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Abstract— While there have been several efforts to use
mHealth technologies to support asthma management, none
so far offer personalised algorithms that can provide real-
time feedback and tailored advice to patients based on their
monitoring. This work employed a publicly available mHealth
dataset, the Asthma Mobile Health Study (AMHS), and ap-
plied machine learning techniques to develop early warning
algorithms to enhance asthma self-management. The AMHS
consisted of longitudinal data from 5,875 patients, including
13,614 weekly surveys and 75,795 daily surveys. We applied sev-
eral well-known supervised learning algorithms (classification)
to differentiate stable and unstable periods and found that both
logistic regression and naı̈ve Bayes-based classifiers provided
high accuracy (AUC > 0.87). We found features related to the
use of quick-relief puffs, night symptoms, frequency of data
entry, and day symptoms (in descending order of importance)
as the most useful features to detect early evidence of loss
of control. We found no additional value of using peak flow
readings to improve population level early warning algorithms.
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I. INTRODUCTION

Asthma is a variable condition, affecting around 5.4 mil-
lion people in the UK [1]. Every 10 seconds in the UK alone,
someone has an asthma attack a few of which will be life-
threatening [1]. The dual focus in the management of patients
with asthma is on symptom control and the prevention of
asthma attacks. The most common symptoms of asthma are
wheezing, cough, chest tightness and shortness of breath.
For most patients, the majority of the time, the condition is
stable, manageable, and these symptoms are either absent
or mild. However, after exposure to triggers (which vary
between patients), these symptoms can get worse and lead
to an attack (sustained worsening of symptoms that require
emergency treatment such as oral steroids, or hospitalisation
if not treated promptly).

Currently, there is no cure for asthma. However, exist-
ing management strategies, such as the use of “preventer”
inhalers, can be used to control the condition. Supported
self-management (including an action plan) significantly
reduces the risk of an asthma attack [2]. A key component
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of self-management is monitoring which may be passive
requiring minimal effort on the part of the patient (and thus
preferable) or active requiring conscious effort which may be
burdensome (or boring) reducing adherence. Mobile health
(mHealth) offers a promising platform for combining passive
and active approaches to deliver an engaging and effective
self-management system for asthma.

There have been several efforts to use mHealth tech-
nologies to support asthma self-management [3]. myAsthma
is a National Health Service (NHS) approved mobile app
developed by My mHealth, which includes instructional
videos about inhaler techniques, tracks symptoms and peak
flow, provides local weather forecasts and stores action plans
[4]. AsthmaMD has similar features, logging user asthma
activity, peak flow, medications and triggers, has paperless
action plan storage, and can provide custom notifications
[5]. However, to date, no effective digital self-management
solution for asthma exists that has been widely adopted; in
turn, such data cannot be integrated into primary care records
for improved care. This is partly because existing solutions
are rarely sufficiently engaging to enhance adherence to
monitoring and also lack personalised algorithms to provide
real-time tailored feedback based on symptoms and other
parameters. Consequently, our long-term goal is to develop
an effective and engaging mHealth system that facilitates
self-monitoring and uses personalised algorithms to provide
timely and appropriate feedback (early warning) to patients.
To make progress towards achieving our goal, we have
employed a publicly available mHealth dataset to apply and
benchmark machine learning techniques to develop early-
warning algorithms.

II. METHODS

We first describe the Asthma Mobile Health Study
(AMHS) dataset that was used in our study, followed by
the methodology developed to analyse the data. The key
methodological steps are “data pre-processing and labelling”,
“feature extraction”, “feature selection”, “classification”, and
“model evaluation”. The flowchart in Fig. 1 provides an
overview.

A. Asthma Mobile Health Study

We used the AMHS [6][7] dataset in our study. The
AMHS was conducted via Asthma Health App, an Apple app
designed using ResearchKit for the purpose of the study, and
contains data (daily and weekly surveys, asthma and medical
history, demographic, EuroQol 5-dimensions 5-levels (EQ-
5D-5L) survey, and location data) collected, often sporadi-

978-1-7281-1990-8/20/$31.00 ©2020 IEEE 5673



Fig. 1. Flowchart of data processing

cally, by 5,875 US participants with self-reported physician
diagnosed asthma over 21 months. The nature of the study
provided a wide geographic coverage across the US. Partici-
pants filled in daily and weekly questionnaires regarding their
asthma. The AMHS had also obtained informed participant’s
consent through the app, which ensured they understood
the risks, benefits, and options of study participation [7].
Furthermore, these data were made available for further
research by the authors in 2018 [6].

B. Data Pre-processing and Labelling

The AMHS dataset contains data from 5,875 patients with
75,795 daily survey and 13,614 weekly survey entries. In
this study, we analysed a subset of patients with at least
one weekly survey entry and at least three daily survey
entries with peak flow readings. Information about a patient’s
condition (stable or unstable) and symptoms were derived
from the weekly and daily survey respectively.

The data selected from the daily survey used in the model
included day and night symptoms, inhaler usage, asthma
triggers and peak flow; see Table I for details of the daily
survey questions. These are consistent with the criteria used
clinically to assess asthma control in the Royal College of
Physicians “3 Questions” [8][9] and defined by the Global
Initiative for Asthma (GINA) [10].

The total number of asthma triggers were normalised per
patient, because the number of self-reported triggers varied
between patients and some may experience more symptoms.
The peak flow values were also normalised per patient, this
is common clinical practice; if a patient’s peak flow drops
below 80% of their best, they are said to be unstable [10].

1) Labelling Classes: We considered a patient to have
been unstable in the period corresponding to a weekly survey
if they had answered “true” in at least one of the three weekly
survey questions describing an unscheduled use of healthcare
resource in that week: seen asthma doctor other than a regular
visit, visited the emergency room, or admitted to the hospital.
We refer to these weekly survey entries as “unstable events”.

We subsequently labelled periods corresponding to daily
survey responses into stable, unstable and transient classes

TABLE I
DAILY SURVEY QUESTIONS TAKEN AS INPUT

Question Input Type
In the last 24 hours, did you have any day-
time asthma symptoms (cough, wheeze,
shortness of breath or chest tightness)?

Boolean

In the last 24 hours, did you have any
nighttime waking from asthma symptoms
(cough, wheeze, shortness of breath or
chest tightness)?

Boolean

Except for use before exercise, how many
total puffs of your quick-relief medicine
did you take over the past 24 hours?

Integer

Did any of the following cause your
asthma to get worse today (check all that
apply)?

Multiple choice 1-22 *

Enter your peak flow today (L/min)? Integer
Did you take your asthma control
medicine in the last 24 hours?

One of 4 **

* 1) A cold, 2) Exercise, 3) Being more active than usual (walking, running,
climbing stairs), 4) Strong smells (perfume, chemicals, sprays, paint), 5)
Exhaust fumes, 6) House dust, 7) Dogs, 8) Cats, 9) Other furry/feathered
animals, 10) Mold, 11) Pollen from trees, grass or weeds, 12) Extreme
heat, 13) Extreme cold, 14) Changes in weather, 15) Around the time of
my period, 16) Poor air quality, 17) Someone smoking near me, 18) Stress,
19) Feeling sad, angry, excited, tense, 20) Laughter, 21) I don’t know what
triggers my asthma, 22) None of these things trigger my asthma
** 1) Yes, all of my prescribed doses, 2) Yes, some but not all of my
prescribed doses, 3) No, I did not take them, 4) I’m not sure

using the information from weekly surveys. All entries within
a 14-day period before the unstable event were deemed to
be in the unstable class. We also defined a 14-day recovery
period (the transition period) beginning from the unstable
event (see Fig. 2) (previous work identified a mean recovery
time of approximately two weeks [11]). The patient was
deemed to be in stable condition for the remainder of the
time during monitoring.

2) Packaging Daily Survey Data: Patient adherence to
monitoring is a major challenge in chronic disease manage-
ment such as asthma, leading to sporadic patient data input
patterns in mHealth studies [12]. Therefore, we employed a
greedy bin-packing forward algorithm, which collated near-
by similar (of the same class and separated by no more than
two calendar weeks) 14-day periods to form larger blocks
and provide more representative summary variables. The
pseudo-code for the bin-packing algorithm is described in
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Fig. 2. Data class label surrounding unstable event

Algorithm 1. In essence, a new bin was created if any one
of three conditions were met: the bin is filled, the data is
in a different class to the bin, or the distance between the
bin and the data has exceeded two calendar weeks (this is
written mathematically as 3 ≤ week difference ≤ 49, which
covers the year end transition). The maximum bin capacity
C of the algorithm is the same as the initial time period used
to class unstable data points; in the analysis, it was 14 data
entries.

Algorithm 1: Bin-packing Algorithm
Data: Classed daily survey week of entry from one

patient data = {(we
i , w

c
i , fi, yi)}, capacity C;

we
i ∈ N: event week, number of unstable events

preceding the entry,
wc

i ∈ [1, 53]: calendar week of daily survey entry,
fi(≤ C): frequency of daily entries in calendar week,
yi ∈{stable (0), unstable (1)}: class

1 begin
2 Initialise bin load fbin = 0, bin number N = 1;
3 Sort data increasingly in we, then y, then wc;
4 Add first entry to bin: fbin = fbin + f1;
5 ybin = y1;
6 wc

bin = wc
1;

7 for i = 2, . . . ,#data do
8 if (yi 6= ybin) OR (3 ≤ |wc

i −wc
bin| ≤ 49) then

9 New bin: increment N ;
10 fbin = 0;
11 end
12 if fbin + fi ≤ C then
13 Add to bin: fbin = fbin + fi;
14 else
15 New bin: increment N ;
16 fbin = fi;
17 end
18 ybin = yi;
19 wc

bin = wc
i ;

20 end
21 end

C. Feature Extraction

We performed linear regression on the set of daily survey
data after the bin-packing, and estimated four summary

variables per set, for each of the six daily survey items:
mean, gradient of a linear fit, absolute gradient and R-squared
(coefficient of determination). A linear fit was chosen to
display the overall trend seen over a period of time. Fig.
3 illustrates linear regression applied to peak flow readings
contrasting stable and unstable periods of a single patient in
the study. The proposed feature extraction method allowed
a direct comparison between periods of time despite the
disparity in data availability and sampling frequency. In this
work, we set a minimum frequency requirement of three
data points before applying linear regression. Lastly, we also
used the number of data points available in each bin (called
frequency henceforth) as an additional feature providing us
with 25 potential features (four summary variables from each
of the six daily survey items, and frequency) in total.
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Fig. 3. Linear fit (feature extraction)

D. Feature Selection

The least absolute shrinkage and selection operator
(LASSO) method was employed to rank and select a handful
of input features. The regularisation performed in LASSO
not only helps us avoid over-fitting but also helps in ranking
input features based on their predictive power. LASSO is a
well-known technique for binary classification that combines
fitting a cost function with regularisation. By gradually
increasing the amount of regularisation (by varying a single
parameter), we can eliminate features in succession (so that
features with less predictive power will be eliminated first)
[13].

In this work, we varied the amount of regularisation in
100 steps (from parameter value of 0, corresponding to no
regularisation and therefore using all features leading to an
over-fitted model, to a heavily regularised model that knocks
out all features). In order to determine an average ranking
for the features, we repeated the LASSO procedure 150
times, using a different randomly selected 67% subset of
the data each time. For each of these subsets, further subsets
were made for ten-fold cross-validation. Cross-validation is a
method to avoid over-fitting using data sub-sampling; k-fold
cross-validation involves randomly splitting the data into k
sets, then training on k−1 sets and testing on the remaining
set [14].

E. Classification

This work aimed to predict if a patient is likely to have an
unstable event. In the context of our study, this corresponds to
developing an algorithm that could classify whether a patient
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is in a stable or in an unstable condition. We used a number
of well-known machine learning classifiers, both linear and
nonlinear, and both probabilistic and deterministic models.
The models used in this study consisted of decision trees,
logistic regression, naı̈ve Bayes, and support vector machine
(SVM). Decision trees find an optimal sequence of binary
decisions on different features to classify the data, which
creates a nonlinear decision boundary. Logistic regression
learns a sigmoid-based discriminant function that uses a
linear combination of features as input. Naı̈ve Bayes is a
probabilistic model and assumes independence between all
variables; the largest posterior probability determines the
class. SVM attempts to find the maximum margin hyperplane
to separate data, which is a linear decision boundary [14].

For comparison, the base model used logistic regression
and only the mean of the six daily survey data variables as
features.

F. Performance Metrics

The area under the receiver operating characteristic curves
(AUC-ROC) is a standard comparison metric for binary
classification. The ROC curve reflects the obtainable balance
between sensitivity (true positive rate (TPR), the proportion
of unstable periods correctly classified) and the specificity
(true negative rate (TNR), the proportion of stable periods
correctly classified).

The skewed nature of the data made the geometric mean
accuracy (GMA) a more suitable metric than accuracy (pro-
portion of correct predictions over the total predictions) for
identifying the optimal threshold to maximise the sensitivity
and the specificity. A set of GMA can be evaluated from
the points on the ROC curve, then the maximum of this set
represents the best threshold for the given data.

GMA =
√

TPR× TNR, (2)

III. RESULTS

After pre-processing and labelling, the dataset used for
subsequent analysis consisted of 2,309 periods with 2,145
(92.9%) corresponding to the stable class and 164 (7.1%)
corresponding to the unstable class. The 2,309 periods
amounted to 25,412 daily surveys (24,079 in stable class
and 1,333 in unstable class) covering 55,509 days of patient
monitoring; suggesting, on average, a patient completed a
daily survey every 2.2 days. The flowchart in Fig. 1 shows
the various steps of data processing.

A. Feature Ranking

The ranking associated with using all 25 features are
in Table II. The median optimal model size from the 150
rankings was six, and all had used the same features.
However, the rankings between the top three varied within
the 150 rankings. The top six features in decreasing order
of importance being: quick-relief puffs (mean), quick-relief
puffs (absolute gradient), night symptoms (absolute gradi-
ent), night symptoms (mean), frequency, and day symptoms
(mean).

The optimal model, according to the “one-standard-error”
rule [15], used six features. Notably, the night symptoms
were ranked higher than day symptoms, which has clinical
face validity.

TABLE II
LASSO RANKING AND WEIGHT IN OPTIMAL MODEL

Rank Feature Weight
=1 quick-relief puffs (mean) 0.18
=1 quick-relief puffs (absolute gradient) 0.14
=1 night symptoms (absolute gradient) 0.17
4 night symptoms (mean) 0.14
5 frequency -0.22
6 day symptoms (mean) 0.20
7 day symptoms (absolute gradient) 0
8 number of triggers (gradient) 0

=9 peak flow (absolute gradient) 0
=9 peak flow (gradient) 0

B. Classifiers

Each of the models were trained and tested using the
eight-fold cross-validation dataset. The cross-validation was
repeated for 500 times, to observe the behaviour of the mod-
els over different cross-validation sets. Note that the ROC
curve was dependent on the training-test set segmentation for
cross-validation. Fig. 4 shows the distribution of the model
performances over 500 separate cross-validations. The SVM
model varied most over the different validation sets. The
median performance figures of 500 evaluations are listed in
Table III.
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Fig. 4. Boxplots of AUC and maximum GMA of models over 500
evaluations, the best models were LR and NB.

TABLE III
PERFORMANCE METRICS

Classifier AUC GMA Sensitivity Specificity
Base 0.814 0.752 0.805 0.702
DT 0.716 0.723 0.683 0.766
LR 0.873† 0.788 0.817 0.760
NB 0.871 0.792† 0.866 0.725

SVM 0.638 0.606 0.591 0.620

†maximum in column

For better understanding of the characteristics of the clas-
sifiers, consider the weights used in the logistic regression
model, see Table II. The value of the weight determines how
much a variable affected the decision. The sign of the weight
corresponds to the direction of the relation to the classes.
For example, night symptoms (mean) has a positive weight;
thus, more symptoms were correlated to a higher likelihood
of being in the unstable class.
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C. Top Classifier

Using median GMA as criteria, the naı̈ve Bayes classifier
was the best performing algorithm followed closely by
logistic regression. The median model over 500 evaluations
was the most representative naı̈ve Bayes classifier. Each point
on the ROC corresponds to selecting a different threshold
for classification. In this study, we considered the optimal
threshold to be the one with the largest GMA.

The optimal model had a GMA of 0.792, confusion
matrix displayed in Table IV, with a sensitivity of 0.866,
a specificity of 0.725, an AUC of 0.871, and the ROC curve
displayed in Fig. 5.

TABLE IV
CONFUSION MATRIX NAÏVE BAYES MODEL

Predicted Class
stable unstable

True Class stable 1555 590
unstable 22 142
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Fig. 5. ROC curves of the base model vs best model determined by highest
median GMA (naı̈ve Bayes)

IV. DISCUSSION AND CONCLUSION
Using the AMHS dataset we provided evidence of the

utility of machine learning methods to aid asthma self-
management, where the results of the data-driven methods
aligned with clinical understanding. More specifically, we
found that both a probabilistic (naı̈ve Bayes) and a dis-
criminant (logistic regression) classifier could provide high
accuracy (AUC > 0.87) for early warning. Our work has
shown the potential of the method which collates irregularly
sampled data to form summary variables and allowed com-
parison between periods of time with different data avail-
ability. This work also demonstrated that the performance of
prediction models could be further enhanced with features
that capture gradient over a time period. Besides, this work
also found that features using peak flow readings did not
provide additional value over and above other self-reported
features used in the study (derived from the use of quick-
relief puffs, night and day symptoms).

A limitation in the data was the identification of the
unstable event, using the weekly survey, with the resolution
of an unstable event being a week. Also, the app was limited
to Apple device users, who are not representative of the
whole US population, thus introducing potential bias in the
data.

The types of models used in this study still require more
investigation with more diverse data before patients can rely
on its predictions. Our study used self-reported data, and
we anticipate further improvement over the reported perfor-
mance if objective measures were available as feature inputs
for prediction. Our future work aims to expand the analysis
of this dataset by using the 3-digit ZIP code prefixes to link
historical weather data, building demographic, geographic,
and seasonal sub-models, exploring links between emotions
and symptoms, and testing more complex models. Moreover,
the data in the transition period between unstable and stable
periods and temporally outlying data were not used in this
analysis; future models could incorporate these data points
using multi-scale models.
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