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Abstract— Cervical spinal cord injury (cSCI) can cause 

paralysis and impair hand function. Existing assessments in 

clinical settings do not reflect an individual’s performance in 

their daily environment. Videos from wearable cameras 

(egocentric video) provide a novel avenue to analyze hand 

function in non-clinical settings. Due to the large amounts of 

video data generated by this approach, automated analysis 

methods are necessary. We propose to employ an unsupervised 

learning process to produce a summary of the grasping 

strategies used in an egocentric video. To this end, an approach 

was developed consisting of hand detection, pose estimation, and 

clustering algorithms. The performance of the method was 

examined with external evaluation indicators and internal 

evaluation indicators for an uninjured and injured participant, 

respectively. The results demonstrated that a Gaussian mixture 

model obtained the highest accuracy in terms of the maximum 

match, 0.63, and the Rand index, 0.26, for the uninjured 

participant, and a silhouette score of 0.13 for the injured 

participant.  

Clinical Relevance— This method has the potential to allow 

clinicians for the first time to monitor the hand postures of 

individuals with cSCI at home, which could assist in remotely 

tailoring interventions. 

I. INTRODUCTION 

A spinal cord injury (SCI) is an unexpected and devastating 

medical condition that changes the course of a person’s life. 

The associated sensorimotor deficits cause individuals with 

SCI to have reduced ability to complete activities of daily 

living (ADLs), for example, eating, bathing, and dressing [1]. 

Moreover, people with SCI must often cope with several 

secondary health complications, including a neurogenic 

bowel and bladder, respiratory symptoms, urinary tract 

infections, and psychiatric issues such as reactive depression 

and anxiety disorders [2], [3]. Additionally, living with SCI 

entails considerable financial costs to individuals and the 

health provider. Therefore, given the 282,000 Americans and 

86,000 Canadians living with SCI and the 4,300 new cases of 

SCI annually in Canada, effective rehabilitation assessment 

and treatment strategies are greatly needed [3][4]. 

Despite the multifaceted repercussions of cervical SCI 

(cSCI), studies have shown that the recovery of hand function 

is the first-ranked priority of the affected individuals [1]. 

However, current assessments of hand function, such as the 

Graded Redefined Assessment of Strength, Sensibility, and 

Prehension (GRASSP) [5], and the Toronto Rehabilitation 
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Institute Hand Function Test (TRI-HFT) [6], are limited to a 

clinical or laboratory setting and are not representative of 

hand use in everyday contexts. In other words, the current 

methods do not make a distinction between capacity, which 

refers to an individual’s highest level of function in a given 

task, and performance, which refers to the individual’s 

performance of this task in their daily life [7], [8].  

Wearable technology (WT) refers to devices worn directly 

on or attached to an individual, and has great potential for 

describing function in a variety of natural contexts. 

Accelerometers are one of the most used WTs in 

neurorehabilitation [9]; however, their use has focused on 

wrist-worn configurations that reflect arm movements, and are 

unable to directly gauge hand function. For example, they 

provide no information on the hand postures used or objects 

interacted with. Unlike other wearable technologies currently 

being investigated, wearable cameras can provide detailed data 

about hand use and function at home. This technology has 

been investigated extensively for recognition of ADLs [10], 

resulting in the development of techniques for automated 

analysis of video from such cameras. The first-person 

perspective (egocentric video), which captures the wearer’s 

hand activity, can be leveraged in the monitoring and analysis 

of functional hand use. The feasibility of using wearable 

cameras in the rehabilitation context has recently been 

examined, with promising results [11]. 

While these video recordings provide valuable insight into 

an individual’s hand functionality, manually processing the 

massive amounts of complex video data is prohibitively 

difficult, emphasizing the need for automated data 

analysis.  One important piece of information is hand posture. 

Despite the considerable number of grasp taxonomies for able-

bodied individuals, such as Cutkosky and Wright’s [12], and 

Feix’s [13], these classifications may not be fully applicable to 

SCI. The variability in grasping strategies that occurs as a 

result of different levels and severities of injuries complicates 

the classification of grasps into a defined set. One possible 

solution is to identify commonly used postures in an 

egocentric video using unsupervised learning algorithms. In 

this manner, an individualized taxonomy for each user could 

be generated, providing a summary of their grasping strategies. 

In this study, a computer vision system was developed to 

cluster hand postures in egocentric videos.  
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II. METHODS 

The sequential steps of the proposed method are hand 

detection, pose estimation, and clustering, as shown in Figure 

1. Each of these steps is described below. 

 
Figure 1. Steps for clustering hand postures. 

A. DATASET 

Uninjured participant: We recorded an egocentric video 

while a healthy participant (a 32-year-old male) was asked to 

grasp a ball using a spherical grasp, hold a pen using a tripod 

grasp, grasp a candy with a tip-to-tip pinch, and grasp a glue 

stick using a cylindrical grip. Figure 2 shows sample frames 

of each grasp. The purpose of this data was to provide a video 

with well-defined grasp types, which can be used as ground 

truth to evaluate the clustering results. 

An individual with SCI: 3000 video frames were selected 

from an egocentric video recorded at home by an individual 

with cSCI (a 45-year-old female), performing several tasks 

using multiple hand postures. The participant had a C2 

neurological level of injury, an AIS grade of A, and right and 

left upper extremity motor scores of 22 and 24, respectively. 

Figure 3 shows sample frames from this video. The purpose 

of this video was to provide data reflective of the intended 

application, with unconstrained grasping strategies. 

 

 

(A)     (B)     (C)     (D) 

Figure 2. Sample grasps of the uninjured participant. A) Spherical grasp, B) 

Tripod grasp, C) Tip-to-tip pinch, D) Cylindrical grasp 

 
 

 

 
 

 
 

Figure 3. Sample grasps of the individual with SCI 

B. HAND DETECTION AND POSE ESTIMATION 
Hand detection is the first step to estimate joint coordinates. 

You Only Look Once (YOLO) is a regression-based object 

detection algorithm that enables the estimation of a large 

spectrum of object coordinates [14]. In this study, we used a 

version of YOLOv2 [15] that was previously retrained for 

hand detection using a dataset in which individuals with SCI 

interacted with various objects in a simulated home 

environment [16]. 

Next, a pose estimation algorithm can be applied to 

estimate hand joint coordinates. In recent years, 

discriminative pose estimation has made remarkable progress 

due to the availability of deep learning and high-quality 

datasets, including COCO keypoints, MPII human pose 

dataset, and VGG pose dataset, which has resulted in these 

approaches surpassing the performance of generative 

algorithms [17]. Here we used OpenPose [18], a 

discriminative approach based on convolutional pose 

machines [19] that demonstrates a high mean average 

precision for localizing hand joints. It estimates 21 joints as 

described in Table 1. 
 

Table 1. 21 estimated joints in OpenPose 

 

D. Clustering and its Evaluation: 

Clustering refers to the process of grouping similar entries 

in a data set [20]. We applied k-means [20], agglomerative 

hierarchical clustering algorithm (AGG) using single, ward, 

and complete linkage with Euclidean distance [21], Gaussian 

mixture model (GMM) [22], clustering using representatives 

(CURE) [23], balanced iterative reducing and clustering using 

hierarchies (BIRCH) [24], and density-based spatial 

clustering of applications with noise (DBSCAN) [25].  

One of the fundamental elements for implementing any 

clustering method is the number of classes. Here, we used the 

elbow method to extract the number of clusters based on the 

Bayesian information criterion (BIC) [26].  

Furthermore, to test the validity of the clustering 

algorithms, one can use internal evaluation indicators (IEI) 

and external evaluation indicators (EEI).  IEI examines the 

relationship between the data points within and between 

clusters. This process does not require any data labeling. In 

Joint Number Location 
1 Wrist 

2 Thumb Carpometacarpal joint 

3 Thumb MCP joint 
4 Interphalangeal joint 

5 Tip of thumb 

6 First finger MCP 
7 First finger Proximal interphalangeal (PIP) joint 

8 First finger Distal interphalangeal (DIP) joint 

9 Tip of first finger 

10 Second finger MCP 

11 Second finger PIP 

12 Second finger DIP 
13 Tip of second finger 

14 Third finger MCP 

15 Third finger PIP 
16 Third finger DIP 

17 Tip of third finger 

18 Fourth finger MCP 
19 Fourth finger PIP 

20 Fourth finger DIP 

21 Tip of fourth finger 
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EEI, clustering performance is evaluated by making a 

comparison between the clustering results and the true class 

labels [20]. 

Maximum match (MM), Jaccard coefficient (JC), Rand 

index (RAND), and Fowlkes-Mallows (FLK) index were 

used to quantify EEI.  MM quantifies the extent to which each 

cluster contains points only from one partition. It varies 

between 0-1, where 1 indicates perfect clustering. JC 

measures the performance of a cluster based on the 

intersection over the union of the true and estimated clusters. 

RAND is a similarity measurement between estimated 

clusters and labeled clusters computed by considering all 

pairs of instances between two clusters, where 1 indicates 

perfect clustering. Finally, FLK quantifies the geometric 

average between recall and precision. A higher number 

indicates a greater similarity between partitions and clusters.  

On the other hand, the silhouette score was used to quantify 

IEI. It measures the similarity of a data point to others in its 

cluster compared to other clusters. The silhouette has a range 

between -1 to +1, with high values indicating good clustering 

while low values show poor clustering [20]. 

III. RESULTS 

A. Uninjured participant 

In 45% of the frames in the uninjured participant dataset, 

the OpenPose algorithm was unable to identify all the joint 

locations with a confidence score greater than 0.2. To mitigate 

this difficulty, we constrained the joints included in the 

clustering analysis to joints 1-15 in Table 1, for two reasons. 

First, these joints tend to be less occluded during object 

interactions. Second, the four hand postures described above 

primarily involve the thumb, index, and middle finger. We 

therefore selected the frames in which the finger joints 1 to 

15, described in Table 1, had at least 0.2 coordinate 

confidence. This threshold was selected empirically. Next, we 

clustered the frames into four clusters. Table 2 shows each 

clustering method’s performance in the uninjured participant. 
 
Table 2. Clustering performance based on EEI for the uninjured participant. 
 
 

 

 
 

 

 

 

 

 

The results for the uninjured participant reveal that among 

all of the applied clustering algorithms, GMM outperforms 

the other methods in most of the EEI. The confusion matrix 

for the GMM is shown in Table 3, where C is the predicted 

label and T is the true label. 
Table 3. Confusion matrix for GMM clustering in the uninjured participant 

dataset.  
C1 C2 C3 C4 

T1 139 51 18 6 

T2 51 240 14 32 

T3 86 14 170 3 

T4 56 76 18 165 

One essential element of a clustering algorithm is the 

number of clusters. In the results above, we assumed that the 

number of clusters is known; however, in practice, there is no 

intuition about them. Here, we used the elbow method to 

extract the number of clusters. Figure 4 shows the elbow 

method based on the Bayesian information criterion (BIC) for 

the GMM. It is clear from the figure that after five clusters the 

gradient of BIC plateaus, which suggests 4 clusters exist in 

the data. 

 

 

Figure 4. BIC for the different number of clusters in the uninjured participant. 

B. Injured  subject 

Using the first 15 joints coordinate, we computed the 

optimum number of clusters based on BIC of the GMM 

clustering algorithm, depicted in Figure 5. We used 100 

random initializations for the GMM to avoid missing a 

globally optimal solution.  

 

 
Figure 5. BIC for various number of clusters in an individual with SCI 

 

Figure 5 suggests that the optimal number of clusters is 5 or 

6, meaning that the participant was using 5 or 6 distinct hand 

postures in the video. This results aligns well with direct 

observation of the data, through which we determined that the 

subject demonstrated 6 main hand postures. We examined the 

clustering performance using EEI with the silhouette score 

and acquired 0.14, 0.13 for 5 and 6 clusters respectively. In 

summary, the results based on the uninured participant and an 

individual with SCI show the potential of the proposed 

method to cluster hand posture. 

IV. DISCUSSION 

Monitoring the hand function of individuals with SCI in 

their daily living environments will lead to a more holistic 

assessment of the impact of new interventions, as well as 

allow clinicians to provide more effective remote care. Here, 

we proposed to use a wearable camera in conjunction with 

computer vision algorithms to distill complex egocentric 

videos into summaries of grasping strategies. These initial 

Clustering /EEI MM JC Rand FLK 

K-means 0.48 0.08 0.12 0.40 

Agg Ward L2 0.54 0.06 0.20 0.42 

Agg Single L2 0.31 0.15 0.00 0.48 

Agg Complete L2 0.39 0.16 0.05 0.43 

BIRCH 0.54 0.06 0.20 0.42 

CURE 0.30 0.14 0.00 0.50 

DBSCAN 0.46 0.09 0.10 0.41 

GMM 0.63 0.10 0.26 0.46 
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results are the first proof-of-concept demonstration of 

clustering hand grasps based on pose estimation data. 

Despite the potential of the method, the accuracy of this novel 

paradigm needs improvement before it can be deployed in 

real-world applications. First, the current pose estimation 

algorithms are unable to estimate hand joints precisely in 

heavily occluded scenarios. This situation most often happens 

when an individual is interacting with objects, such that 

portions of the hand are not visible. One possible remedy to 

this problem may be to analyze hand configurations towards 

the end of the reaching stage when the hand is being 

positioned into the desired grasp type but before it is hidden 

by the object. Another possibility would be to merge a joint 

tracking algorithm with the current pose estimation method, 

in order to help predict joint locations when the pose 

estimation generates low confidence scores. We postulate that 

by acquiring more accurate pose estimation, the clustering 

performance would increase. Second, we only applied the 

clustering on spatial information at the level of each frame, 

and also annotated hand postures at the frame level. However, 

any hand object interaction comprises a sequence of 

movements, so defining the number of postures during an 

object interaction can be challenging. One possible solution 

that may increase the clustering performance would be to use 

spatio-temporal clustering methods to cluster hand 

trajectories. Action respecting embedding [27] and spatio-

temporal graph-based manifold embedding [28] are two 

example methods that allow for clustering repetitive actions 

by analyzing embedding manifolds. Finally, the current pose 

estimation algorithm is unable to estimate the wrist angle, 

which is an important piece of postural information after 

cSCI. Including wrist angle information may further improve 

the clustering.  
This is the first attempt to summarize the hand postures 

used after cSCI by using wearable technology in non-clinical 

environments. These pilot results demonstrate the successful 

clustering of similar hand postures. In the future, we will 

increase the accuracy of the proposed paradigm by addressing 

the discussed limitations.  
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