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Abstract— The presented paper discusses a practical
application of machine learning (ML) in the so-called ‘AI for
social good’ domain and in particular concerning the problem
of a potential elderly adult dementia onset prediction. An
increase in dementia cases is producing a significant medical
and economic weight in many countries. Approximately
47 million older adults live with a dementia spectrum of
neurocognitive disorders, according to an up-to-date statement
of the World Health Organization (WHO), and this amount will
triple within the next thirty years. This growing problem calls
for possible application of AI-based technologies to support
early diagnostics for cognitive interventions and a subsequent
mental wellbeing monitoring as well as maintenance with
so-called ’digital-pharma’ or ’beyond a pill’ therapeutical
strategies. The paper explains our attempt and encouraging
preliminary study results of behavioral responses analysis
in a facial emotion implicit-short-term-memory learning
and evaluation experiment. We present results of various
shallow and deep learning machine learning models for digital
biomarkers of dementia progress detection and monitoring. The
discussed machine-learning models result in median accuracies
right below a 90% benchmark using classical shallow and deep
learning approaches for automatic discrimination of normal
cognition versus a mild cognitive impairment (MCI). The
classifier input features consist of an older adult emotional
valence and arousal recognition responses, together with
reaction times, as well as with self-reported university-level
degree education and age, as obtained from a group of
35 older adults participating voluntarily in the reported
dementia biomarker development project. The presented
results showcase the inherent social benefits of artificial
intelligence (AI) utilization for the elderly and establish a step
forward to advance machine learning (ML) approaches for
the subsequent employment of simple behavioral examination
for MCI and dementia onset diagnostics.

Clinical relevance— This manuscript establishes a behavioral
and cognitive biomarker candidate potentially substituting a
Montreal Cognitive Assessment (MoCA) evaluation without a
paper and pencil test.

I. INTRODUCTION
Dementia, particularly an aging-associated memory de-

cline, is one of the most critical global challenges in the
21st century’s social welfare and mental well-being. In-
creased longevity and progression of dementia cases affect
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welfare costs [1]. The Cabinet Office in Japan regularly
publishes an annual report on an aging society to address
the emergency [2]. United Nations Sustainable Development
Goal #3 entitled ”Good Health and Well-being ” [3] also
emphasizes a necessity to approach the aging problem with
a focus on healthy lives, and it encourages wellbeing for all
at all ages. Contemporary strategies to dementia and mainly
the most severe case of Alzheimer’s disease (AD) suggest
a requirement to advance personalized therapies relying not
only on conventional pharmacological interventions but also
on lifestyle modifications [4] as well as cognitive mainte-
nance approaches [5], [6]. There is also a social pressure
for the dementia early-onset prognostication and subsequent
prophylactic measures, as broadly addressed in [1]. All the
established pharmacological and the recent ’beyond-a-pill,’
or the so-called ’digital-pharma,’ therapeutical interventions
require reliable biomarkers. Usually, a research focus was on
advanced applications of brainwave-related techniques [7],
[8], [9], [10], [11], which often entail a more clinical-level
environment for a successful application.

A contribution of the reported project is twofold. First,
we present a novel behavioral data collection experimental
approach, which subsequently could be implemented in a
tablet or smartphone application for daily use by adults
interested in their cognitive wellbeing monitoring. Next,
we apply a range of shallow and deep machine-learning
approaches with very encouraging results already on the
dataset of 35 participants.

We develop a machine-learning (ML) strategy, belonging
to a domain of modern AI for the social or common good.
A thriving application shall allow for computerized discrim-
ination of mild cognitive impairment (MCI), defined as the
Montreal Cognitive Assessment score MoCA6 25 [12], [13],
versus average level cognition in the elderly using only
behavioral responses in a working and implicit/procedural
memory learning paradigm constituting a newly acquired
skill-testing assignment. A self-reported working-memory
decline decreeing a subjective cognitive impairment (SCI),
is one of the early signs practiced in the medical commu-
nity [14]. MCI characterizes also emotional contagion [15]
and parietal cortex as well as hippocampus atrophy re-
lated spatial memory problems [1], [16]. A visuospatial
memory focusing biomarkers has been recently proposed
as potentially beneficial research targets [17]. Unlike long-
term memory or a language, visuospatial functioning is
heavily dependent on parietal lobe integrity, where atrophy
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in function or structure occurs early in dementia [17].
There is no definite confirmation about the working-

implicit/procedural-memory impairment [18], on the other
hand, and only the long-term recall is known to be unal-
tered in dementia cases [15]. Therefore we also incorporate
the procedural memory component for the novel dementia
biomarker paradigm as we plan to create a more straightfor-
ward task for the elderly. In the next section, we describe
our experiment and data collection procedures in detail.

We also develop a machine-learning-based biomarker,
which utilizes behavioral responses in the spatial and
working-implicit/procedural-memory testing task. The sug-
gested biomarker shall consequently allow for practical em-
ployment in an uncomplicated gaming-style touchpad or
smartphone application concerning daily use for older adults
enduring cognitive or lifestyle interventions contributing
to dementia rise postponement or even possible process
reversal as proposed in [4]. The up-to-date methods for
dementia diagnostics rely on pencil-and-paper nonobjective
psychometric testing, for example, the MoCA [12], the more
elaborate physiological or brain imaging analyses [9], or
massive multi-sensory datasets [19]. The latter techniques
often demand expensive devices, very long testing periods,
or advanced clinical environments.

We present an exploratory and following ML/AI behav-
ioral response analysis procedure in which we ask elderly
citizens to learn a reasonable new emotional face evaluation
skill employing a two-dimensional graph, a so-called emoji-
grid [20], of valence and arousal rates, which is an offhand
spatial- and implicit-working-memory assignment. Following
a short training, the users perform an examination trial in
which response time, valence and arousal inputs together
with self-reported university-level degree education as well
as age create input features to train ML models as outlined
in the subsequent methods section. First, we communicate
on a pilot study results. We administer the pilot study with a
small representation of university graduate students, middle-
age, high- and low-scoring on MoCA-scale older adults, as
well as reference active-seniors of 80+ years old. The pilot
study produces supportive outcomes of behavioral reaction
time (RT) and emotional arousal/valence (AV) responses
as biomarker nominees. The outcomes of the pilot study
encourage the subsequent conclusive project with 35 elderly
MoCA-evaluated citizens. We summarize encouraging ML
results, allowing for predicting MCI scores in behavioral
paradigm and without the requirement for highly subjective
paper-and-pencil questionnaires.

The paper is organized as follows. The next section
describes data collection, experimental, and machine learning
methods used in the study. Results discussion follows, and
conclusions with future research directions summarize the
manuscript.

II. METHODS

We administered trials with the human participants in
the RIKEN Center for Advanced Intelligence Project (AIP)
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Fig. 1. The experimental procedure timeline. The top panel presents user
display utterances on the left and tablet’s touchscreen input screen on the
right in a single trial example. A user first can see a short facial emotional
display randomly chosen from the Mind Reading database [21]. Next, a
respective valence and arousal score is shown [22], and the user is requested
to memorize it and subsequently to input it on a tablet in the final step of a
single trial. The bottom panel presents a timeline of the spatial- and implicit-
working-memory testing single trial, in which we omit a suggestion screen.

following guidelines and permission of RIKEN Ethical Com-
mittee for Experiments with Human Subjects and The Dec-
laration of Helsinki regarding ethical principles for human
experimentation.

In the pilot study small groups (less than ten each)
of participants we divided into five groups of low-MoCA
(MoCA 6 25), normal-MoCA (MoCA > 25), ctive 80+
(active professionals with ages above 80 years old), middle-
aged (ages 40 ⇠ 50 years old), and graduate students (grad-
uate level and 20 ⇠ 35 years old). In the final main trial
session, 35 elder participants (number of females = 22;
mean age = 73.5 years old; age standard deviation of ±4.85
years; recruited from Silver Human Resources Center and
Honobono Laboratory) took part. All participants received
monetary gratification for their participation in the study, and
they gave informed written consent.
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A. Experimental Procedure

During the experimental session, we tested the participants
in pairs, but they were seated in such a way that they could
not see each other stimulus display and response touchpad.
Each participant was sitting in a chair in front of a computer
display. A touchscreen tablet was also used in the procedure.
The computer screen displayed stimuli and response targets
in a training mode. The touchscreen tablet was recording
participant’s responses on a two-dimensional emoji-grid [20]
together with response times after each video clip ended. The
experimental procedure was coded in a visual programming
environment MAX by Cycling ’74, USA. The experiment was
divided into two similarly structured parts, as is depicted in
Figure 1.

In the first part of both pilot and final experiments, the
participants’ task was to learn the procedure by copying a
reference emotion judgment shown on the computer screen.
At the beginning of each trial, on the left side of the screen,
a short video clip with facial emotional expression from a
Mind Reading database [21] developed initially as a teaching
emotion-recognition aid for people with autism spectrum
disorders. Next, a two-dimensional grid was displayed on
the right side with the horizontal dimension describing the
valence of emotion and the vertical arousal [22], [20],
respectively. On this grid, an associated emotion score was
displayed in the form of an orange dot for five seconds. To
help participants understand the meaning of those dimen-
sions, we placed a set of emoji depicting emotions [20], as
shown in the top panel within Figure 1. The participant had to
respond by touching an identical position on a grid displayed
on the tablet’s touchscreen in a place where the reference
judgment was shown. Emojis were placed around both grids
on the screen and the tablet. After doing it, the participant
had to touch a next button displayed on the tablet, which
triggered the subsequent trial start (see Figure 1). Tablet was
unresponsive during the presentation of the video and the
emotion grid, so participants had to watch the whole material
before giving an answer and progressing to the next trial.

For every participant, an experimental session consisted of
72 video display trials (5 ⇠ 7 seconds each) with 24 distinct
emotion classes [21]. Three distinct videos reproduced every
emotion with actors varying in age, gender, and skin color.
The sequence of the videos was randomized before the trial
but was the same for every participant. Reference judgments
were taken from a published article [22]. After a short
break, participants started the second part, which contained
the same amount of stimuli and the same emotions as the
first part. However, new videos were chosen as the stimuli,
so participants have not seen them before [21]. Another
significant difference was the absence of suggestions on the
screen after a video was played (refer to a bottom panel in
Figure 1). Therefore participant’s task was to reproduce a
previously learned spatial-evaluation judgment of emotions
seen in each video concerning the valence and arousal di-
mensions. Thus the spatial- and implicit/procedural-working-
memory was tested together with recorded reaction (thinking

intervals) times estimating a cognitive load [10], [23].

B. Behavioral Data Recording for the Subsequent AI Appli-

cation

During the data recording operations, arousal and valence
score responses, as well as the reaction times were registered
together by the stimulus display program developed in a
visual programming ecosystem MAX by Cycling ’74, USA.
At the end of each testing session, all results were saved
automatically in a text file and next preprocessed for feature
extraction. While in the pilot study we analyzed the actual
valence and arousal values (see two lower panels in Figure 2),
than in the final experiment we obtained absolute response
score errors to unify response spreads and reaction times as,

ve(i,s) = |vd(i)� vt(i,s)| , (1)
ae(i,s) = |ad(i)�at(i,s)| , (2)
rt(i,s) = tt(i,s)� to(i), (3)

where s = 1, . . . ,20 identified the participant in our final
study; i = 1, . . . ,72 represented the i

th video clip presented
in the experiment; ve(i,s) and ae(i,s) were the valence and
arousal errors related to emotional stimulus i and participant
s, respectively; vd(i) and ad(i) were the video clip assigned
ground truth emotional scores from [21], [22]; vt(i,s) and
at(i,s) the actual response inputs by a user number s on
a touchpad after the video clip number i, which reflected
the learned emotion evaluation in the spatial- and working-
memory task; rt(i) was a reaction time obtained as an interval
between user response tt(i,s) and the i

th video clip end at
a timestamp to(i). A single video clip evaluation feature
vector Fi,s related to video clip i and participant s for each
evaluated next classifier in training and subsequent leave-
one-participant-out cross-validation procedure has been built
as follows,

Fi,s =

2

666666664

vd(i)
ve(i,s)
ad(i)
ae(i,s)
rt(i,s)
e(s)
g(s)

3

777777775

, (4)

where the quantities ve(i,s),ae(i,s) and rt(i,s) were obtained
from equations (1) to (3) for participant and video number
s and i, respectively; e(s) 2 {0,1} denoted a self-reported
education level; and g(s) age. A pairwise comparison scatter
plots together with linear regression fits are summarized
together with classifier output MCI levels in Figure 3.

C. Machine Learning Methods

We tested classifiers available in the scikit-learn library
version 0.22.1 [24] and Tensorflow 2.1.0 [25] for binary
classification of MCI versus normal cognition of the 35
participants in our final study using input features Fi,s from
equation (4). We used a leave-one-participant-out procedure
with carefully balanced labels from both MCI and normal
cognition classes in each cross-validation run. Thus, a chance
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Fig. 2. Three panels present the participant reaction-time (RT), valence
and arousal error experimental results from a behavioral pilot study in
which short-video-clips with emotional expressions presented to the five user
groups. The white dots within the distribution plots depict median results,
and the thick-black-lines the error-bars the 25-percentile-intervals, respec-
tively. Response times and arousal errors for the low-MoCA group resulted
in statistically significant differing quantities (larger values) comparing to
all the other participants with pRT < 0.01 and pA < 0.01, respectively, as
tested with the Wilcoxon rank-sum tests. Emotional valence response error
distributions did not differ significantly among all the evaluated groups in
the presented study.

level in every classification trial was guaranteed to be 50%
as marked in results Figure 6. The following methods and
appropriate steps were implemented:

• Logistic regression (LR): standard scaling of input
features Fi,s by removing the mean and dividing by

a variance; application of a liblinear solver; setting a
maximum iteration number to 1000.

• Linear discriminant analysis (LDA): application of a
least-squares solver without shrinkage.

• Linear support vector machine (linearSVM): stan-
dard scaling of input features Fi,s by removing the mean
and dividing by a variance; application of linear kernel
with l2�penalty; loss set to squared hinge.

• Radial basis function support vector machine
(rbfSVM): application of a radial basis function kernel;
with a kernel coefficient gamma set to 1/7 representing
an inverse of feature vector Fi,s length.

• Polynomial support vector machine (polySVM): stan-
dard scaling of input features Fi,s by removing the mean
and dividing by a variance; application of a second
degree polynomial kernel; with a kernel coefficient
gamma set to 1/7 representing an inverse of feature
vector Fi,s length; with an independent term in kernel
function coe f 0 = 1.0.

• Sigmoid support vector machine (sigmoidSVM):
standard scaling of input features Fi,s by removing
the mean and dividing by a variance; application of a
sigmoid kernel; with a kernel coefficient gamma set to
1/7 representing an inverse of feature vector Fi,s length.

• Random forest classifier (RFC): with a number of
trees in the forest set to 200; mean squared error used
as a split criterion; no maximum tree depth limitation;
and a minimum number of samples required for a split
set to 2.

• Fully connected deep neural network (FNN): with
densely connected rectified linear units (ReLU), con-
figured in one input and five hidden layers with
32,64,256,512,256, and 32 units, respectively; the
above middle layer with 512 units followed by dropout
activation set to 50%; an output softmax layer with two
units; the whole network consisted of 290,146 trainable
parameters; the training conducted using batches of 128
and maximum 500 epochs with early stopping set for
no validation loss improvement for more than 7 epochs
using an ADAM optimizer with a learning rate set to
0.001, and a loss function of a binary-cross-entropy;
10% of training data was used for validation in each
leave-one-participant-out run, respectively.

III. RESULTS

The current project first resulted with an encouraging
pilot study using a small and nonuniform sample of partici-
pants, and next the carefully balanced sample of 35 older
adults confirmed a possibility of binary classification of
MCI (MoCA 6 25) versus normal (MoCA > 25) cognition
using only participant behavioral responses in the spatial-
and implicit-working-memory task. A detailed discussion of
results follows.
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Fig. 3. A collection of scatter plots showing pairwise relationships of
all output/target (MCI; where 1 represents those with MoCA  25 and
0 those with normal cognition, respectively) and input (with following
abbreviations: valence err = user valance input error; arousal err = user
arousal input error; RT = user response time; edu = user self-reported
education level; age = user self-reported age) features used in the subsequent
machine-learning analysis. Red lines depict linear regression fits with shaded
confidence intervals of the pairwise data distributions.

A. Pilot Study Statistical Data Analysis of Behavioral Re-

sponses

The pilot and preliminary study results are summarized in
Figure 2 in the form of distribution plots of reaction-times,
valence, and arousal response errors. Out of five participant
groups, only the low-MoCA group (MoCA 6 25) resulted
in significantly differing median responses as tested with
Wilcoxon rank-sums test. The response times resulted in
pRT < 0.01, while similarly, the arousal response errors were
at the same statistical significance level of pAerr < 0.01,,
respectively. The valence errors did not differ significantly
among the participant groups.

TABLE I
COMPARISON OF CLASSIFIERS IN LEAVE-ONE-PARTICIPANT-OUT

CROSS-VALIDATION FOR THE TARGET CLASS MEDIAN F1�SCORES,
WHERE F1 = (precision · recall)/(precision+ recall)

Classifier Median F1�score
LR 0.945
LDA 0.921
shrinkage LDA 0.899
linear SVM 0.933
rbf SVM 0.783
polynomial SVM 0.738
sigmoid SVM 0.898
RFC 0.790
FNN 0.941

Fig. 4. The elderly participant results in the form of valence (top panel),
and arousal (bottom, respectively) response absolute errors in the spatial-
and implicit-working-memory task plotted in function MoCA cognitive
evaluations. We also depict linear regression fits with confidence intervals
of 95-percentile levels, which show an apparent linear increase of both ab-
solute response errors for lower-MoCA-scoring participants. We summarize
statistics of the linear regression fits above the graphs in the form of p-values
and standard errors (stderr).

B. Multimodal Experiment for MCI Inference from Behav-

ioral Response Classification Results

The final study results are summarized in form behavioral
feature distributions in Figures 4 and 5, for arousal and
valence response errors, as well as response times, respec-
tively. We also performed linear regression fit analysis of
the detailed results (p-values and standard errors) depicted
in Figures 4 and 5. All the behavioral results did linearly
increase for lower MoCA scores. We present the pairwise
comparison of the classification input features in Figure 3.
The feature sets were very noisy, thus a simple statistical
analysis was not sufficient for a final application.

The results of shallow and deep learning classifiers (at
the current stage a small sample of participants did not
allow for a successful application of more complex deep
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Fig. 5. The elderly participant results in the form of reaction times in
seconds in the spatial- and implicit-working-memory task plotted in function
MoCA cognitive evaluations. We also depict the linear regression fit with
confidence intervals of 95-percentile levels, which also confirms an apparent
linear increase of both absolute response errors for lower-MoCA-scoring
participants.

learning methods) are summarized in Figure 6 in the form
of median bar plots together with 50�percentile error-bars.
The majority of classifiers scored way above a chance level
of 50% with very encouraging median results for the linear
regression and the fully connected deep neural network
(FNN) just below a 90% benchmark.

The median F1�score results [24] in leave-one-
participant-out cross-validation scenarios are summarized in
Table I with the best mean scores obtained for LR– and
FNN–based classifiers. Those two classifiers also resulted
in the best median accuracies, although the FNN method
had some higher accuracies as depicted with error bars in
Figure 6.

We plan that after collecting a comprehensive database in
near-future, a further elaborate deep learning model would
allow for even more thriving classification accuracies of MCI
versus healthy elderly discrimination.

IV. CONCLUSIONS
The reported project produced two significant results.

First, in the discussed pilot study, we distinguished three be-
havioral responses as nominees for MCI pathology biomark-
ing from a gaming-style paradigm involving the spatial-

Fig. 6. Median accuracy classification results of binary classifiers discrim-
inating between MCI (MoCA 6 25) versus normal cognition (MoCA > 25)
cases together with confidence intervals of 50th�percentile. The successfully
evaluated shallow learning classifiers [24] were as follows: logistic regres-
sion (LR); linear discriminant analysis (LDA); linear support vector ma-
chine (linearSVM); radial basis function support vector machine (rbfSVM);
polynomial support vector machine (polySVM); the sigmoid support vector
machine (sigmoidSVM); the random forest classifier (RFC); and the fully
connected deep neural network (FNN) [25] was also applied, respectively.
Detailed settings of the evaluated classifiers are summarized in Section II-C
in this paper.

and implicit-working-memory task of emotional arousal and
valence scoring together with reaction time records in mere
video clips evaluation task. In the closing study concerning
older adults with identified MoCA rates, we were able to
assess several shallow and deep learning classifiers. The
classification in a binary organization of MCI (MoCA 6 25)
against standard cognition (MoCA > 25) levels in the mere
emotional faces evaluation task resulted in reliable accuracy
outcomes (median classification accuracies just below 90%
for the best methods) as summarized in Figure 6. The dis-
cussed innovative strategy for behavioral responses in emo-
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tional faces evaluation task concerning spatial- and implicit-
working-memory-based original skill acquisition together
with classification outcomes contribute to advancement in
research and improvement of new dementia-level-estimation
behavioral biomarkers for the elderly, for whom possible
early determination of cognitive decline, as well as a life
improvement, are indispensable.

The successful employment of such an AI/ML-based de-
mentia onset forecast shall lead to healthcare cost-reducing
benefiting all the aging societies worldwide.

We also acknowledge the inherent limitations of the dis-
cussed approach as we only infer human-error-prone nonob-
jective cognitive evaluation rates translated to binary MCI
thresholds at a level MoCA 6 25, which are only proxy
predictors of dementia. AI-based dementia predictors, if used
without proper evaluation, might also pose a danger of ill-
usage or abuse; thus, proper ethical standards will need to be
in place too. A possible dementia diagnostic gain for medical
doctors using the proposed method would be a possibility
to drop paper-and-pencil tests, as well as to administer
the proposed methodology inspections more frequently to
observe therapy progress.

In the succeeding research project, we intend to assess the
developed techniques with a more extensive representation of
ordinary versus MCI or even dementia diagnosed citizens.
We also plan to merge the proposed behavioral measures
with brainwaves, especially EEG and fNIRS, datasets for
even more reliable final classification. We also recognize
that the future application of AI methods for fully interac-
tive paradigms in closed-loop user behavior and brainwave
monitoring shall lead to even more impactful results.
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