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Abstract— Integration of multi-omics and pharmacological
data can help researchers understand the impact of drugs
on dynamic biological systems. Network-based approaches to
such integration explore the interaction of different cellular
components and drugs. However, with ever-increasing amounts
of data, processing these high-dimensional biological networks
requires powerful tools. We investigate whether network em-
beddings can address this problem by providing an effective
method for dimensionality reduction in drug-related networks.
A neural network-based embedding method is employed to
encode protein-protein, protein-disease, drug-drug and drug-
disease networks for the prediction of novel drug-target in-
teractions. We found that drug-target interaction prediction
using embeddings of heterogeneous networks as input features
performs comparably to state-of-the-art methods, exhibiting an
area under the ROC curve of 84%, outperforming methods such
as BLM–NII and NetLapRLS, and coming very close to the best
performing network methods such as HNM, CMF and DTINet.
These encouraging results suggest that further investigation of
this approach is warranted.

I. INTRODUCTION

Current research on drug discovery and drug repurposing
is not restricted to traditional in vivo experiments. Novel,
state-of-the-art, computational methods promote drug dis-
covery by selecting the most suitable candidate compounds
whilst also reducing time and cost of experiments [1], [2].
Moreover, the ever-increasing availability of omics and phar-
macological data have created new opportunities for more
effective computational drug design by aiding the exploration
of chemical associations with pre-designed drugs as well as
predicting mechanisms of drug action in targeting specific
biomolecules [3]. Network (graph) based approaches have
been proposed for the integration of the different data sources
to enhance drug-target interaction (DTI) prediction [4].

Although integrating different data types in a single het-
erogeneous network could provide new valuable insights into
the emerging field of drug discovery, interpreting such high-
dimensional data has proved a challenge to conventional
statistical methods. To achieve accurate and biologically
meaningful predictions, the development of methods which
can manage large high-throughput data is essential. Embed-
ding methods might provide an effective way to overcome the
complexity of network-based approaches in high-throughput
data analysis. Neural network based embedding methods
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transform high-dimensional data into low dimensional vector
spaces (features) whilst preserving topological properties of
their higher dimensional counterparts [5].

In this study, features of drugs and proteins are extracted
from their related networks using a neural network em-
bedding method, and used in DTI prediction. We propose
two pipelines to learn features of drugs/proteins using the
node2vec embedding method [6], and compare these ap-
proaches with state-of-the-art methods for DTI prediction.
The first pipeline, heterogeneous network embedding (HNE),
entails constructing two heterogeneous networks; integration
of drug-drug and drug-disease networks and integration of
protein-protein (including homologous proteins) and protein-
disease networks. The node2vec algorithm is then applied to
each of these heterogeneous networks to retrieve low dimen-
sional features of drugs and proteins interactions. In contrast,
the second pipeline, individual network embedding (INE),
applies the node2vec algorithm to each network separately
without integrating them. Then features achieved from each
network are combined to create drugs and proteins feature
matrices. Following the embedding step in each pipeline,
Inductive Matrix Completion (IMC) [7] is used to aid the
prediction of DTI using the aforementioned drug and protein
feature matrices.

II. RELATED WORK

Computational methods for DTI prediction encompass
three main approaches: ligand-based DTI, docking simula-
tion and chemogenomic approaches [8]. Ligand-based meth-
ods predict the affinity of the drugs for a given target by com-
paring new ligands with the known protein ligands. However,
due to the existence of few known ligands this prediction
method is inadequate [9]. Docking simulation predicts the
physical complementarity of drugs with proteins using three-
dimensional structures and calculates the binding energy
between them [10]. However this prediction is challenging
due to the low number of discovered protein structures.
Chemogenomics is the novel approach in the prediction
of DTIs by combining disciplines of chemistry, genomics
and proteomics [11]. This method systematically screens
libraries of small molecules against each drug target families
in order to develop novel drugs. In this approach, machine
learning methods have demonstrated promising performance
at predicting interactions between drugs and targets.

One of the earliest chemogenomics methods is the Bi-
partite Local Models (BLM) which predicts the drug tar-
gets given a known drug, and the drugs given a known
protein. In this supervised method, these two independent
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predictions can later be aggregated to predict the DTI [12].
This method can be extended by integrating neighbour based
interaction profile inference to BLM (BLM-NII). This further
increases the power of the method toward DTI prediction
of proteins that have no known interactions [13]. Manifold
Laplacian regularized least square (LapRLS) is a regression
method also based on the BLM concept [14]. Its extension,
NetLapRLS, integrates a kernel from known DTI networks.
Another method, Collaborative Matrix Factorization (CMF)
uses known interactions as well as similarity amongst drugs
and proteins [15] to predict DTI. This method is extended to
Multiple Similarities CMF (MSCMF) which employs more
than one similarity matrix of drugs and proteins by projecting
them into common low-rank feature spaces.

In another chemogenomics approach to DTI prediction,
Wang et al. constructed a heterogeneous network model
(HNM) to explore the association between drug and target
using node diffusion states [16]. Finally, a study by Luo et al
[17], similar to our study, focuses on low-dimensional vector
representations of each node in a heterogeneous network.
However, their approach uses diffusion component analysis
(DCA) [18] and singular-value decomposition (SVD) [19]
to reduce the network’s dimensionality. Then vector space
projection is employed to predict the DTIs based on the
aforementioned vector representations.

III. METHODS

A. Datasets

All data used in analyses are open access and publicly
available, thus, ethical approval was not necessary for this
study. Drug-drug and DTIs were extracted from the Drug-
Bank (Version 3.0) [20]. This online free database provides
information on drug structures, drug sequences, drug actions
and their targets. Protein-protein interactions (PPI) were ob-
tained from the Human Protein Reference Database (HPRD,
release 9) [21]. Disease related interactions, drug-disease and
protein-disease networks were downloaded from the Com-
parative Toxicogenomics Database (CTD) [22]. These net-
works converted to binary data, where 0 and 1 represent the
absence or presence of an association respectively, between
708 drugs, 5603 diseases and 1512 proteins. Exploration of
the node degree distributions of these networks show that all
the networks, in particular the homogeneous networks, are
in line with the scale-free network topology.

B. Network Embedding

1) Heterogeneous Network Embedding (HNE): As men-
tioned above, for this pipeline two heterogeneous networks
were constructed: 1) a drug-related heterogeneous network
consisting of drug-drug and drug-disease networks, and 2)
a protein-related heterogeneous network constructed by the
integration of protein-protein and protein-disease networks.
Then node2vec was applied to these heterogeneous networks
to construct vector representations of drugs and proteins.

Creating node embeddings with node2vec involves two
algorithms: random walk with restart (RWR), and skip-gram
model training. Skip-gram models have been widely used in

natural language processing (NLP) research to predict the
probability of surrounding words in sentences given a target
word [23]. This model consists of a neural network with
three layers: an input layer, a hidden layer, and an output
layer. The softmax function is then used to constrain the
results into a probability distribution that can be taken to
correspond to the probabilities that certain words occur in
the same context as a target word. Therefore, in order to
measure the probability of two words being in the same
context, the model preserves the features of each word in
the hidden layer. In other words, this layer can be extracted
and used as a low-dimensional vector representation. We
calculated the relation probability of drugs and proteins using
the same approach. The sequences to be estimated were
generated by converting the heterogeneous networks into
directed acyclic subgraphs. These subgraphs were generated
by multiple random walks from each node of the network
with the help of the RWR algorithm [24]. A schematic
representation of this method is demonstrated in Figure 1.

Fig. 1. Heterogeneous Network Embedding pipeline. The left side of the
figure represents drug-related networks and the right side represents protein-
related networks. Following the heterogeneous network construction, RWR
and skip-gram neural network were applied and then drug and protein vector
representations were fed into IMC to predict drug-target associations.

2) Individual Network Embedding (INE): In this pipeline,
RWR and skip-gram were applied the same way as in the
HNE approach. However, instead of integrating the networks,
in this approach network embeddings were extracted from
each network separately. Therefore, vector representations
of drugs were obtained from both embeddings of a drug-
drug network and embeddings of a drug-disease network,
separately. Similarly, vector representations of proteins were
obtained from embeddings of protein-protein and protein-
disease networks.
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C. Drug-Target Interaction Prediction

The IMC method [7] was employed to predict the DTI
scores using known DTIs and vector representations of drugs
and proteins as training data. The known DTI matrix contains
0 and 1 entries representing interaction and non-interaction
respectively. We excluded some of the associations in the
matrix and used the resulting data as a training set for the
IMC algorithm. Excluded associations were used as the test
set to assess the performance of the predictions. The aim of
the matrix completion algorithm is to recover the missed
entries of the low-rank matrix using a fewer number of
inputs [25]. The DTINet algorithm [17] also uses the IMC
method to predict DTIs and tests the performance of the
method using 5-times ten-fold cross-validation procedure.
It is possible that a different predictive model, such as
integrating the node embedding layer into a deep neural
network including a convolution layer might yield higher
DTI prediction accuracy. However, in order to be able to
compare our feature extraction method to DTINet we applied
the same predictive model and performance procedures as
Luo et Al [17].

IV. RESULTS AND DISCUSSION
As explained above, we evaluated the performance of

HNE and INE pipelines with IMC using 5-times ten-fold
cross-validation withholding out 10% of the drug-target
interactions and the matching number of non-interactions as
test sets, using the rest of the data as training sets. Employing
the non-interactions as test set allows the calculation of
false positive and false negative rates. Due to this, in each
cross-validation set the performance of the prediction was
reported in the form of receiver operating characteristic
(ROC) and precision-recall (PR) curves. The ROC curve
plots the true positive rate versus false positive rate [26] and
the larger the area under ROC (AUROC) curve the more
successful predictions are. Similarly, the larger area under
the PR curve (AUPR) shows high prediction performance
with high precision and sensitivity. Here, for each pipeline,
we report the average of AUROC and AUPR curves, as
each fold in cross-validation has its own ROC and PR
curves. The HNE pipeline exhibits an AUROC of 84%, while
the INE pipeline obtains only 70% (Figure 2). The HNE
method was compared to the state-of-the-art DTI prediction
algorithms. The AUROC curve results show that the HNE
pipeline outperforms methods such as BLM–NII (67%) and
NetLapRLS (83%), and exhibits performance close to the
best performing network methods, including HNM (85%),
CMF (86%) and DTINet ( 91%) (Figure 3). The approximate
predictions of mentioned DTI methods are obtained from
Luo et al [17].

Similarly to the HNE pipeline, HNM and CMF are de-
signed to predict DTIs by using heterogeneous data. These
methods outperform methods which are designed to predict
DTI by employing single networks, such as BLM–NII and
NetLapRLS. This demonstrates the advantage of hetero-
geneous networks in the prediction of drug-target pairs.
Heterogeneous networks harbour different types of biological

Fig. 2. This figure shows the ROC curves of the drug-target prediction
performance in HNE and INE pipelines. Average AUROC curve values are
0.84 and 0.70 for HNE and INE respectively.

Fig. 3. This figure shows the average AUROC and AUPR curve values
of different drug-target interaction methods including HNE and INE (high-
lighted with black borders). AUROC is the area under the curve of false
positive against true positive rate. However, AUPR is the area under the
curve of sensitivity versus precision.

data, and this interconnected structure uncovers invaluable
new indirect connections in the data. In the case of the HNE
pipeline, for instance, two networks describe the association
of proteins, the PPI network and the protein-disease net-
work. The integration of these networks creates new indirect
protein-disease associations [27].

To the best of our knowledge this study is the first
approach in using a neural network based embedding method
in DTI prediction. As mentioned above, it is possible that
prediction performance may be improved for HNE repre-
sentations if they were used in conjunction with a deep
neural network architecture, and hyperparameters were sys-
tematically tuned. For instance, the subgraphs which served
as input to the the skip-gram algorithm were generated by
RWR with the random movement from each node in the
network. However, the number of walks and walk lengths
are hyperparameters in RWR. The skip-gram model itself
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has two hyperparameters, namely, windows size and number
of nodes in the hidden layer. In this study, the most common
hyperparameter settings were used, and no attempt was
made to search for the best parameters for the DTI task.
The reason for this is that our aim was to compare the
dimensionality reduction methods used in the top performing
DTI prediction model (DCA for DTINet) to the network
embedding method. However, in future we aim to investigate
the effect that hyperparameter setting might have on DTI
prediction performance.

The results reported by BLM–NII, NetLapRLS, HNM,
CMF, DTINet and our study’s pipelines are based on original
collected data sets of proteins, without removing homologous
proteins. Homologous proteins have similar structures and
function, and therefore may artificially boost the accuracy
of DTI prediction [17]. Future work will also investigate the
effect of homologous proteing removal on the embedding
based methods presented in this paper.

V. CONCLUSION
This study demonstrates that neural network based node

embedding method can reduce the high-dimensional bio-
logical networks to low-dimensional feature sets which can
be successfully used in DTI prediction. The HNE pipeline
exhibited the AUROC curve of 84% and outperformed the
BLM–NII and NetLapRLS algorithms on this task. This
pipeline also showed close performance to the HNM, CMF
and DTINet methods. Further investigations of this method
such as exploring the most suitable hyperparameters in
network embedding and using of the features in a full-fledged
deep neural network are therefore warranted, and may result
in further prediction performance improvements. In addition,
this method will be applied on different datasets such as
cancer and neurodegenrative disease to evaluate the method
and compare with other state-of-the-art methods.
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