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Abstract— This paper introduces an automatic non-contact
monitoring method for measuring the respiratory rate of
neonates using a structured light camera. The current monitor-
ing bears several issues causing pressure marks, skin irritations
and eczema. A structured light camera provides distance data.
Our non-contact approach detects the thorax area automatically
using a plane segmentation and calculates the respiratory
rate from the movement of the thorax. Our method was
tested and validated using the baby simulator SimBaby by
Laerdal. We used different breathing rates corresponding to
preterm neonates, mature neonates and babies aged up to nine
months as well as two different breathing modes with differing
breathing strokes. Furthermore, measurements were taken of
two positions: the baby lying on its back and on its stomach.

I. INTRODUCTION

The current monitoring of the respiratory rate of preterm
neonates on the Neonatal Intensive Care Unit (NICU) holds
several issues. The measurements include the usage of elec-
trocardiogram (ECG) electrodes (impedance pneumography),
pulse oximeter, transcapnodes as well as a ventilator itself.
As these methods require the direct contact with the baby’s
body and are cable-based, risks like pressure marks, skin
irritations and eczema are possible. Furhermore, artifacts can
be caused by the sweat of the child. As preterm neonates are
under-developed their skin is still very sensitive. In order
to minimize skin irritations and to simplify the care of the
babies e.g. changing the diapers, a non-contact monitoring
method shall be developed.

There are non-contact measuring methods based on in-
frared imaging [1–6], RGB-cameras [7–10], structured light
plethysmography [11–13], RGB-D cameras [14–22] as well
as radar [23–29]. Many of these approaches have only been
tested on adults, require markers, are light-dependent or are
not completely automated. Structured light cameras have the
advantage that they are independent of lighting conditions
and do not require the face to be visible as would be
necessary with infrared cameras for example. There are two
approaches using a structured light camera which have been
tested with neonates. The first one requires two cameras and
calculates the breathing volume [30, 31]. Out of the volume
change the respiratory rate is estimated. This procedure
is more complex than needed as calculating the volume
would not be necessary for estimating the respiratory rate.
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Also one camera would be enough. The second approach
is intended for open incubators and requires the manual
selection of the measurement points, so the thorax is not
detected automatically [32]. Additionaly this approach was
only tested on premature babies and is specialised on this
frequency range. We propose a method based on a structured
light camera which automatically determines the thorax area
and then measures the respiratory rate of preterms (40 - 60
breaths per minute (BPM)), mature neonates (40 - 50 BPM)
and babies aged up to nine months (20 - 30 BPM) [33]. Tests
were made with the baby lying in different positions such
as on the back or stomach. Furthermore different depths of
breaths are investigated.

II. APPROACH

A. Theory

Structured light cameras send out a light pattern which is
distorted if an object lies in front [39]. The distortion of the
pattern can be used to calculate the distance. The change of
distance of the thorax can therefore be measured with this
camera. In this paper we show the feasibility to determine
the number of breaths per minute automatically using a
structured light camera. The following section describes the
required setup and algorithms.

B. Setup

Fig. 1. Sensor setup: The camera is positioned at a distance of approxi-
mately 40 cm to the SimBaby simulator.

The camera is positioned at a distance of around 40 cm to
the table which equals the proportions of a closed incubator.
The SimBaby simulator by Laerdal is placed underneath the
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Fig. 2. Flowchart of the algorithm

camera (Fig. 1). The simulator has the size of a 9 months
old baby and uses a compressor to move the thorax.

The structured light camera used is the Astra Orbecc
Stereo. It has a depth resolution of 640x400 points and has
a field of view of H67.9◦ V45.3◦ D78◦ ±3.0◦. The camera
delivers a temporal resolution of 30 FPS. The operating
temperature lies between 10◦C and 40◦C and can therefore
be used within an incubator. The camera is connected via
USB to an Ubuntu 16.04 computer with the ROS version
Kinetic installed. The camera driver used is the ROS package
ros astra camera. Robot Operating System (ROS) is a mid-
dleware which allows easy communication with the camera
and data processing.

C. Algorithm

Fig. 2 shows the flowchart of the used algorithm. The
camera delivers point clouds. First of all, all points with
a distance greater than 35 cm are removed as they would
correspond to the table or bed.

Fig. 3. Point cloud of a baby lying on its back displayed in rviz [38]. The
segmented thorax plane can be seen in the middle (magenta) with the arms
positioned at both sides. The white points show the rest of the point cloud
(table and arms).

The next step uses a Random Sample Consensus
(RANSAC) based plane segmentation from the Point Cloud
Library (PCL) [34] with a distance threshold of 2 cm and
the chosen model type called SACMODEL PLANE. The
threshold defines which points are part of the same plane
i.e. two points with a distance of 2 cm to each other will
still belong to the same plane. The segmented points are
part of the thorax plane (see Fig. 3). The point with the
minimal distance is automatically found and plotted over the
time (example see Fig. 4). Once a dataset of 33 minimal
distance values over time is available a peak detection as
described in [37] is used to determine the number of breaths.
Following the peak detection is applied to the next 33 values.
The window size was set to this value, as there shall be a new
BPM value at least every 5 s (as a hospital monitor would

deliver). We get a new BPM value around every 3 s, which
means around 1020 measurements per hour. The respiratory
rate (RR) in BPM is calculated from the number of breaths
within each window over the time in seconds:

RR =
breaths

time
·60 (1)

As artifacts can occur within the signal a Savitzky-Golay
filter based on Gram polynomials [35] [36] is applied to
smooth the data first. The lower the breathing rate the
greater effect artifacts have on the result. For this reason the
filter is parametrized (polynomial order and window size for
smoothing). The values depend on the mean breathing rate
resulting from the first three peak detections (each window
holding 33 values):

TABLE I
PARAMETERS FOR SAVITZKY-GOLAY FILTER

BPM Window size Polynomial order
≤ 18 11 10

18 - 50 3 2
50 - 62 3 1
> 62 None None

Fig. 4. Section of the respiratory signal with the baby lying on its back
in deep mode. The set breathing rate is 50 BPM which means that the filter
window size is 3 so that there are 11 filter windows in this section. Each
filter window ends at the marked magenta point. Filtered signal (magenta),
unfiltered signal (blue).

Fig. 4 shows a section of the respiratory signal with the
baby lying on its back and breathing with a rate of around 50
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Fig. 5. Box-whisker-plot in deep mode lying on its back (le.) and in shallow mode with the baby lying on its stomach (mi.) and back (ri.). The maximum
difference to the reference within the norm range is 14 BPM for deep mode lying on its back, 20 BPM for shallow mode lying on its stomach and 9 BPM
for shallow mode lying on its back. In both modes the respiratory rate can be detected.

BPM. The blue signal is the unfiltered signal, the magenta
signal the filtered one.

As the number of peaks can vary depending at which point
within the data curve the window ends, a moving average
window of 18 small windows (594 distance values) is used
for calculating the BPM. The window is moved by the size
of one dataset of 33 points.

III. RESULTS
The algorithm was tested with 36 datasets holding data

recorded with different respiratory rates (3, 20, 30, 40, 45,
50, 55, 60 and 80 BPM), different breathing modes (deep
with a stroke varying between 2 - 5 mm and shallow with a
stroke of 1 - 3 mm. The variation depends on the frequency.
With a higher frequency the stroke decreases.), as well as
two positions of the baby: lying on its back or its stomach.
Each dataset was run for one hour. As reference, the number
of breaths for each dataset were manually counted for 15
minutes and multiplied by four to receive the number of
breaths per hour. (A nurse would usually count the number
of breaths only for a minute.) This showed that the set BPM
does not necessarily display the actual BPM. The algorithm
was used to calculate the number of breaths automatically
and delivered a measurement around every 3 s. Fig. 6 shows
the results for the baby lying on its stomach using deep mode.
The box-whisker-plot is a statistical tool which displays the
median, minimum, maximum and upper and lower quartiles
of each dataset. The small red dots display the actual
reference value. The precision is the highest for respiratory
rates between 20 and 60 BPM with a maximum difference
of 6 BPM. At the edge frequencies the difference rises. The
lower the frequency the larger the effect of artifacts and
therefore the precision is lower. If the frequency is very high
some peaks might not be detected anymore. A respiratory
rate of 3 BPM or 80 BPM is not within the norm range of
a baby, but was tested in order to show that the trend i.e.
increase or decrease of the respiratory rate can be detected.
All in all it can be said that the precision is the highest
in deep mode when the baby is lying on its stomach as
the moved plane is bigger and will therefor deliver more
stable measurements. The window size also influences the
precision, depending where the signal is cut.

Fig. 6. Box-whisker-plot in deep mode. The baby is lying on its stomach.
The maximum difference to the reference within the norm range is 6 BPM.

IV. CONCLUSIONS

In this paper we presented a fully automated non-contact
method for measuring the respiratory rate of neonates based
on a structured light camera. We validated our method with
36 datasets of different rates, positions of the baby as well as
different breathing modes. As expected the precision is the
highest when the baby is lying on its stomach and having a
breathing stroke of 2 mm to 5 mm. As we are covering so
many different breathing rates the data processing is more
complex as the filtering depends on each frequency. In the
future we intend to increase the precision by making the
filter algorithm adaptive to the given frequency. In order to
increase the robustness, the system could be extended by
other measuring methods. Furthermore this approach will
be tested with real babies within a NICU. We are currently
working on the ethical approval proposal for our planned
study.
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