtle. Automated measure-
ment of pronoun and verb ratio (PR and VR) showed promise
despite the early stage of pipeline development using off-the-
shelf tools. Intraclass correlations between automatic versus
human measures of PR and VR were in the moderate to
excellent range as measured by intra-class correlation.

I. INTRODUCTION

A. Traditional Speech-Based Assessment

Spontaneous speech tasks are used to assess and character-
ize language production in people with neurological deficits
such as stroke [1], brain tumors [2], and neurodegenerative
diseases [3]. Patients are typically asked to describe a picture,
respond to an open-ended question, or tell a story [4].
Spontaneous speech tasks are attractive because sufficient
data can be collected relatively quickly (about 10 minutes
per sample). These tasks are comparable to traditional pen-
and-paper testing [5] and may be less prone to test/retest
effects [6]. Further, a wealth of recommendations for data
acquisition and processing exist [1], [4].

One of the disadvantages of spontaneous speech tasks is
the time and expertise required for manual transcription and
part-of-speech annotation. In our experience, a typical 10-
minute speech sample requires at least 240 minutes of work

by a language expert, and verification by another expert is
often required.

B. Automation Necessitates Evaluation

A relatively large number of studies have evaluated auto-
mated speech-based diagnosis of neurodegenerative disorders
using a technology pipeline that includes automated acoustic-
prosodic feature extraction, automated transcription, lexical
feature extraction, and machine learning [7], [8], [9], [10],
[11], [12], [13]. Toward scaling up these end-to-end diag-
nostic assistance systems, a narrower focus on evaluating
sub-components becomes important.

This paper focuses on the performance of two such sub-
components: (a) automated transcription (AT) and (b)
(automated) part of speech tagging (POST). The latter
is a specific aspect of lexical feature extraction that involves
determining the part of speech (POS) (e.g., noun, verb) for
each word in a text. In this study, we apply these components
to analyze the spoken language of patients and healthy
controls.

Relatively few studies have directly evaluated automated
versus human analyses of lexical features (e.g., Fraser [9],
Hsu et al. [14]), and existing work has involved relatively
few participants, with only two or three diagnostic/control
groups. This study builds upon such work by focusing exclu-
sively on POS features, and it involves more than double the
number of participants in previous studies. Among the five
groups in the current study, one pertains to logopenic primary
progressive aphasia, a condition for which computational
approaches have only begun to be used.

C. Groups: Four Disease Variants plus Healthy Controls

This study includes healthy controls (HC) and individ-
uals with behavioral variant frontotemporal dementia
(bvFTD) or one of three variants of primary progressive
aphasia (PPA): (i) semantic variant PPA (svPPA), (ii) non-
fluent variant PPA (nfvPPA), and (iii) logopenic variant
PPA (lvPPA). BvFTD involves symptoms such as social
disinhibition and impulsivity [15], while PPA is a neurode-
generative syndrome that predominantly damages language
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processing before the emergence of other symptoms (e.g.,
attention, memory, executive functioning). Thus, it is espe-
cially important to study automated clinical speech analytics
in this population.

D. Diagnostic Multi-Dimensionality
Much prior work has focused on predicting diagno-

sis. However, the effect of disease on speech is a multi-
dimensional phenomenon, and clinicians need more than just
a diagnostic category or label for their patients. A given
disorder has a wide range of severity levels, as well as
variable strength and weakness profiles, and treatment and
prognosis can heavily depend on an individual’s specific
situation. Therefore, an important aspect of this work is
not solely to evaluate the performance of POS taggers to
assist with classification but also to evaluate their ability
to reliably and accurately locate a given patient within a
multidimensional symptomotological space.

Clinicians have developed such an objective, quantifiable,
and multi-dimensional characterization of speech production
in aphasia in the clinical procedure quantitative production
analysis (QPA) [1], [16]. QPA involves lexical content mea-
sures, syntactic structure and complexity, speech rate and
errors, as well as fluency disruptions (e.g., false starts).

In this paper, we focus on the automatic measurement of
two important QPA variables: pronoun ratio (PR) and verb
ratio (VR). Based on the frequencies of pronouns (P), nouns
(N), and verbs (V) in a transcript, PR and VR are defined
as follows:

1) PR : P / (P + N)
2) VR : V / (N + V)
These two measures are chosen because they exhibit

several differences as a function of diagnostic group [17]
and are easy to compute directly from POS tags.

E. Off-the-Shelf and Baseline Perspective
This initial study is intended to establish a baseline level

of performance for future improvement. This “baseline” is
defined by all components being freely available today, with
no adaptation or customization needed for the task at hand.
Typical automatic speech recognition systems, meant for
dictation, do not predict punctuation1 (the speaker needs
to say “period” or “comma” to add punctuation). Thus,
transcripts fed to the tagger lack periods and commas.2

They also ignore fillers, such as um’s and ah’s. Fillers were
transcribed in the current dataset, but we removed them to
best approximate current off-the-shelf AT.

F. Focal Questions
We evaluated the ability of AT and POST to automatically

reproduce human-annotator based findings of a prior paper
[17] regarding the QPA dimensions PR and VR and the
ability to detect previously identified differences between
groups. We also evaluated POST output when given human
transcription (HT) versus AT.

1See Fraser et al. [18] for research into automated sentence boundary
detection in impaired speech.

2However, period removal seems inconsequential (see Sec III-A)

G. Forces Hindering vs. Enhancing Performance

1) Hinderance: POSTs are typically trained on journal-
istic prose (see II-C). Such training data may not be well-
matched to patients’ speech due to the language patterns that
occur in spontaneous speech, and the lack of neurologically
impaired training data likely hinders AT and POST. In
addition, the sometimes noisy hospital environment may
further undermine AT.

2) Enhancement: QPA measures are hypothesized to be
relatively robust for two reasons. First, typical AT and POST
measures require assigning the correct sequence of tokens
(words, POS tags, respectively) to a speech sample. However,
pronoun and verb ratio are frequency based; that is, they are
determined by mere counts of nouns, verbs, and pronouns.
Mis-orderings of POS tags do not hurt frequency counts as
long as intruding or dropped tokens do not occur.

A second robustness enhancer involves granularity. Typical
POST involves 15 or more POS labels, but QPA requires a
relatively coarse-grained classification choice: N, P, V, or
other. In addition, AT has to choose the correct word from
a vocabulary containing thousands of words. For example,
POST suffers if a superlative adverb is misclassified as a
comparative, but the QPA measures would not suffer. If AT
misrecognizes “cat” as “hat,” QPA still correctly counts the
word as a noun.

In sum, this paper is aimed at characterizing how these two
forces play out in a system that can produce two measures
of speech important for neurological diagnoses. In essence,
this characterization may serve as a “verbal thermometer.”

II. METHOD

A. Research Participants

Participants were recruited and assessed in the neurology
department of a major medical university. All participants
gave written informed consent, and the study was approved
by the institutional review board. See Wilson [17] for de-
tails of participants’ comprehensive neurological history and
examination, neuropsychological testing, and neuroimaging.
Data were shared via data use agreement.

In total, 70 participants were included: 60 with a neu-
rodegenerative disease and 10 HCs. The patient subgroups
included individuals with various prominent language im-
pairments: 11 with lvPPA, 25 with svPPA, 14 with nfvPPA,
and 10 with bvFTD. Age, handedness, and level of education
were not significantly different between groups, but there was
a statistically significant difference for sex (p < 0.01).

B. Speech Task, Human Transcription, and Annotation

A standardized speech task was administered and recorded
as part of previously published research [17]; specifically,
the participants completed the picnic picture description
component of the Western Aphasia Battery (WAB) [19]. This
task involved a clinician prompting participants along the
lines of Take a look at this picture, tell me what you see,
and try to talk in sentences.

Transcription and annotation with POS tags were done
by the consensus of two experts: a post-doctoral fellow
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TABLE I
QPA Normalization of Expert and POST Tags THE UTTERANCE sitting

down and eating IS TAGGED AND NORMALIZED TO THE FOUR-WAY

DISTINCTION NEEDED TO COMPUTE PR AND VR. V, VERB; A, ADVERB;
CONJ, CONJUNCTION; VBG, VERB (PRESENT PARTICIPLE OR GERUND);

RP, PARTICLE; JJ, ADJECTIVE OR NUMERAL (ORDINAL).

Word Expert tag NLTK Tag Same?
(normalized tag) (normalized tag)

sitting V (verb) VBG (verb) Yes
down A (other) RP (other) Yes
and Conj (other) CC (other) Yes

eating V (verb) JJ (other) No

experienced in linguistic fieldwork and aphasic speech and a
bachelor’s level linguist. The former re-checked the latter’s
work. If a word was distorted but still intelligible, it was
transcribed. Human annotations of fillers (e.g., umm, ah,
uhh) and false starts were deleted because most off-the-
shelf AT systems automatically remove them. Recordings
and transcripts are not publishable to remain within the scope
of participants’ consent and to avoid violating their privacy.
The complete corpus contained 9824 word tokens. Word
count did not differ by diagnostic group except for nfPPA,
which exhibited fewer words (mean [sd]) than HC and svPPA
(p<0.05): nfPPA, 85.9 (39.7); svPPA, 145.9 (64.6); lvPPA,
117.7 (58.5); bvFTD, 98.3 (25.3); HC, 156.4 (52.4).

C. Part of Speech Tagger

For the POST, we used the default tagger in the
Python-based Natural Language Toolkit (NLTK) [20], in-
voked by calling the pos tag method. For example,
nltk.pos tag([‘He’, ‘sat’]) automatically tags
the sentence He sat. The default tagger is an averaged
perceptron tagger that predicts the POS of a word based
on the preceding and following words, their tags, and their
prefixes and suffixes [21].3 This NLTK tagger uses a model
trained on Wall Street Journal sections of Ontonotes 5 [22].

D. Tag Normalization

The QPA measures (i.e., PR and VR) require a set of
tags that are much more coarse grained than typical POSTs
provide. We thus mapped the 45 POS tags used by NLTK
and the 20 tags used by previous annotators [17] to a set
of only four tags: noun, pronoun, verb, and other. Thus,
adjectives, determiners, and so forth fell into the “other”
category. Auxiliaries were also normalized to other because
Wilson [17] did not consider them part of VR.

In Table I, we demonstrate how the utterance sitting down
and eating was tagged by a human expert versus a machine
and how the tags were respectively normalized. The word
eating illustrates a case in which the normalized machine-
generated tag fails to match the normalized expert annotation.

3Source code for the tagger is published. See https://www.nltk.
org/_modules/nltk/tag.html and its dependencies.

E. Fully Automated System with Automated Transcription

To evaluate an end-to-end system, participant recordings
were fed to Google Cloud AT 4. Some editing was required
to delete extraneous snippets of speech that were not part of
the reference transcriptions (e.g., the clinician describing the
task to the participant). Smaller pieces of extraneous speech
remained due to the meticulous labor required to remove
them and the poor performance of automated diarization.
AT was fed to the POST. Tags were normalized as described
above, resulting in frequencies of the normalized tags (i.e.,
N, P, V) that enabled computation of PR and VR.

F. Statistical Analysis

Our first goal in these analyses was to measure POST
performance isolated from AT error (i.e., using HT rather
than AT as input). One prong of this POST evaluation on
HT input involved traditional POST measures: per token
accuracy, which quantifies agreement between POST and
expert for each word in sequence, and confusion matrices,
which quantify error for each type of tag.

A second prong of goal one evaluated the POST’s ability
to measure PR and VR based on HT. These values were
compared with PR and VR obtained from expert annotators
via intra-class correlation (ICC) (see III-B for results).

The third prong evaluated how accurately the POST
identified already known group-related differences in QPA.
In particular, we examined the ability of the tagger to
specifically and completely detect all significant differences
in PR and VR that human experts [17] found to be dependent
on group. The more it is able to detect these known findings,
the more potential it shows in ability to identify novel group
based differences (for results see III-C).

This third prong involved mirroring the planned statistical
analysis done by [17]. Specifically, the independent variable
was the participant group and the dependent variables were
PR and VR. Following [17], we performed three types of
tests: (a) an omnibus test for effect of group, (b) a comparison
of each of the four patient groups to HC group, and (c) a
comparison of each PPA group (svPP, lvPPA, nfvPPA) to
the others. All comparisons are specified in Table IV (for
the effect on PR) and V (for the effect on VR).

Given the multiple statistical comparisons, corrections to
significance measures were required. In Wilson [17], p-
values were corrected with the default single-step procedure
used in the R program glht for ANOVAs [23]. In our
study, we corrected p-values for multiple comparisons via the
Tukey Honest Significant Difference adjustment [24], using
the R Statistical Package (version 3.6.2 (2019-12-12).

The second goal was to measure end-to-end performance,
that is when AT is fed to POST. To this end, analyses
analogous to those in the first goal were performed. However,
regarding the first prong, tag confusions were not computed
due to the lack of word-for-word correspondence between
HT and AT. Accuracy of the transcription was measured

4https://cloud.google.com/speech-to-text/docs/
async-recognize
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TABLE II
Confusions Between Normalized Tags: Expert versus POST applied

to HT Tags. PRO, PRONOUNS; ACC, BALANCED ACCURACY.

Expert
other noun pro verb acc

P other 4427 122 131 13 0.90

O noun 126 1699 97 78 0.94

S pro 58 0 634 0 0.86

T verb 473 39 4 1383 0.94

TABLE III
Per Tag Accuracy (ACC) AVERAGED ACROSS ALL PARTICIPANTS WAS IN

THE LOW 90% RANGE. PARTICIPANT GROUPS ARE DIVIDED INTO TWO

LEVELS: ∼HC OR <HC DEPENDING ON WHETHER THAT VARIANT’S

CONFIDENCE INTERVAL OVERLAPPED WITH OR WAS BELOW THAT OF

HC.

Participant Mean 95% Conf Interval
Group Acc Lower Upper

All 0.92 0.91 0.92
∼HC HC 0.94 0.93 0.95

bvFTD 0.94 0.92 0.95
nfvPPA 0.94 0.92 0.95

< HC lvPPA 0.91 0.89 0.92
svPPA 0.90 0.89 0.91

as part of the first prong. Corresponding to prong two,
the performance of the end-to-end system was assessed by
computing (a) the ICC between automated pronoun ratio
(APR) and human pronoun ratio (HPR) as well as (b) ICC
between automated noun ratio (ANR) and human noun
ratio (HNR).

III. RESULTS

A. Per-Token Accuracy (Comparing Expert vs POST on HT)

Addressing the first prong of the first goal (see II-F; see
Table II for tagger confusions), we were only interested in
confusions between N, V, P (post-normalization tags) and
everything else (“other”) because the two QPA dimensions
of interest in this paper, PR and VR, only involve pronoun,
noun, and verb frequencies. P is the most frequently confused
tag because its balanced accuracy is the lowest.

Overall accuracy was 92% (See Table III). Per-token
accuracy was significantly affected by group (see Table III),
and non-overlapping 95% confidence intervals indicate that
the accuracy for svPPA and lvPPA were below that of the
other groups.

B. Pronoun and Verb Ratios Based on HT

P, N, and V frequencies were used to compute PR and
VR. A scatterplot showing the correlation between POST and
Expert measurement of PR is shown in Figure 3. It addresses
the second prong of the first goal as defined in II-F). The
ICC between POST- and Expert-based measurement of PR
was in the excellent range (r=0.88 with a 95% confidence
interval from 0.81 to 0.92). ICC for VR (see Table 4) was
also in the excellent range (r=0.90 with a 95% confidence
from 0.84 to 0.94). (See Cicchetti [25] for establishment of
ICC qualitative ranges of poor, excellent, etc.) The form
of ICC used is the most strict - the function ‘ICC1’ in

Fig. 1. Box Plots of Pronoun Ratio as a function of Group and Tagger.

Fig. 2. Box Plots of Verb Ratio as a function of Group and Tagger.

R statistical package, that is, a one-way random effects,
absolute agreement, single rater/measurement form of ICC,
form A-1 according to the nomenclature of McGraw and
Wong [26].

C. Significant Difference Perspective Based on HT

The previous two sections focused on a quantitative evalu-
ation of the tagger. In this section, addressing the third prong
of goal one (as defined in II-F), we qualitatively assess the
tagger by examining its ability to detect known group-based
differences in QPA outcomes.

Column 1 of Table IV shows human experts found six
significant differences in PR from comparisons between
participant groups. Column 2 shows that all but two of those
differences were detected using normalized POST applied
to HT. Specifically this automated approach missed two
significant differences, i.e. HC-vs-lvPPA and lvPPA-vs-nfPP
and no false-positive significant differences were detected.

Column 1 of Table V shows four significant differences
in VR based on normalized expert annotations. Column 2
shows that all and only these four differences were detected
via the automated approach.
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Fig. 3. Pronoun Ratio (PR) for Human Transcripts (HT): POST versus
Expert. Each point represents a participant, y-axis corresponds to POST-
based PR, x-axis to Expert or manually PR. Participant group is encoded
via color/shape of a point specified (see legend). Diagonal line is y = x
representing where points should lie for perfect tagging. ICC = 0.88, or
excellent (see text)

Fig. 4. Verb Ratio (VR) for HT: POST versus Expert. Verb ratio
analogue to Figure 3, ICC = 0.90, or excellent (see text).

TABLE IV
Tagger Ability to Replicate Pronoun Ratio Findings Based on Human

Expert Annotations WILSON [17] EXAMINED HOW DISEASE VARIANT

AFFECTED PRONOUN RATION AND FOUND OF EIGHT TESTS PERFORMED,
SIX WERE SIGNIFICANT. IN OUR AUTOMATED ANALYSIS (OBTAINED BY

NORMALIZED POST TAGS INTO N, P, V, AND OTHER) FOUR OF THOSE

SIX DIFFERENCES WERE FOUND WHETHER HT OR AT WAS FED TO

POST. AUTOMATED ANALYSES MISSED THE SIGNIFICANT DIFFERENCE

BETWEEN HC-VS-LVPPA AND AND LVPPA-VS-NFVPPA (ALTHOUGH

THE LATER APPROACHED SIGNIFICANCE AT P = .065) * <= .05, ** <=

.01, *** <= .001

Statistical HT+Expert HT+POST AT+POST
Test Finding Finding Finding

1. Omnibus *** *** ***
2. HC-vs-bvFTD NS NS NS
3. HC-vs-lvPPA * NS NS

4. HC-vs-nfvPPA NS NS NS
5. HC-vs-svPPA *** *** ***

6. lvPPA-vs-svPPA * *** ***
7. lvPPA-vs-nfvPPA * NS NS
8. nfvPPA-vs-svPPA * *** ***

TABLE V
Ability to Replicate Verb Ratio Findings Based on Human Expert
Annotations ANALOGOUS TO TABLE IV EXCEPT WITH REGARD TO

VERB RATIO. WHEN HT WAS FED TO POST, ALL FOUR SIGNIFICANT

DIFFERENCES WERE FOUND BASED ON THE EXPERT ANNOTATIONS.
WHEN AT WAS FED TO POST, ONLY THE SIGNIFICANT DIFFERENCE

INVOLVING LVPPA-VS-NFVPPA WAS MISSED. * <= .05, ** <= .01,
*** <= .001

Statistical HT+Expert HT+POST AT+POST
Test Finding Finding Finding

1. Omnibus *** *** ***
2. HC-vs-bvFTD NS NS NS
3. HC-vs-lvPPA NS NS NS

4. HC-vs-nfvPPA NS NS NS
5. HC-vs-svPPA *** ** **

6. lvPPA-vs-svPPA NS NS NS
7. lvPPA-vs-nfvPPA * ** NS
8. nfvPPA-vs-svPPA * *** ***

D. Evaluations Based on AT

Consider goal two: evaluating the end-to-end-system in
which AT is fed to POST. First, AT performance was poor:
mean(sd) word error rate (WER) was 39.1(23.4) and word
recognition rate (WRR) was 68.9(19.1).

Second, we compare ICC between (i) fully automated vs.
fully human PR (APR/HPR) and (ii) fully automated vs.
human VR (AVR/HVR). APR/HPR ICC was in the moderate
range (0.59 with a 95% CI from 0.45 to 0.71), and AVR/HVR
ICC was in the good range (0.82, 95% CI from 0.75 to
0.88) using the same conservative forms of ICC as above.
Pronoun/Verb-based ICC’s rise to 0.75 / 0.86 if one relaxes
evaluation criteria to accept consistency rather than absolute
agreement (i.e. ICC3, a two-way mixed effects, consistency,
single rater/measure rater/measurement form of ICC).

Evaluation of POST applied to AT in terms of the third
prong or qualitative angle can be found in the third column
for PR (Table IV) and VR (Table V). In terms of PR,
the fully automated approach detected the same pattern of

5835



differences as did POST applied to HT (i.e. column 2). In
terms of VR, the fully automated approach missed only one
significant difference (i.e. lvPPA-vs-nfvPPA) compared with
POST applied to HT.

IV. DISCUSSION

Assessment of spontaneous speech using QPA is an im-
portant aspect of evaluating individuals with neurological
disorders, but the clinical potential of this task is often offset
by the time and expertise required for analysis. To address
the problem, we aimed to assess the utility of an off-the-
shelf POS tagger (i.e., the default tagger from NLTK) for
automatic measurement of two QPA outcomes: PR and VR.

A. Main Findings

Despite high POST and AT error, full automation (in
which AT fed to POST) performed surprisingly well – AT-
based PR and VR exhibited moderate to good correlations
with those derived manually by human experts (APR/HPR
ICC was 0.59, and AVR/HVR ICC was 0.82). Second, POST,
whether AT- or HT-based, was able to detect a super-majority
of the group-based PR/VR differences identified manually by
Wilson [17]. When HTs were fed to POST, 8 of 10 group-
based differences were detected. With full automation, i.e.
feeding ATs to POST, 7 were detected.

B. Tagger Error

In section I-F, we anticipated two opposing forces affect-
ing accuracy: mismatch between tagging training and task
language samples would hinder performance. The coarse-
grained nature of PR and VR would help.

We found support for hindered tagger accuracy because
mean per-token tagger accuracy on HT was 88%. This result
was mediocre given that POS taggers perform in the high
90% range in typical evaluations involving journalistic prose
[27]. Such poor performance may be surprising considering
the task as described (choosing the four normalized tags
noun, verb, pronoun, and other) has a baseline chance (guess-
ing) accuracy of 25% whereas in typical tagger evaluations
there are dozens of tags to choose from. NLTK with 45 tags
would have a guessing baseline of 2%.

Why was performance so low despite the “easier” more
coarse-grained tagging task? Lack of similarity to the tagger
training data was anticipated in section I-F as the culprit.
But was the lack of similarity rooted in (a) speech-based
(as opposed to written) language patterns of tagger training
data or (b) unusual speech patterns found with neurological
impairment—or both? Table III data suggest that the answer
depends on the disease variant. bvFTD and nfvPPA were
in the same confidence interval as HC. Thus, it seems likely
that (a) is the bigger driver of tagger error for these disorders.
lvPPA and svPPA confidence bands’ were lower than the HC
confidence band, Thus, By contrast, both (a) and (b) are both
likely drivers of tagger error for lvPPA and svPPA because
confidence bands were below the band for HC accuracy.

Another possibility was that high tagger error rate was
caused by the lack of periods or other punctuation used in

our main analysis to emulate typical speech to text output
(see Section I-E, first paragraph). Per-token accuracy was
measured again, taking advantage of human annotations of
utterance boundaries and placing a period at the end of each
utterance. Under this condition, accuracy was found not to
differ significantly, thus ruling out the lack of punctuation as
the cause of the high error rate.

So far, the speech-based nature of the task seems to be the
leading explanation for tagger error. However, we identified
another possibly substantial source of error while inspecting
the confusions, finding that some of the confusions arose
not from tagger error but rather “normalization error.” In
particular, there were frequent confusions in which demon-
stratives such as this and that were counted by POST as
determiners and were thus normalized as “other” rather than
“pronoun.” By contrast, the expert had tagged them not as
determiners but as pronouns when they were functioning
in certain contexts (e.g., as referring expressions). For this
reason, POST will tend to undercount normalized pronouns
compared to expert annotators. In figure 1 POST-based PR
for each group is often less than and never greater than
the corresponding value from the expert-derined tags [17].
Analyzing normalization error is an important next step.

C. Automatic Transcription Error

Mean WER was high (39.1%). In the future more metic-
ulous removal of extraneous speech may help. That said,
WER may be less of an issue because many believe that
as treatments for these diseases become available, they must
be administered early in the disease process [31]. Thus, this
tool will be most valuable when used in mildly impaired
individuals whose speech has not deteriorated to the extent
that it substantially hurts WER.

D. Future Work

Future work may focus on a detailed error analysis. For
example, is there any pattern to the errors made on the svPPA
and lvPPA cases that would explain their lower accuracy?
Likewise, is there a pattern that explains an apparent ten-
dency to underestimate PR and overestimate VR?

Exploring alternative taggers is another important next
step. While normal English text can be accurately tagged
with the NLTK perceptron tagger using features of the
previous and next word, additional contextual features and a
more abstract analysis may be desirable for the language ana-
lyzed here. For example, in journalistic English, a determiner
like the is a good predictor of a following noun, and the
NLTK tagger uses that fact. But using a tagger trained with
normal text to evaluate sometimes ungrammatical patient
text can yield suboptimal results. More contextual features
and different tagger architectures have been found to be
much better for tagging languages that lack articles like
the and languages with freer word order than English, e.g.
Sanskrit [28] or Turkish [29]. For language of people with
neurological deficits, similar such alternative taggers these
might classify parts of speech more like a human expert than
the present system does.
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Instead of using an off-the-shelf tagger and AT, one could
also explore training the tagger for this paper’s specific
purpose. Tagger training data based on conversational speech
could help. Adapting both automated transcription and tagger
models based on language data obtained from other admin-
istrations of the picture description task could also help.

E. Importance

First, this study establishes an off-the-shelf baseline
against which more advanced systems can be compared.
Second, there is clinical importance because PR and VR
are part of QPA, a set of well-established clinical outcome
measures. Although novel natural language processing (NLP)
features have shown usefulness in other work, evaluating
them against quantitative outcomes established by the clinical
community can help increase the explainability and trust
of automated diagnostics to non-NLP medical practitioners.
Further, as described in Sec I-B this paper fills a gap:
there are many automatic diagnosis studies while fewer have
focused on quantitative multidimensional assessment.
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