
  

  

Abstract— Stroke survivors often experience unilateral 

sensorimotor impairment. The restoration of upper limb 

function is an important determinant of quality of life after 

stroke. Wearable technologies that can measure hand function 

at home are needed to assess the impact of new interventions. 

Egocentric cameras combined with computer vision algorithms 

have been proposed as a means to capture hand use in 

unconstrained environments, and have shown promising results 

in this application for individuals with cervical spinal cord 

injury (cSCI). The objective of this study was to examine the 

generalizability of this approach to individuals who have 

experienced a stroke. An egocentric camera was used to capture 

the hand use (hand-object interactions) of 6 stroke survivors 

performing daily tasks in a home simulation laboratory. The 

interaction detection classifier previously trained on 9 

individuals with cSCI was applied to detect hand use in the 

stroke survivors. The processing pipeline consisted of hand 

detection, hand segmentation, feature extraction, and 

interaction detection. The resulting average F1 scores for 

affected and unaffected hands were 0.66 ± 0.25 and 0.80 ± 0.15, 

respectively, indicating that the approach is feasible and has the 

potential to generalize to stroke survivors. Using stroke-specific 

training data may further increase the accuracy obtained for the 

affected hand.  

I. INTRODUCTION 

Individuals who have had a stroke experience hemiplegia 
or hemiparesis, which is a unilateral motor deficit on the 
contralateral side of the brain lesion. One of the determinants 
of quality of life and independence after stroke is upper limb 
function [1]. An estimated 65% of stroke survivors experience 
difficulties in their activities of daily living (ADLs) as a result 
of upper limb impairment, despite medication and 
rehabilitation [2-4]. Capturing the upper limb function of 
stroke survivors in their daily life is vital to quantifying the 
impact of new interventions and to designing personalized 
rehabilitation plans. 

In order to measure the upper limb function of stroke 
survivors in their living environment, accelerometers have 
been used to capture upper limb movements [5]. However, 
accelerometers do not document whether the detected upper 
limb movement belongs to a functional task [6, 7]. In addition, 
most of the studies using accelerometers for detecting upper 
limb movements place the devices on the wrists, limiting their 
ability to capture the details of hand movements. Furthermore, 
studies that recorded hand movements with accelerometers 
worn on fingers were carried out with well-defined tasks in 
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laboratories rather in home or community environments [8, 9]. 
There is still a need for wearable technologies that can measure 
how individuals with stroke use their hands at home, in order 
to better reflect the impact of interventions on daily life. 

Videos from wearable cameras (egocentric video) have 
recently been proposed as a means to capture hand use in 
unconstrained environments. Building on prior work in 
computer vision approaches to recognize objects [10-12] and 
activities [13] in egocentric video, a machine learning-based 
system was used to detect interactions between the hands and 
objects in the environment [14, 15]. Hand-object interactions 
were defined as participants manipulating an object with their 
hand for a functional purpose. This definition was used as the 
basis for a frame-by-frame binary classification task 
(interaction / no interaction). It was postulated that detecting 
hand-object interactions could serve as the basis for measures 
of recovery of hand use, for example by quantifying the 
instances of functional uses of the impaired hand over time. In 
this previous study, Likitlersuang et al. [14] showed promising 
results for detecting the hand use of individuals with cervical 
spinal cord injury (cSCI) using this approach.  

In order to extend this novel system to a wider population 
of individuals with hand impairments, the algorithms 
previously trained on individuals with cSCI were evaluated in 
the present study for their ability to detect hand-object 
interactions in stroke survivors. In particular, we sought to 
determine the generalizability of the trained models across 
populations. 

II. METHODS 

Egocentric cameras (GoPro Hero 4 and 5, GoPro Inc., CA, 
USA), which record video from a first-person angle, were used 
to record 38 daily tasks in a home simulation laboratory. The 
videos were recorded at 1280x720 resolution and at 30 frames 
per second. However, they were analyzed in a reduced 
resolution of 640x360 pixels.  

In this study, two groups of participants with hand 
impairment were involved: individuals with cSCI and stroke 
survivors. The inclusion criteria for study participants in both 
groups were as follows. 

For the individuals with cSCI, the inclusion criteria were: 
1) a neurological level of injury between C2-T1; 2) an 
impairment grade between A and D in the American Spinal 
Injury Association Impairment Scale (AIS); 3) no wrist or 
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hand deformities/injuries; 4) impaired but not completely 
absent hand function. No restrictions were placed on injury 
type (traumatic or non-traumatic) or duration after injury. The 
cSCI data used here is part of the dataset previously reported 
in [14]. 

For the stroke survivors, the inclusion criteria were: 1) at 
least six months post-stroke; 2) self-reported impact of 
affected hand on ADLs; 3) impaired but not absent hand 
function; 4) no subluxation or significant pain when using 
upper limb; 5) no other neuromusculoskeletal disease affecting 
upper limb movement other than stroke. 

The study was approved by the Research Ethics Board of 
the University Health Network. Signed consent was obtained 
from each participant before enrolling them in this study.  

A.  Dataset 

The training dataset consisted of 82,331 video frames 
collected in a previous study, according to procedures 
described in detail in [14]. The dataset included frames of 
interaction (57%) and frames of no interaction (43%) from 
videos of 9 individuals with cSCI executing ADLs in the 
simulated home environment.  

The testing dataset consisted of 27,066 frames in total from 
videos of 6 individuals with stroke executing ADLs in the 
home simulation laboratory. Both the training and testing sets 
included videos across 6 rooms with different settings (e.g. 
living room, kitchen and bedroom) and 38 tasks. The 
participants were instructed to perform the tasks in the manner 
they usually did at home. The testing dataset consisted of 70% 
of interactions and 30% of non-interactions. 

B. Hand Detection 

Before detecting interactions, the hands must be located in 
the image. A convolution neural network (CNN) - You Only 
Look Once version 2 (YOLOv2) - was previously retrained to 
detect hands using data from individuals with cSCI [16], and 
was applied in this study. YOLOv2 generated the hand 
coordinates (bounding boxes) in each image (Fig. 1). If the 
intersection over union (IoU) of the generated bounding box 
and manually labeled one was above 0.5, the result was 
considered a true positive. Otherwise, it was categorized as a 
false positive. 

While YOLOv2 was used to detect hands of stroke 
survivors in this study due to high accuracy and improved 
speed, in the previous study, a Faster Region-CNN was used 
to find the hand bounding boxes, as described in [14]. Both 
hand detection methods provided the hand coordinates and 
identified right and left hands of the user. 

 

Figure 1. Hand detection example: the detected bounding boxes of two 
hands. Numbers denote confidence levels of the detections. 

C. Hand Segmentation  

Some of the features used for the interaction detection step 

(see section II. D) required the hand to be segmented. Two 

features were used to segment a hand – skin colour and edges. 

A generic mixture-of-Gaussians skin colour model [17] and a 

Structured Forest edge detection approach [18] were used to 

find hand pixels and to delineate edges within the bounding 

boxes of the hands (Fig. 2). A hand was segmented by 

combining the given hand pixels and edges within the 

bounding boxes, as described in [14]. 

D. Hand-Object Interaction Detection 

Three types of features were extracted for detecting hand-
object interactions: hand shape, object colour and object 
motion. The object colour and motion features were generated 
by comparing the regions of the segmented hand, near the hand 
(within the bounding box) and background (outside of the 
bounding box) [14]. 

The hand shape was extracted within the bounding box of a 

hand using the Histogram of Oriented Gradients (HOG) [19, 

20]. The bounding boxes were re-sized to 10% of the width 

and the length of the original image. The HOG were 

computed in the re-sized bounding boxes using 16x16 pixels 

as a cell, and 2x2 cells per block. Principal component 

analysis (PCA) was applied to reduce the dimensionality of 

the HOG feature vector, with the first 60 principal 

components retained.  
The colour features were generated using the Hue, 

Saturation and Value (HSV) colour space. The HSV colour 
histograms were compared between the hand (region (a) in 

Fig. 3) and the region near the hand in the bounding box 
(region (b) in Fig. 3), and between the region near the hand and 
the background (region (c) in Fig. 3) , using the Bhattacharyya 
distance. These two differences were used as colour features, 
based on an idea that the presence of an object near the hand 
might result in colour differences with a hand or background. 

The motion feature was generated based on optical flow. 
The rationale was that the movement direction and velocity of 
manipulated objects would be similar to that of the hand.  
Thus, the motion feature consisted of two arrays. One is the 
subtraction of the optical flow histogram of the region around 
the hand from that of the hand, and the other is the subtraction 
of the histogram of the region around the hand from that of the 
background. 

 

 

 

Figure 2. Hand segmentation example. The bounding boxes and 
segmentation regions are shown. 
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 Figure 3.The three regions used in the colour and motion features: the 
hand (a), the region around hand in the detected bounding box (b) and the 
background (c). 

The feature vectors were fed into a random forest classifier 
with 150 trees to detect functional interactions between the 
hands and objects (binary classification). The classifier was 
trained on the 9 individuals with cSCI and tested on the 6 
participants after stroke.  

Lastly, a filtering step was implemented to smooth out 
results across consecutive frames. The predictions of the 
classifier and the manual annotations were passed through a 
moving average filter with a window of 120 frames. Next, the 
filtered binary outputs were normalized by subtracting the 
minimum value over the task and then dividing by the range 
of values observed in the task. The threshold for an interaction 
was set at 0.5. After filtering and normalizing, the F1 score was 
used to evaluate how well the algorithm could detect hand-
object interactions.   

III. RESULTS 

There were 8 male and 1 female participants with cSCI, 
and 4 male and 2 female participants after stroke involved in 
this study. The average age for the cSCI group and stroke 
group were 52.1 ± 13.1 and 56.8 ± 19.3, respectively. The 
severity level of upper limb impairment in the two groups were 
reported using the Upper Extremity Motor Score (UEMS) and 
Fugl-Meyer Assessment for Upper Extremity (FMA-UE) for 
participants with cSCI and stroke, respectively. The median 
(interquartile range) UEMS was 18 (14-20) and the median 
(interquartile range) FMA-UE was 37 (27-55). The 
participants with cSCI ranged from AIS A to D. As for the 
participants with stroke, the participants included individuals 
with severe, moderate and mild upper limb impairment. 

A. Hand Detection 

The 27,066 frames from 6 stroke survivors were labeled 
and tested. The labeled frames consisted of 16,821 frames with 
affected hands and 21,549 frames with unaffected ones. The 
average IoU was 0.54 ± 0.07 and 0.68 ± 0.06 for affected and 
unaffected hands, respectively. The average F1 score for 
affected hands and unaffected hands were 0.77 ± 0.24 and 0.82 
± 0.17, respectively. The average precision and recall of the 
affected hand was 0.57 ± 0.36 and 1.00 ± 0.00. For the 
unaffected hands, the average precision and recall was 0.73 ± 
0.21 and 1.00 ± 0.00, respectively. 

B. Hand-Object Interaction 

Each participant with stroke had 6 to 7 tasks across 6 rooms 
reported in this study. The F1 scores, precisions and recalls for 
each subject and average results are shown in Table I. The 
average F1 score of hand-object interaction for affected and 
unaffected hands were 0.66 ± 0.25 and 0.80 ± 0.15, 

respectively. The mean and standard deviation of F1 score, 
precision and recall of unaffected hands were all higher than 
the affected ones. According to the participants’ FMA-UE 
score, most of the participants with low F1 scores had 
moderate to severe upper limb impairments. 

TABLE I.  HAND-OBJECT INTERACTION  

Subject 

ID 

FMA-

UE 

score * 

 

Affected hand Unaffected hand 

F1 

score 
P R 

F1 

score 
P R 

1 27 0.67 0.45 0.80 0.83 0.76 0.81 

2 27 0.18 0.05 0.68 0.86 0.85 0.91 

3 56 0.72 0.44 0.89 0.77 0.59 0.92 

4 24 0.68 0.36 0.99 0.83 0.94 0.84 

5 47 0.81 0.82 0.87 0.99 0.99 0.99 

6 66 0.88 0.93 0.86 0.53 0.27 0.97 

Mean ± SD 
0.66 

± 

0.25 

0.51 
± 

0.32 

0.85 
± 

0.10 

0.80 
± 

0.15 

0.73 
± 

0.27 

0.91 
± 

0.07 

P: Precision. R: Recall. *: Assessed on the affected side. 

IV. DISCUSSION 

In our previous study [14], a similar approach was applied 

to 9 individuals with cSCI using a leave-one-subject-out 

cross-validation process, and the average F1 score for right 

and left  hand were 0.73 ± 0.15 and 0.74 ± 0.15. In this study, 

the model trained on cSCI was applied to 6 stroke survivors 

and the F1 scores for the unaffected hands of the stroke 

survivors were maintained. For the F1 scores of affected 

hands, the results were variable. Participant 2, who had the 

lowest interaction detection F1 score, used their affected hand 

in only one task while the rest were carried out by the 

unaffected hand. The number of frames containing the 

affected hand was small. Analyzing more frames might be 

required for more reliable estimates. Furthermore, the resting 

hand shape for this participant was a slightly closed hand, 

which might be classified into an interacting hand and lead to 

a high incidence of interaction false positives. The results 

demonstrate that the wearable system has the potential to 

detect hand-object interactions across two populations with 

unilateral and bilateral hand impairments. However, with 

stroke survivors with moderate to severe upper limb function, 

the results can be improved. To overcome the small number 

of affected hand images, recording tasks that require bilateral 

interactions may be helpful to increase the diversity of the 

training sample.   

There were two limitations in this study. First, the number 

of frames involving affected hands was smaller than the 
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number of frames with unaffected ones. The difference in the 

number of frames between the two hands might reflect the 

nonuse phenomenon. Stroke survivors tend to use their 

unaffected hands, which have better fine motor skills, to 

manipulate objects in ADLs. Furthermore, individuals with 

severe upper limb function impairment may not be able to lift 

their hands to a table. Affected hands being occluded under a 

table or not visible in the frame is a factor that could reduce 

the performance of hand-object interaction detection. 

Conversely, individuals with cSCI typically have two affected 

hands and may not show a preference of using only one hand. 

Thus, in the cSCI study [14], the average F1 scores for the 

two hands were similar on average (however, some 

individuals did display an asymmetry in the interaction 

detection performance). Second, the testing (stroke) dataset 

consisted only of objects manipulation tasks and contained 

limited data without any hand use. Adding data without hand 

use would overcome the bias of the testing dataset. 

A further revision is necessary to increase the accuracy of 

detecting hand-object interactions in the affected hands of 

stroke survivors. The stroke survivors with severe hand 

impairment usually keep their affected hand fully flexed in a 

fist. In contrast, individuals with cSCI may not have their 

hand fully flexed, depending on the injury characteristics and 

contractures. The different hand shapes during object 

manipulations between stroke survivors and individuals with 

cSCI might influence the detection accuracy when examining 

the affected hands of stroke survivors. 

Although the average F1 score of unaffected hands was 

consistent with the previous cSCI results, the results for the 

affected hands were lower in this pilot sample. Further data 

collection will be needed before conducting statistical 

comparisons to confirm this trend. The algorithm might 

perform better on affected hands if the classifiers were trained 

on stroke data, in order to adapt to the different hand shapes 

prevalent in different conditions. 

While the use of egocentric video in rehabilitation 

applications raises some privacy-related challenges, previous 

studies have found these to be acceptable to individuals with 

cSCI. [21]. Future work will be required to confirm these 

findings with individuals who have experienced a stroke.  

V. CONCLUSION 

Detecting hand-object interactions in one population with 

hand impairment using an algorithm trained on another 

population (stroke and sSCI, respectively) was feasible in 

most participants. The F1 score, precision and recall of the 

hand-object interaction detection in the affected hand of 

stroke survivors were all lower than in the unaffected ones. 

Transfer learning approaches and population-specific training 

would be beneficial to explore for better detection in the 

population with unilateral hand impairment. 
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