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Abstract— Cannulation is a routine yet challenging medical
procedure resulting in a direct impact on patient outcomes.
While current training programs provide guidelines to learn
this complex procedure, the lack of objective and quantitative
feedback impedes learning this skill more effectively. In this
paper, we present a simulator for performing hemodialysis
cannulation that captures the process using multiple sensing
modalities that provide a multi-faceted assessment of cannula-
tion. Further, we describe an algorithm towards segmenting
the cannulation process using specific events in the sensor
data for detailed analysis. Results from three participants with
varying levels of clinical cannulation expertise are presented
along with a metric that successfully differentiates the three
participants. This work could lead to sensor-based cannulation
skill assessment and training in the future potentially resulting
in improved patient outcomes.

I. INTRODUCTION

Cannulation (e.g., intravenous cannulation) is one of the
most commonly practiced medical procedures with an di-
rect impact on clinical outcomes. Patients on hemodialysis
require cannulation to access their vascular access (an arte-
riovenous fistula (AVF) or graft (AVG)) for dialysis about
three times a week. The cannulation task not only consists
of inserting the needles but also appropriate palpation for
locating the fistula. Recent research has documented that
the quality of cannulation performed by a clinician can be
a factor in patients’ morbidity and mortality rates [1], [2].
In addition, the lack of requisite skill has contributed to a
high rate of miscannulation [3], [4]. To improve and ensure
that clinicians are skilled in cannulation, better methods of
training and assessment are needed.

One significant limitation in current literature is a detailed
understanding of the technical process of skilled hemodial-
ysis cannulation. This requires a multifaceted understanding
of various aspects such as the force during needle insertion
as well as the 3D trajectory of the needle during insertion.
Several groups have developed systems that assess certain
clinical procedures using multiple sensor modalities. For
instance, Lasso and colleagues combined vision and tracking
data streams for image-guided medical intervention training
[5]. Along the same vein, both laparoscopic and suturing
skills have been measured on simulators that were equipped
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with sensor systems that yielded multiple objective metrics
including gripping force and tool path length, which were
postulated to improve training [6], [7]. While it is advan-
tageous to use multiple sensors, it is critical to relate the
data to their procedural and spatial context. In other words,
for meaningful skill analysis “clips” of sensor data must
be related to their specific physical context. An example of
this is work by Lin and Hoover who explored the detection
of bite counts during food consumption using both finger
and wrist motion data [8]. Similarly, Fukuda and colleagues
successfully labeled laparoscopic suturing motions, such as
probing, pulling-out and dragging, based on force data [9].
Our previous research in assessing suturing skills also in-
volves labeling movements from multiple data streams [10].

This study presents an improved cannulation skill train-
ing simulator to better understand the complex process of
hemodialysis cannulation by identifying sub-tasks of the
cannulation process. Motivated by our promising previous
study [11] in quantifying cannulation skills, we included two
additional sensing modalities (force and infrared sensing)
to further capture cannulation skills. For data analysis from
the multiple sensor systems which are integrated within our
simulator, an algorithm that segments the cannulation process
using specific events is presented. The proposed device and
algorithm, in our opinion, lays the foundation for systematic
analysis with bigger data sets via batch processing, which
could ultimately result in improved cannulation skills train-
ing.
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Fig. 1. (a) The Cannulation Simulator: 1. Leap Motion 2. FingerTPS 3.
trakSTAR 4. Control Box 5. Simulator Bed; (b) IR Emitter/Detector Pair
within the fistula model; (c) Flashback Effect with LED.
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Fig. 2. Cannulation Procedure Segmentation Algorithm as a Flowchart

II. METHODS
In this section, we describe the experimental setup, fil-

tering process of sensor data and the cannulation process
segmentation algorithm.

A. Experimental Setup
The cannulation simulator (seen in Fig. 1) consists of

four sets of sensors: Leap Motion for tracking the hand
(Ultraleap), FingerTPS for measuring forces on the needle
(Pressure Profile Systems), trakSTAR for measuring nee-
dle motion (Northern Digital Inc.), and infrared (IR) emit-
ters/detectors for detecting whether the needle is inside the
fistula. The Leap Motion controller used for tracking hand
movement is fixed to the top of the frame. The participant’s
hand movement while palpating to locate the AVF model to
be cannulated could, therefore, be observed and recorded at
100 Hz. The FingerTPS system includes three finger sleeves
that cover each participant’s thumb, index finger, and middle
finger, as these fingers are typically used to palpate and hold
needles. Force data is recorded at 40 Hz via a Bluetooth con-
nection to the host PC. With initial calibration, finger force is
recorded in newtons; however, due to individual differences
among participants, force of each finger was normalized to
the [0-1] (unitless) range for analysis. An electromagnetic
(EM) field generator from the trakSTAR system is placed
underneath the simulator. The corresponding EM sensor is
embedded inside the needle, close to the beveled tip. During
cannulation, the precise location of the needle is saved at
100 Hz, allowing the capture of subtle movements that may
be useful for evaluating skill. Finally, an IR detector is fixed
close to the tip inside the needle (shown in Fig. 1(b)). IR
LEDs are located along the bottom of each AVF module such
that when the needle is inserted correctly into the module,
the detector picks up the emitted signal and lights a red LED
in the cannula to simulate blood flashback. The IR detector’s
voltage is recorded at 100 Hz through a DAQ module (USB-
6001, National Instruments). This current design, integrating
IR emitters and a detector, allows the simulator to be liquid-
free while allowing for accurate flashback simulation. To
avoid confusion between the IR signal inside the fistula and

ambient IR, the IR emitters are excited at a specific frequency
(25 Hz square wave) which allows for the isolation of the
desired signal during analysis.

B. Signal Filtering and Temporal Synchronization

Among our sensors, the Leap Motion controller and Fin-
gerTPS both provide pre-filtered and calibrated data and thus
do not require additional filtering. Data from the trakSTAR
system, however, must be filtered for noise which is primarily
caused by electromagnetic interference from other electronic
components and metals (except for medical grade stainless
steel). The minor noise measured using our simulator is
largely due to the motor and the IR emitter array in each
AVF module and can be filtered out using a low-pass filter
with a cutoff frequency of 20 Hz. This frequency was chosen
since, according to studies [12], [13], human hand motion
rarely exceeds 20 Hz. The IR detector data must be filtered
with a bandpass filter around 25 Hz to isolate the frequency
at which the emitters blink to recognize when the needle is
inserted into the AVF module.

Due to the nature of multi-modal sensing, temporal cal-
ibration is essential to ensure reliable data. The cross-
correlation method was applied to determine the lag between
two streams of signals by finding the maximum peak of the
sliding dot product [14], [15]. The four sensors were matched
by three pairs: FingerTPS and Leap Motion, Leap Motion
and trakSTAR, trakSTAR and IR emitter/detector. Through-
out the temporal calibration process in this study, only the
FingerTPS was found to experience an average lag of 219 ms
as expected considering its wireless Bluetooth connection.
Because other sensors were all set at the sampling rate of
100 Hz, there was no other lag evidenced. Consequently,
this lag was compensated for in the algorithm that will be
introduced later in this paper.

C. Recognition of Sub-tasks during Cannulation

Some key events are critical for labeling sub-tasks during
cannulation: the starting point of inserting the needle, the
time when flashback is witnessed, and the moment of level-
ing out the needle. In this work, we focus on a method to
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Fig. 3. An illustration of the process of cannulation used to define key events and sub-tasks

segment the various data streams into sub-tasks based on the
following events:

• The insertion starting point (Tstart): This moment can
be described as the short pause right before inserting
the needle into the skin surface. Since the short pause
is used by participants to ensure the cannulation site
is accurate, it not only marks the beginning of needle
insertion, but also provides information on the partici-
pants’ success in locating the optimal cannulation site
from the palpation exam. In Fig. 2, Z(t) represents the
location of the needle in the Z-axis at time t in reference
to the trakSTAR EM field generator coordinates and Zs
stands for the height (Z value) of the skin surface.

• The needle flash point (Tflash): This moment is de-
fined as the time that participants first receive steady
flashback. In Fig. 2, VIR stands for the filtered voltage
reading from the IR detector and IRth is the voltage
threshold for identifying whether the LED should be
turned on.

• The leveling out point (Tlevel): This moment is described
as when participants start to adjust and push the needle
into a secured position after seeing flashback. Such
movement can be found by locating local maxima and
minima on the needle velocity profile v(t). Because
participants need to advance the needle at an angle that
is different from the one used for needle entry, it is
expected that there is a local maximum on the finger
force profile near this time point as well.

D. Experimental Design

In this study, data from three participants who repre-
sented three distinct skill levels were analyzed. Skill levels
were evaluated by expert peers using a rating sheet. Each
participant was presented with identical written instructions
on how to complete the experiment which included can-
nulating fistulas 16 times on the simulator. However, each
time a unique condition (a combination of AVF location,
AVF shape, vibratory sensation, and skin thickness) was
presented. Ethics approval for this study was provided by
the Institutional Review Boards (IRB) of Clemson University
and Prisma Health (Greenville, SC).

III. RESULTS AND DISCUSSION

A. Identification of Sub-Tasks

Tstart

Level out

Tflash TendTlevel

Fig. 4. Segmented cannulation procedure of one trial from an expert
cannulator (Note: All force values are normalized and, therefore, unitless.)

Fig. 4 shows the data recorded from a peer-recognized
expert participant. According to the algorithm, the first
flashback occurs at 19.34 s. There is one major peak on the
velocity profile representing a swift needle insertion around
19 s, right before the needle flash point. After flashback,
another major peak is seen on the velocity profile that is
accompanied by an almost simultaneous peak on the force
profile. This was produced by the subconscious movement
of squeezing the wings of the needle to level out the needle
angle and to push it into a secured position. The start of
the leveling out movement is identified as the adjacent local
minimum (19.95 s) before the major peak on the velocity
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Fig. 5. Segmented cannulation procedure of one trial from an intermediate
cannulator (Note: All force values are normalized and, therefore, unitless.)

profile. This clip of data describes a clean, swift, and efficient
cannulation trial which is preferred during training. Within
the 16 trials of this expert participant, there are 5 trials in
which no obvious leveling out movement can be detected.
Also, the number of major peaks on the velocity profiles are
calculated based on the specific sub-task time segment of the
cannulation procedure. For the expert participant, the number
of extra movements before the needle flash point and after
the leveling out point is very limited. Among 16 trials, only
1 trial scored three major velocity peaks before needle flash
point.

Fig. 5 demonstrates an example of a trial performed by
a participant with intermediate cannulation skill. At time
26.84 s the needle flash point is marked by the first sight of
steady flashback. Before this point, there is one major local
maximum (Insertion Attempt 1) recognized on the velocity
profile and only temporary flashback is observed. Although
there is one local maximum of velocity after the needle flash
point, the pattern is considered to fit the insertion motion
instead of needle leveling out. After checking with the video
evidence, we are confident to say there is no clear leveling
out movement in this trial. For this specific participant, the
movement of leveling out is constantly skipped. Out of
16 trials, 10 cannot be identified with clear leveling out
movements. Another discovery is that the number of local
maxima of the velocity profile before the needle flash point
is more sporadic (median=2).

Fig. 6 shows an example of a cannulation trial by a
novice participant. There is no steady and constant flashback
according to the IR voltage level, although there is a brief

(Infiltration)

Insertion Attempt 1 Insertion Attempt 3

Insertion Attempt 2

Tstart Tend
This flashback lasted 0.8s.

Fig. 6. Segmented cannulation procedure of one trial from a novice
cannulator (Note: All force values are normalized and, therefore, unitless.)
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Fig. 7. Comparison of Needle Flash Time (Tflash-Tstart)

period in which the voltage of the IR detector indicates
that the needle was in the AVF model. A brief flashback
which goes away immediately after fits the pattern of needle
infiltration. During this trial, this participant made 3 attempts
and each attempt can be identified by combining needle
tip depth, total finger force, and velocity profiles. Future
effort is needed to systematically quantify these attempts.
Compared to the examples of the other two participants,
this was far from a successful cannulation. Among the total
of 16 trials, there are 7 trials that this participant failed
to obtain steady flashback, while the other two participants
successfully obtained steady flashback for all 16 trials.

B. Comparison of Participants’ Performance

Using the algorithm proposed here, we divided the can-
nulation procedure into multiple sub-tasks. From this, we
extracted the needle flash time as a metric to compare
performance. Ideal cannulation is assumed to be swift and
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time-efficient as it can be verified by needle flash time. Fig. 7
presents the time it takes the participant from the start to the
needle flash point. Using the Kolmogorov-Smirnov test, there
is not enough evidence to prove this set of data is normally
distributed. Therefore, the non-parametric t-test (Wilcoxon
rank-sum test) was used in this case to determine if the data
in each sample group have equal medians. Between expert
and intermediate participants, their medians are different
(Texpert=1.53 vs Tintermediate=2.68: p=0.0019); between inter-
mediate and novice participants, their medians are different
as well (Tintermediate=2.68 vs Tnovice=8.24: p=0.01). The level
of significance is set at 0.05.

From the results described above, the sub-task of “level
out” is most often skipped among the trials performed by the
intermediate and novice participants. For the expert partici-
pant, out of 16 trials, there are 5 trials in which our algorithm
and video evidence cannot detect any obvious level out
movement. For the intermediate participant, out of 16 trials,
there are 10 trials in which a level out movement cannot be
detected; as for the novice participant, only 1 trial contains a
level out movement. Another discovery is that for the expert
participant, the number of peaks from the velocity profile
before the needle flash point is very consistent (median=1).
Meanwhile, the results from the other two participants vary
greatly, especially for novice participant, whose median of
the number of peaks from the velocity profile is 5.5.

IV. CONCLUSION

In this study, we captured the cannulation process at
varying skill levels via sensor data. There are four main sub-
tasks or metrics that set the expert participant apart from
the other subjects in the study. First, the expert user moved
smoothly through the task, shown by typically peaking in
velocity once before flashback while the less experienced
participants had a significantly higher number of peaks.
Second, the participant’s movement was swift, as the nee-
dle flash time after the start was consistently small, while
less experience is shown by long and unpredictable times.
Third, the expert participant did not fail to get flashback
as the others did. Finally, the leveling out movement was
observed most often with the expert participant while the
intermediately experienced participant leveled out about half
as often, and the novice leveled out only once.

Dividing the task into sub-tasks allows for focused training
at key steps of the cannulation process. It can expose areas of
weakness in participants’ technique or skill and provide ob-
jective metrics for assessment and find areas of improvement.
As machine learning and neural network algorithms start to
show great promise in clinical training and assessment [16],
[17], the algorithm proposed here can be improved to analyze
large groups of data to sort performance based on skill levels.
Assessing data in this way could provide insight into im-
provements that clinicians could make for more efficient and
safe cannulation. In the future, we are willing to include an
interface that provides immediate feedback to the participants
during cannulation while providing comprehensive metrics.
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