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Abstract— Cardiac cellular models are utilized as the 

building blocks for tissue simulation. One of the imprecisions of 

conventional cellular modeling, especially when the models are 

used in tissue-level modeling, stems from the mere consideration 

of cellular properties (e.g., action potential shape) in parameter 

tuning of the model. In our previous work, we put forward an 

accurate framework in which membrane resistance (𝑹𝒎) 

reflecting inter-cellular characteristics, i.e., electrotonic effects, 

was considered alongside cellular features in cellular model 

fitting. This paper, for the first time, examines the hypothesis 

that considering 𝑹𝒎 as an additional optimization objective 

improves the accuracy of tissue-level modeling. To study this 

hypothesis, after cellular-level optimization of a well-known 

model, source-sink mismatch configurations in a 2-dimensional 

model are investigated. The results demonstrate that including 

𝑹𝒎 in the optimization protocol yields a substantial 

improvement in the relative error of the critical transition 

border which is defined as the minimum window size between 

source and sink that wave propagates. Model developers can 

utilize the proposed concept during parameter tuning to increase 

the accuracy of models. 

 

Index Terms—Cardiac cellular models, tissue-level modeling, 

membrane resistance, inter-cellular characteristics, 

optimization. 

I. INTRODUCTION 

ATHEMATICAL models of cardiac cellular 

electrophysiology have been evolutionarily developed 

over the last 50 years [1]. Cellular computational models have 

broad applicability to the investigation of cardiac cellular 

functions and drug discovery fields as decision support tools 

[2], etc. Despite many improvements of in silico models, 

systematic methods for tuning the model parameters are still 

in their infancy [1]. 

Recently, studies have been conducted to present an 

optimization framework with the overall aims of eliminating 

the trial and error approach and considering cellular features 

as the target(s) of optimization [3-5]. The tuned models 

successfully reproduce cellular electrophysiological 

behavior; however, many of them fail in reproducing the 

properties that determine inter-cellular electrical interactions 

accurately. To address this problem, in our previous study [6], 

which was built on the work done by Kaur et al. [7], we 

proposed a robust optimization approach for cellular models 

that specifically accounts for inter-cellular behavior. In the 
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following paragraphs, the principle of inter-cellular behaviors 

and electrotonic effects are described. 

Electrical action potential (𝐴𝑃) propagation involves 

depolarizing the cells that receive charges (sink) from 

neighboring cells (source). If source charges are insufficient, 

conduction fails, which is known as source-sink mismatch. 

One circumstance in which source-sink mismatch may occur 

is the transition from a small volume of source to a large 

volume of sink. In this case, the electrotonic interaction 

between source and sink is functionally decreased, which may 

cause a block of the waveform in the transition border. 

However, in the inverse direction, the waveform can 

propagate successfully, resulting in a unidirectional block. 

This can be a potential mechanism for the onset of reentry in 

the unhealthy heart [8-11]. The Purkinje (source)-ventricular 

(sink) junction [12, 13], and connection parts of the sinoatrial 

node to atrial tissue [14] are examples where large 

electrotonic load can result in source-sink mismatch, failure 

of conduction, and arrhythmogenesis.  

The importance of electrotonic effects in tissue modeling is 

emphasized in several studies [15, 16]. As the cellular models 

are the building blocks in the tissue models, capturing the 

properties of single cells that determine the electrotonic effect 

is essential during cell model development. Otherwise, 

misestimation of the 𝐴𝑃 properties and diseases in the larger 

scale modeling may occur. 
Membrane resistance (𝑅𝑚) is a cellular characteristic that 

reflects the inter-cellular interaction (electrotonic effects) [17]. 
Although 𝑅𝑚 was taken into consideration in cellular model 
tuning in our previous work [6], to the best of our knowledge, 
the performance of the proposed framework at the tissue level 
has not been properly examined so far. Following from our 
previous work, in this paper, the parameters of the cellular 
model are first tuned. Subsequently, configurations based on 
tissue simulation (source-sink mismatch model) are defined to 
evaluate the effectiveness of utilizing 𝑅𝑚 as an additional 
criterion in the optimization. 

II. MATERIALS AND METHODS 

A. Simulations of Cardiac Myocytes 

The Ten Tusscher et al. (TNNP) model of human ventricle 

myocytes [18] is widely utilized in the study of cardiovascular 

characteristics. Here, to carry out simulations, we use TNNP 

as a model of study. The ionic current (𝐼𝑖𝑜𝑛) of this model 
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which depends on the transmembrane voltage (𝑉𝑚) and time 

(𝑡), is obtained as follows: 

 

𝐶𝑚
𝜕𝑉𝑚

𝜕𝑡
=-𝐼𝑖𝑜𝑛 + 𝐼𝑠𝑡𝑖𝑚  

𝐼𝑖𝑜𝑛 = 

𝐼𝑁𝑎 + 𝐼𝑏𝑁𝑎 + 𝐼𝐶𝑎𝐿 + 𝐼𝑏𝐶𝑎 + 𝐼𝑡𝑜 + 𝐼𝐾𝑟 + 𝐼𝐾𝑠 + 𝐼𝐾1

+ 𝐼𝑝𝐾 + 𝐼𝑁𝑎𝐾 + 𝐼𝑁𝑎𝐶𝑎 + 𝐼𝑝𝐶𝑎  

(1) 

 

where 𝐼𝑠𝑡𝑖𝑚 is stimulus current (𝑝𝐴 𝑝𝐹⁄ ), and 𝐶𝑚 is the 

capacitance of the membrane (𝜇𝐹 𝑐𝑚2⁄ ). 

B. Calculation of Membrane Resistance 

The procedure to calculate the 𝑅𝑚 in different phases of the 

𝐴𝑃 and justification for the selection of specific regions of 𝑅𝑚 

profile are described in detail in [6]. Briefly, to obtain the 𝑅𝑚 

in a specific voltage (𝑉𝑚) value, 𝑉𝑚 is clamped to 10 𝑚𝑉 

higher and lower of the original value in the separate 

simulations, and the corresponding currents are recorded after 

5 𝑚𝑠 (inset in Fig. 1). The ratio of changes in voltage to the 

changes in current as a result of clamps gives the 𝑅𝑚 in that 

𝑉𝑚 point. After obtaining the 𝑅𝑚 profile, the profile is divided 

into allowed and disallowed regions to avoid the selection of 

some singular points (pentagram in Fig. 1). For consideration 

of 𝑅𝑚 in parameter tuning, only 𝑅𝑚 values from allowed 

regions are selected. 

 

 
Fig. 1. Representation of 𝐴𝑃 waveform, 𝑅𝑚 profile, and 𝑅𝑚 calculation. 

 

C. Optimization at the Cellular Level 

The TNNP model with undetermined parameters is fitted 

to the original TNNP model (model-to-itself fitting). Fitness 

of 𝐴𝑃, (𝑑𝑣 𝑑𝑡⁄ )𝑚𝑎𝑥 (maximum upstroke velocity), and 𝑅𝑐 

(membrane resistance curve obtained from a part of the 

repolarization phase) are considered as three important 

cellular and intercellular objectives. These objectives are 

utilized with different combinations in various scenarios 

(Section III-A). Information about selected parameters and 

their boundaries can be found in [6].  

Considering the relationship between (𝑑𝑣 𝑑𝑡⁄ )𝑚𝑎𝑥  and 

conduction velocity (𝐶𝑉) [19], in this paper, a modified 

version of our previous work [6] is employed to define the 

problem of optimization such that error of (𝑑𝑣 𝑑𝑡⁄ )𝑚𝑎𝑥  is 

considered as an additional cellular objective. This ensures 

that any difference in 𝐶𝑉 of defined scenarios comparing to 

the reference scenario (Section III-A) in tissue does not result 

from inaccurate modeling the (𝑑𝑣 𝑑𝑡⁄ )𝑚𝑎𝑥 , while the 

incorrect modeling of the 𝑅𝑚 gives rise to this inaccuracy. 

After completing the optimization step, the resultant tuned 

parameters are used for tissue-level simulation (Section II-D). 

D. Tissue Simulation 

The mathematical model of electrical propagation of 𝐴𝑃 

waveform is defined by a reaction-diffusion equation (the 

monodomain model). It is calculated as follows: 

 

𝛽 (𝐶𝑚
𝜕𝑉𝑚

𝜕𝑡
+𝐼𝑖𝑜𝑛(𝑉𝑚,𝜂))+𝐼𝑠𝑡𝑖𝑚=∇. (σ∇𝑉𝑚) (2) 

𝜕𝜂

𝜕𝑡

= 𝑓(𝑉𝑚,𝜂) (3) 

 

where 𝛽 is the surface per volume ratio (𝑐𝑚−1), σ is 

conductivity (𝑚𝑆 𝑐𝑚⁄ ), and 𝜂 is the set of state variables. 

The reaction and diffusion parts of Eq. 2 are divided by a 

splitting operator called Godunov [20] into a couple of 

distinct problems, i.e., a non-linear system of ordinary 

differential equations (𝑂𝐷𝐸s) (Eq. 4) and parabolic partial 

differential equations (𝑃𝐷𝐸s) (Eq. 5) that need to be solved in 

each time step. 

 
𝜕𝑉𝑚

𝜕𝑡
=

1

𝑐𝑚
[−𝐼𝑖𝑜𝑛(𝑉𝑚,𝜂))+𝐼𝑠𝑡𝑖𝑚] (4) 

𝛽 (𝐶𝑚
𝜕𝑉𝑚

𝜕𝑡
)= ∇. (σ∇𝑉𝑚) (5) 

 

Among various approaches, the Rush-Larsen and forward 

Euler methods are applied to solve Eq. 4 (related to cellular 

model), and the finite volume method (FVM) is utilized to 

solve the Eq. 5. A further description of this method is 

provided in [21]. In this study, tissue with the size of 

10000 𝜇𝑚 × 10000 𝜇𝑚 is simulated. The time step (Δ𝑡) is set 

to 0.01 𝑚𝑠 for solving both the reaction and diffusion 

equations, while the spatial discretization is set to 100 𝜇𝑚. 

Source-sink Mismatch Model 

Fig. 2 demonstrates the source-sink mismatch model used 

for the simulation. The size of connection part between source 

and sink is called the transition border (𝑊); also, the critical 

transition border (𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) is defined as the smallest window 

size in which the wave propagates. Therefore, to calculate 

critical window size, we increase the 𝑊 from small values 

until a successful wave propagation occurs. A current with 50 

𝑝𝐴/𝑝𝐹 amplitude and 2 𝑚𝑠 duration is injected to 1000 𝜇𝑚 ×
𝑊 rectangular region located at the source site. The length (𝐿) 

of source and sink is the same, and equal to 5000 𝜇𝑚 (Fig. 2).  

Two criteria need to be satisfied to reach a successful 

propagation: 1) Cells should reach their threshold voltage to 

produce an 𝐴𝑃. 2) Charges of each cell must be enough to 

deliver to their adjacent cells. If a cell reaches the threshold 

with delay, excitation of neighboring cells will be happening 

at a later time, resulting in decreased 𝐶𝑉. This phenomenon 

reduces the percentage of available source charges to required 

sink charges (safety factor) that  yields  source-sink  mismatch 
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Fig. 2. A schematic illustration of the source-sink mismatch model.  

 

[9]. To evaluate the efficacy of different scenarios which are 

defined in Section III-A, we decrease the 𝐶𝑉 by reducing 𝜎 of 

the source in all directions (𝜎𝑥, 𝜎𝑦) with different source 

factors (𝑓
𝑖
). Therefore, the impact of longitudinal and 

transversal electrotonic effects is determined. In other words, 

differences in electrotonic effects among scenarios in 

different conditions can be investigated. 

III. RESULTS 

A. Case Studies 

In this paper, three scenarios are considered for the 

simulations. In Scenario 1, the TNNP with original parameter 

values is utilized. In Scenarios 2 and 3, the model parameters 

are modified based on tuned parameters obtained from the 

optimization protocol. The parameters of Scenario 2 are 

calculated by considering fitness of 𝐴𝑃 and (𝑑𝑣 𝑑𝑡⁄ )𝑚𝑎𝑥. For 

Scenario 3, the parameters are optimized by fitting the 𝐴𝑃, 

(𝑑𝑣 𝑑𝑡⁄ )𝑚𝑎𝑥 , and 𝑅𝑐. The conductivities of the sources are 

decreased by factors of 9 and 10 in the independent 

simulations. 

Our previous formulation, which is defined in [6], is 

applied to select an optimal solution of Scenario 2. To 

visualize the trade-off among objectives, the Pareto front for 

one of the trials is depicted in Fig. 3. To ensure a fair 

comparison among the scenarios, in Scenario 3 a solution 

with errors of 𝐴𝑃 and (𝑑𝑣 𝑑𝑡⁄ )𝑚𝑎𝑥  similar to Scenario 2 is 

chosen. The reason is that our main aim for comparison 

between scenarios is to show the effectiveness of considering 

𝑅𝑐 in the optimization protocol on the tissue behavior. To 

evaluate the performance of Scenarios 2 and 3, two 

independent simulations are conducted. Also, due to the 

importance of 𝑅𝑑 (membrane resistance value in the rest 

phase), 𝑅𝑑 is calculated a posteriori for comparison. Table I 

demonstrates the average (Ave.), and standard deviations 

(Std.) of root mean square error (𝑅𝑀𝑆𝐸) of 𝐴𝑃 (𝑅𝑀𝑆𝐸𝐴𝑃) 

and 𝑅𝑐 (𝑅𝑀𝑆𝐸𝑅𝑐
) as well as the absolute error (𝐴𝐸) of 

(𝑑𝑣 𝑑𝑡)⁄
𝑚𝑎𝑥

 ( 𝐴𝐸(𝑑𝑣 𝑑𝑡)⁄ 𝑚𝑎𝑥
) and 𝑅𝑑 (𝐴𝐸𝑅𝑑

) of two trials in 

Scenarios 2 and 3 with respect to Scenario 1.  

B. Source-sink Mismatch Model 

In the source-sink mismatch model, if the width of the 

channel (𝑊) is larger than a specific value, which depends on 

the source factor (𝑓), the wave propagates. The comparisons 

of critical transition border between scenarios in two different 

𝑓s are illustrated in Fig. 4. As can be seen from this figure, in 

Scenario 1, which is the target of our comparison with other 

scenarios, the propagations happen in 𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 2800 𝜇𝑚 

and 2200 𝜇𝑚 in 𝑓1=1/10  and  𝑓2=1/9,  respectively.  However, 

 
Fig. 3. An example of the Pareto front in Scenario 2. 

 

TABLE I 

AVERAGE AND STANDARD DEVIATIONS OF 𝑅𝑀𝑆𝐸𝐴𝑃 
, 𝐴𝐸(𝑑𝑣 𝑑𝑡)⁄

𝑚𝑎𝑥
,𝑅𝑀𝑆𝐸𝑅𝑐

, 

AND 𝐴𝐸𝑅𝑑
 OF TRIALS IN SCENARIO 2 (S2) AND SCENARIO 3 (S3). 

 

𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  corresponding to trials of Scenario 2 with different 

source factors (Fig. 4 (a)) are significantly different from 

Scenario 1. Fig. 4 (a) shows that 𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  in Scenario 2 

deviates up to 600 𝜇𝑚 (trial 1, 𝑓1=1/10). The different 

behavior of Scenario 2 in various trials and source factors 

comparing to Scenario 1, confirms that consideration of only 

cellular properties is not sufficient to tune the model 

parameters. In this regards, Scenario 3 in which 𝑅𝑐 is included 

as an additional objective is defined. 𝑊𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  in the trials of 

Scenario 3 is also represented in Fig. 4 (b). This figure clearly 

shows that including 𝑅𝑐 in the optimization results in 

improvement of tissue behavior (source-sink) in tissue-level 

modeling. 

Another representation of differences between scenarios is 

provided for one of the trials (trial 1) in Fig. 5. Fig. 5 (a) and 

(b) show snapshots of the source-sink mismatch model in 

𝑓1=1/10 at t=137 𝑚𝑠 and 154 𝑚𝑠 for Scenarios 1-3, 

respectively. Although in all scenarios the waves propagate, 

the propagation velocity of Scenario 2 is considerably 

different.  Therefore,  the  behavior   of   Scenario   3   is   more 

 

  
Fig. 4. Comparison of critical transition border (𝜇𝑚) in source factors=1/10 

and 1/9, a) Scenario 1 (S1) and trials of Scenario 2 (S2Ti, i=1, 2), b) S1 and 

trials of Scenario 3 (S3Ti, i=1, 2). 
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similar to Scenario 1, and this verifies that Scenario 3 is more 

robust comparing to Scenario 2. 

IV. DISCUSSION 

Tissue-level simulations demonstrate that as a result of 

considering intercellular electrotonic effects during the 

cellular optimization process (Scenario 3), the accuracy of 

source-sink mismatch modeling is significantly improved. On 

the other hand, in Scenario 2, in which the electrotonic effects 

during the optimization process are disregarded, the critical 

transition border (factor of comparison among scenarios) is 

different compared to Scenario 1. While in this Scenario, 𝐴𝑃 

and (𝑑𝑣 𝑑𝑡⁄ )𝑚𝑎𝑥  matches Scenario 1 with high accuracy at 

the cellular level. In line with these preliminary results, 

additional investigations need to be conducted to further 

understand the impact of the 𝑅𝑚 on various aspects of tissue-

level modeling. 

V. CONCLUSIONS 

Consideration of membrane resistance as an indicator of 

intercellular property, during cellular parameter tuning, 

improves the tissue-level simulations. As proof of concept, 

this claim is evaluated for two different source factors of the 

source-sink mismatch model. The results confirm the efficacy 

of the proposed concept for accurately simulating the 

propagation in tissue-level modeling. This study paves the 

way for the precise development of cellular models, thereby 

enhancing the understanding of cardiac diseases.  

 

  
Fig. 5. An example of a snapshot of the source-sink mismatch model in 

𝑓1=1/10 for Scenarios 1-3 (S1-S3). a) Time=137 𝑚𝑠, b) Time=154 𝑚𝑠. The 

size of transition border is 2800 𝜇𝑚. 
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