
  

  

Abstract— Tuberculosis (TB) is one of the top 10 causes of 

death worldwide. The diagnosis and treatment of TB in its early 

stages is fundamental to reducing the rate of people affected by 

this disease. In order to assist specialists in the diagnosis in 

bright field smear images, many studies have been developed for 

the automatic Mycobacterium tuberculosis detection, the 

causative agent of Tb. To contribute to this theme, a method to 

bacilli detection associating convolutional neural network 

(CNN) and a mosaic-image approach was implemented. The 

propose was evaluated using a robust image dataset validated by 

three specialists. Three CNN architectures and 3 optimization 

methods in each architecture were evaluated.   The deeper 

architecture presented better results, reaching accuracies values 

above 99%.  Other metrics like precision, sensitivity, specificity 

and F1-score were also used to assess the CNN models 

performance.   

Clinical Relevance— The presented works provides an 

automatic method to aid the diagnosis of tuberculosis in bright-

field microscopy.   

I. INTRODUCTION 

Tuberculosis (TB) is an infectious disease that can affect a 
variety of organs or systems. The most common causative 
agent is M. tuberculosis, also known as Koch's bacillus. Tb is 
one of the top 10 causes of death worldwide. According to the 
World Health Organization, in 2017, approximately 10 million 
people were affected by TB disease. Of those, approximately 
1.3 million with HIV negative and an additional of 300,000 
people with HIV positive died. About 85% of Tb deaths in 
2017 occurred in Africa and Southeast Asia region. India was 
responsible for 27% of global deaths from TB. [1]. 

Properly diagnosing and treating TB in its early stages are 
key actions to control and stop the spread of the disease. In 
recent years, in the literature, methods have been published to 
automate the diagnosis of TB. These process a sputum smear 
microscopy image using a variety of computational 
techniques: digital image processing [2] and [3]), traditional 
machine learning algorithms [4] and [5], and shallow neural 
networks and deep neural networks (such as the convolutional 
neural networks) [6], [7] and [8].  

Quinn et al. [6] developed a method using Convolutional 
Neural Networks (CNN) that provides experimental results for 
three diagnostic tests: malaria (in blood smear samples); 
tuberculosis (in sputum smear samples) and intestinal parasites 
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(in a stool sample). From the sample images, the authors 
produced patches, which are smaller images corresponding to 
the size of the pathogens approached in the work, and used 
them for training the network. To generate the Tb bacilli-
containing patches, experts have delimited a region of the 
image with bounding boxes. After training, the model was able 
to classify a small region of an image, containing or not an 
object of interest (bacillus). To identify pathogens in complete 
images, aiming to rule out multiple detections, the authors 
used the non-maximum suppression (NMS) algorithm.  

López et al. [7] developed a method also based on CNN 
for bacilli´s classification. The database inputs used for CNN 
training and testing is comprised patches of 40x40 pixel size, 
extracted from smear images. 50% of these patches were 
positive ones (containing bacilli) and 50% were negatives 
(without bacilli). In the original database images, the experts 
marked the bacilli with a small red dot on it. Furthermore, a 
yellow square was drawn around a bacilli cluster and a black 
triangle around the doubtful bacilli. For the detection of the 
bacilli in complete smear images, the authors also used the 
NMS algorithm to rule out multiple detections of the same 
bacillus. 

Xiong et al. [8] developed an CNN based on the Google's 
CIFAR-10 model to classify Tb bacilli. Similar to the 
previously mentioned works, the developed model was trained 
with 32x32 pixel patches. After applying transformations in 
the patches, the database used by the authors was comprised 
of more than 3 million samples. The database was formed from 
expertly labeled smear images using ASAP software.             

Regarding the works previously presented, two 
observations can be made. The first one is the fact that the use 
of patches for training and testing the models. The second one 
is that the bacilli were not segmented manually, but were 
marked with bounding boxes or marked with a single point.  

The method proposed in this paper also uses a CNN model 
to perform segmentation and identification of bacilli in 
brightfield smear images. Similar to previous works, the 
proposed method also works with patches of smear images. 
However, for each patch containing a bacillus, a binary image 
with the segmented bacillus structure was obtained. Thus, the 
CNN input is fed with information about the shape of the 
bacillus and not only about its existence or not in a patch. 
Another feature of this work is that the database used for 
training and testing consisted of mosaic images formed by a 
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rectangular mosaic composed of positive and negative patches. 
This approach was developed in order to reduce the number of 
duplicate bacilli in the complete image analysis, when using 
single patches in CNN input, and thus minimize the use of the 
NMS algorithm. For optimal performance, it was evaluated 
three CNN architectures combined with three optimization 
methods.  

II. METHODOLOGY 

A. Materials 

This research was approved by the Human Research Ethics 
Committee of Instituto Nacional de Pesquisa da Amazônia 
(INPA), protocol 186/08. The database used in this paper was 
made available by the UFAM Pattern Recognition and 
Optimization Research Group  [9]. It consists of sputum smear 
microscopy images stained with the Kinyoun technique, and 
patches of 40x40 pixels: 13,977. Patch is positive if contain a 
bacillus, a cluster of bacilli, fragmented bacilli or a bacillus in 
the final multiplication step. Patch is negative if containing no 
bacillus, or fragment of bacillus at the patch edges. To this 
work, positive patches with bacillus clusters and fragmented 
bacilli were removed, resulting in 9,700 positive patches. Also, 
all negative patches with bacilli fragments at its extremity were 
also removed, resulting in 25,000 samples. For each positive 
patch, a complementary binary image, where the bacillus was 
manually segmented, was obtained.  In these images, the 
bacilli are black (gray level=0), while the background is white 
(gray level=255). These binary patches are the gold standard 
for positive patches. The gold standard of each negative patch 
is an entirely white patch. For CNN training, validating and 
testing, the positive patches is split into 50%, 25% and 25%, 
respectively. The same division was used for negative patches. 

To train, validate and test the proposed method, mosaic 

images were generated from patches database. The mosaic 

image is composed of 100 patches, resulting in an image of 

400x400 pixels, where, approximately, 50% are negative and 

50% are positive ones. Figure 1 shows an example of 

generated mosaic image. A corresponding gold standard 

image is also generated. In this example, it can be observed 

that, of the 100 patches that make up the mosaic image, 56 are 

positive and 44 are negative.  

A total of 5,000 mosaic images were generated, 60% for 

the training set, 20% for the validation set and 20% for the 

test set. 

 

(a)                                                         (b) 
Figure 1. (a) Example of mosaic image and (b) its corresponding gold 

standard image. 

 

B. CNN Architecture and Training Parameters 

The three CNN architectures proposed in this paper are 

semantic segmentation networks and were based on an 

architecture proposed by Miyagawa et al. [10]. It is important 

to emphasize that, although the task of each CNN   

architectures is bacillus segmentation, the main objective is 

not a precise bacillus segmentation, but only its detection, 

aiming to perform bacilli count present in the sputum smear 

microscopy image. 

In general, the three architectures feature convolutive 

layer blocks consists of a sequence of 3x3 filter, batch 

normalization layer and ReLU layer (Conv + Batch + Relu), 

followed by a max pooling subsampling layer with a 2x2 

filter. In oversampling convolution layers, 4x4 filter are used. 

In the final step, a 1x1 size convolutive layer resizes the 

output depth to 2, the number of classes used in segmentation. 

After that, the softmax and pixel classification layers are 

combined to classify each pixel as belong to bacillus or 

background. Figure 2 shows the three architectures. 

The first architecture (CNN1), the largest one, has four 

maxpooling steps (subsampling steps). with three Conv + 

Batch + Relu sequences before the first two subsampling 

steps, four sequences before the last two, and four more 

sequences after the last subsampling step. After the 

subsampling steps there are four oversampling steps.  

The second architecture (CNN2) has two maxpooling 

steps, with three Conv + Batch + Relu sequences, before each 

subsampling step. After the subsampling steps there are two 

oversampling steps.   

The third architecture (CNN3), the smallest one, has two 

maxpooling steps and two oversampling steps like CNN2. 

However, it has only one Conv + Batch + Relu sequence 

before each subsampling step.  

 In semantic segmentation training, the output of each 

pixel was optimized using  a logistic regression cost function.  
For CNN training, three optimization methods were 

employed: Stochastic Gradient Descent with Momentum 
(SGDM), Root Mean Square Propogation (RMSProp) and 
Adaptive Moment Estimation (ADAM). Table 1 shows the 
training parameters used for CNN training. The experiments 
were performed using MATLAB version 2018b, a 3.2 GHz 
Intel i7-8700 processor computer with 16 GB RAM and 8 GB 
GeForce GTX 1070 GPU. 

TABLE I.  TRAINING PARAMETERS 

Parameters Values 

Initial learning rate 0.001 
Learning rate drop factor 0,5 
Maximum number of epochs 20  

Lot size 10 
Stopping criteria 6000 iterations 
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                                                         (a)                                                                                                 (b)                                                                (c) 

Figure 2. Proposed architectures: (a) CNN1 architecture; (b) CNN2 architecture and (c) CNN3 architecture 

C. Evaluation metrics  

CNN performance is obtained by counting the number of 

segmented bacilli. In CNN output, the segmented objects are 

classified as bacilli after applying an area filter of 25 pixels. 

Very small objects are disregarded.  

To evaluate the quality of each designed architecture, the 

following performance metrics were used: accuracy, 

precision, sensitivity, specificity, and F1-score. These metrics 

are shown in equations (1)-(5):  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (1) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛: 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦: 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (4) 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
       (5) 

 

where: TP - true positives, TN - true negatives, FP - false 

positives and FN - false negatives. 

III. RESULTS AND DISCUSSIONS 

Tables II, III and IV show the performance of the CNN1, 

CNN2 and CNN3 architectures, respectively, in the validation 

dataset. Table V shows the best performance in the validation 

dataset for each CNN architecture. The best performance for 

CNN1 was obtained with SGDM method, for CNN2, with 

ADAM method, and, for CNN3, with RMSProp method.  

Overall, the best performance was obtained with CNN1, 

while the worst one was obtained with CNN3. However, it is 

noteworthy that CNN3 achieved the best performance with 

the RMSProp method for most of the metrics. The best CNN2 

performance was obtained with the ADAM method. CNN1 

network reached a performance over 99% for all evaluated 

metrics. CNN2 underperformed 1% to 2% compared to 

CNN1, while CNN3 underperformed 2% to 4% relative to 

CNN1. However, the sensitivity was above 99% in all 

simulations.  

Figures 3 shows examples of bacilli segmentations 

obtained with CNN1, CNN2 and CNN3 architectures, 

respectively, using the SGDM optimization method in CNN1, 

ADAM in CNN2 and RMSProp in CNN3. As noted, for each 

architecture, these methods achieved the best performance for 

most of the metrics.   

In segmented images, noise presence, corresponding to 

small areas, is observed, being more frequently when using 

CNN3. The lowest noise density is obtained with the CNN3 

network. Much of the noise is removed with the area filter. 

Therefore, we conclude that using deeper CNNs is important 

to noise elimination in the bacilli segmentation. 

  

TABLE II.  CNN1 PERFORMANCE IN THE VALIDATION SET 

Optimization 

Method 
Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-score (%) 

SGDM 99.649 99.394 99.908 99.388 99.650 

RMSProp 99.587 99.530 99.647 99.527 99.589 

ADAM 99.629 99.356 99.908 99.349 99.631 

TABLE III.  CNN2 PERFORMANCE IN VALIDATION SET. 

Optimization 

Method 
Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-score (%) 

SGDM 98.054 96.374 99.811 96.342 98.062 

RMSProp 98.297 96.838 99.819 96.807 98.306 

ADAM 98.534 97.308 99.805 97.283 98.541 
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(a) (b) (c) 

 

 

 
TABLE IV.  CNN3 PERFORMANCE IN VALIDATION SET. 

Optimization 

Method 
Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-score (%) 

SGDM 95.681 91.932 99.886 91.700 95.744 

RMSProp 97.012 94.388 99.847 94.282 97.041 

ADAM 95.603 91.675 99.998 91.477 95.656 

TABLE V.  PERFORMANCE IN TEST SET.  

Architecture & 

Optimization Method 
Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-score (%) 

CNN1 - SGDM 99.665 99.349 99.988 99.341 99.667 

CNN2 – ADAM  98.284 96.729 99.908 96.693 98.293 

CNN3 - RMSPROP 96.801 93.973 99.877 93.847 96.835 

 

 
 
 

Figure 3. Examples of segmented mosaic-image performed by: (a) CNN1 with SGDM method; (b)  CNN2 with ADAM method and (c) CNN3 with 

RMSProp method.

 

IV. CONCLUSION 

In this paper we evaluated CNN performance in bacilli 
segmentation using light fields smear images. For CNN 
training and testing, it was proposed the use of 400x440 
mosaic images, consisting of 100 positive and negative bacilli 
patches with dimensions of 40x40 pixels. Three architectures, 
with different depths, were trained with three optimization 
methods. The CNN1 architecture, the largest one, achieved the 
best performance, providing a significant noise reduction. 
There was no significant difference between the performance 
of the optimization methods.   
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