
  

  

Abstract— Automatic monitoring of daily living activities can 

greatly improve the possibility of living autonomously for frail 

individuals. Pose recognition based on skeleton tracking data is 

promising for identifying dangerous situations and trigger 

external intervention or other alarms, while avoiding privacy 

issues and the need for patient compliance. Here we present the 

benefits of pre-processing Kinect-recorded skeleton data to limit 

the several errors produced by the system when the subject is 

not in ideal tracking conditions. The accuracy of our two hidden 

layers MLP classifier improved from about 82% to over 92% in 

recognizing actors in four different poses: standing, sitting, lying 

and dangerous sitting.  

I. INTRODUCTION 

Nowadays, the growing number of frail people (elderly or 
people affected by motor and/or cognitive disabilities) living 
alone in their own home is becoming a clinical and social 
problem. Their ability to perform daily tasks and to take care 
of themselves is severely impaired with the consequent 
increase of the risk of exposing themselves to dangerous 
situations. 

In the last few years, a consistent technology effort was 
devoted to implement technological solutions aimed at 
increasing safety  (i.e. Human Activity Recognition (HAR) for 
fall prevention and detection) and improving quality of life 
(i.e. automatic light switches, automatic doors and shades, 
motorized beds) of disabled and elderly people [1]–[3]. HAR 
identifies the daily activities of a monitored individual using 
information coming from wearable sensors or cameras. In the 
Ambient-Assisted Living (AAL) field HAR is widely used to 
automatically distinguish a normal behavior from a dangerous 
one to generate, when suitable, an alarm signal. In principle, 
the typical data analysis adopted in these solutions follows 
these steps: 1) raw data coming from wearable or 
environmental devices are processed and analyzed in order to 
select the most significant and informative features which best 
describe the stored data; 2) Artificial Intelligence techniques 
or threshold algorithms are used to define poses or daily 
activities performed by the subject [1], [4]. 

Computer vision-based systems offer a new, low-cost and 
promising solution for HAR, especially for healthcare 
monitoring of frail subjects. The devices commonly used for 
HAR and for monitoring purposes are depth cameras, such as 
Asus Xtion (Taipei, Taiwan), Intel RealSense (Santa Clara, 
USA), Orbbec Astra (Troy, USA) and Microsoft Kinect 
(Redmond, USA). The most common depth sensing device in 
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AAL is the Microsoft Kinect sensor due to its affordable cost 
and support of custom monitoring and activity recognition 
software, which can be easily developed using its Software 
Development Kit (SDK) [1], [6]–[10]. 

The Kinect sensor has the advantage of being a non-
intrusive device, which does not require the willingness of the 
user to wear it and is not limited by battery life. The resulting 
data is also respectful of privacy, thanks to the tracking of body 
joints computed from depth images, yet allowing 24h/7d 
subject’s monitoring [7], [9]. Although between the first 
(Kinect v1) and the second version (Kinect v2) there have been 
hardware and software improvements [7], the Kinect v2 still 
has some drawbacks in the acquisition and processing of data, 
such as: 1) variable frame intervals [7]; 2) missing data when 
the subject is at the edge of the camera’s calibrated volume or 
is partially hidden by furniture in the scene (es. desk, bed and 
chair [10]; 3) incorrect reconstruction of joints positions due 
to: noisy data, room lighting or overlapping of two or more 
joints [4], [11]–[14]; 4) recognition of ‘ghost’ skeletons caused 
by moving objects (i.e. chair) [10]. 

A classification model requires a reliable and validated 
dataset to efficiently generate the decision making rules. To 
improve the classification accuracy, it is important to evaluate 
the input data provided to the classifier and, if necessary, apply 
data pre-processing techniques to make them more reliable. 
Many studies using Kinect data for HAR in AAL proposed 
pre-processing algorithms with the goal of obtaining a 
reduction of erroneous information, misleading for the 
classifier [11], [14]. Sometimes, even the pre-processing is not 
enough to obtain an accurate classification of specific daily 
postures like lying or bending. Therefore, Li et al. (2019) 
proposed, following a data pre-processing stage, a hybrid 
approach running on anthropometric constraints together with 
a Neural Network classifier [13]. Nevertheless, the proposed 
method has limited performances when recognizing bending 
and lying postures in more directions and when the person sits 
laterally with respect to the Kinect v2. The aim of this work is 
therefore to define a Kinect v2 skeleton data pre-processing 
algorithm to partially overcome the limitations of the device 
mainly coming from its use in suboptimal conditions of 
viewing angles. This procedure hopefully can improve the 
performance of a Multi-Layer Perceptron (MLP) classifier 
proposed in a previous study by our group [15]. The MLP 
network with an average accuracy of 83,9% classified four 
poses assumed by an actor at varying orientations with respect 
to the camera (disadvantageous situation for skeleton 
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reconstruction): standing, sitting, lying down and dangerous 
sitting. The latter consisted of the subject slumped in a chair. 

II. METHODS 

A. Subjects 

11 normal subjects (7 females and 4 males; age ranging 25 
and 60 years old; height ranging 1.55 and 1.90 m) participated 
in the study. All subjects gave written informed consent in 
accordance with the Declaration of Helsinki. 

B. Instrumentation and Acquisitions 

Microsoft Kinect is a low-cost motion sensing instrument, 
initially used as an input device for the Microsoft Xbox 
gaming console, then extended to many fields. Thanks to its 
hardware design and SDK it is possible to detect, track and 
recognize human motion in real time [8]. The Kinect v2 
system can detect a human body and voice signal using a Full 
HD RGB camera, a depth sensor and an array of four 
microphones. Its nominal frame rate is 30 Hz and the viewing 
angle is 60° vertically and 70° horizontally. It is capable of 
tracking 25 joints for up to 6 actors simultaneously. The ideal 
experimental setup requires the subject in front of the sensor 
at a distance ranging of 0.8 - 3.5 m.  

Experimental acquisitions were performed in a prototype 
bedroom. Subjects were asked to perform four poses: standing, 
sitting, lying down and dangerous sitting. The last one grouped 
all situations representing malaise or fainting and resulting in 
a seated person slumped or lying backwards. Actually, these 
postures are kinematically different but we chose to collapse 
them in a single pose because our focus is to classify a 
dangerous situation (fainting) and not to detail the specific 
posture assumed by the subject in this circumstance. The 
acquisitions, lasting about 13 min per subject, were structured 
as follows: 

• the subject starts to walk form standing position then 
grabs a chair near the desk and sits on it. While sitting, 
he first moves the head backwards and then leans the 
trunk forward while simultaneously pitching the head 
as an unconscious person (dangerous sitting). The 
subject then returns to the normal sitting position and 
finally gets up and brings the chair back to its original 
location (standing). 
Each pose was maintained for 10 seconds. This 
sequence of poses was repeated four times, each one 
performed in different room locations and subject 
orientations and stored in four separate recordings. 

• the subject starts sitting on the bed, then lies down on 
the back and turns to the right side. The subject then 
returns on the back and turns to the other side. The 
sequence was recorded four times. 

The sequence of poses in each acquisition was timed by the 
operator running the experiment. 

C. Data Processing 

1) Skeletal Tracking: Using the Microsoft SDK 2.0, we 

computed the spatial coordinates (x, y, z) of the standardized 

25 skeletal joints. We reduced the number of joints to obtain a 

minor but reasonable set of joints which are the most involved 
in the poses of our interest. An additional joint Hc (17 in Fig. 

1) was computed as the midpoint between the two hips joints. 

All 17 analyzed joints are shown in Fig. 1. Then, the 

coordinates of the 17 joints were roto-translated to obtain data 

referred to an absolute reference system (X, Y, Z) space-fixed 

in the room [15]. 

2) Pre-processing algorithms: We propose two pre-

processing algorithms, both based on several thresholding 

procedures aimed at removing unlikely data, but differing for 

the addition, in the second one, of: a) a linear fitting method 

aimed at approximating the missing or out-of-threshold data; 

b) data averaging over a temporal sequence of 15 frames 

(corresponding to 0.5 seconds).  

In the first pre-processing algorithm, raw data are averaged 
over temporal windows of 15 frames and a threshold 
corresponding to the mean ± 3 Standard Deviations (SD) is 
applied to detect and remove outliers. All data overcoming 
such threshold are removed. If a time window contains more 
than 30% of missing data, the data frame is deleted. After such 
data cleaning, body segment length is computed for each pair 
of consecutive joints and then compared with the 
corresponding anthropometric value for a normal subject [16]. 
Since the joint positions, calculated by the anthropometric 
reference model, do not exactly correspond to those processed 
by Kinect v2, a tolerance threshold of 40% is considered. This, 
as well as the following controls, is carried out only on the 
subset of joints considered more accurate [17], namely: head 
(1), C7 (2), acromion (3 - 4), iliac crest (9 - 10), Hc (17) (Fig. 
1). In addition, a tolerance of only 30% on the variability of 
each body segment length between consecutive frames is 
considered acceptable. Finally, the velocity of joints 
movements between two successive frames is taken into 
account. Assuming that the velocity of a subject during a 
natural walking pace ranges between 4 and 5 km/h, the 
threshold is set to 6.48 km/h (displacement of 6 cm between 
two frames). If one of the comparisons described above does 
not meet the threshold condition, all data referring to that 
frame is removed. Since the purpose of this pre-processing 
algorithm was to provide reliable data input to a neural MLP 
network, the choice of all the threshold values was made to 
ensure a good compromise between quality and quantity of 
data. 

 

Figure 1. The 25 joints skeleton computed by SDK (on the left) and the 

reduced 17 joints skeleton used for the analysis (on the right). 
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In the second pre-processing algorithm to reduce the 
temporal discontinuity of the raw data, we perform an 
approximation of the missing data by a linear fitting. The 
values of the 4 frames preceding and following the missing 
data are used for the approximation, which is made only if at 
least five valid values are found around the missing one. 
Alternatively, no replacement is made. Then, the processed 
data are analyzed with the same mean ± 3 SD threshold 
procedure described in the first pre-processing algorithm and 
the removed samples are fitted again with the linear procedure 
described above. Finally, data are further handled with an 
averaging procedure over a time window of 15 frames. This 
process limits the frequency of the MLP classification at 2 Hz, 
but we consider that it may be enough to recognize dangerous 
situations in the AAL domain. The following steps of this pre-
processing algorithm replicate those of the first one.  

D. Neural Network  

1) Kinematic Features Definition: A set of kinematic 

features that can characterize different human poses 

independently of each subject’s body size was defined, 

namely: vertical position of the head, C7 and Hc joints (1, 2, 

17 in Fig. 1) each normalized with respect to the subject’s 

height, three relative angles between two consecutive body 

segments (head-shoulder axis, head-trunk, trunk-iliac crest 
axis) and the absolute roll and pitch angles of the head and 

trunk. All angles were normalized by dividing them by 180°.  

2) Databases: We defined four classes as follows:  

• Class1: standing pose;  

• Class2: sitting pose; 

• Class3: lying down pose; 

• Class4: dangerous sitting pose. 

Since we used a supervised neural network, we labelled 
each frame with the corresponding class using a custom-made 
software (MATLAB 2019a), which also allowed us to identify 
the frames corresponding to the transition from a pose to 
another and to remove them from the dataset. This cutting 
procedure is suitable in this context because the goal of the 
neural network algorithm is that of recognizing a pose when it 
is accomplished, in a static condition (i.e. subject lying down 
on the floor and not during the fall) [15].  

The raw data (434264 frames), the first algorithm pre-
processed data (77562 frames) and the second algorithm pre-
processed data (24484 frames) were used to generate the 
training and test databases. The first was built on 7 subjects 
and the second one on 4 subjects. Finally, we have trained and 
tested the network applying the following data combinations: 

• raw data for training (282820 frames) and testing 

(151444 frames) (Case A); 

• first algorithm pre-processing data for training 
(49530 frames) and testing (28032 frames) (Case B); 

• second algorithm pre-processing data for training 

(15664 frames) and testing (8820 frames) (Case C); 

• first algorithm pre-processing data for training 

(49530 frames) and second algorithm pre-processing 

data for testing (8820 frames) (Case D). 

3) MLP: MLP Neural Network was implemented in 

MATLAB 2019a using Neural Network Toolbox. The 

proposed network consists in an input layer connected to the 

10 features describing each frame in the database, two hidden 

layers and an output layer having a ‘SoftMax’ transfer 
function. The MLP network was trained using the Levenberg-

Marquardt backpropagation algorithm, first with a k-fold 

cross validation (k=10), and then using the whole training set. 

The learning process was performed over a maximum of 1000 

epochs, i.e. 1000 iterations on the training set. Precision, 

sensitivity, specificity and F-score were calculated for each 

fold and then the same parameters were computed over the 10 

folds (mean values). The trained MLP network was then 

tested over the whole test database and the accuracy was 

computed (TABLE I). Considering these results, we further 

investigated the data by computing class precision, 

sensitivity, specificity and F-score in the Case A (control 

scenario) and Case D (best accuracy scenario). 

III. RESULTS 

Fig. 2 shows an example of the head joint vertical position 
raw data (upper panel), characterized by noise and temporal 
hole (missing data), and the effects of the pre-processing 
algorithms on these data (middle and bottom panel). The first 
pre-processing erases the noisy data which do not satisfy the 
criteria defined in the algorithm. All the three coordinates of 
each joint are analyzed, and it is enough that a single data 
coordinate exceeds the threshold to determine the deletion of 
the whole frame. For this reason, as shown in Fig. 2 (middle 
panel), some raw data that appear stable for head Z coordinate 
are nonetheless removed. The second pre-processing 
algorithm (bottom panel), in addition to eliminating noise on 
the raw data, gives the data temporal regularity thanks to the 
fitting and the averaging procedures. 

Figure 2. Example of data head vertical position trace: raw data (top panel); 

first algorithm pre-processed data (middle panel); second algorithm pre-

processed data (bottom panel). 
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TABLE I.  MLP NEURAL NETWORK ACCURACY 

Case A Case B Case C Case D  

86.5 91.6 91.9 94.5 

TABLE II.  CLASSIFICATION RESULTS FOR CASE A AND D 

 

Precision 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

F-score  

(%) 

Case 

A 

Case 

D 

Case 

A 

Case 

D 

Case 

A 

Case 

D 

Case 

A 

Case 

D 

Class1 95.4 96.1 92.3 98.1 98.1 98.2 93.8 97.1 

Class2 88.6 96.8 90.3 94.0 90.5 97.2 89.5 95.4 

Class3 67.5 88.9 75.9 86.6 96.8 99.5 71.4 87.7 

Class4 75.8 87.8 72.9 91.7 94.2 97.0 74.3 89.7 

Mean 

value 
81.8 92.4 82.8 92.6 94.9 98.0 82.3 92.5 

 

As shown in TABLE I, all MLP accuracy results the pre-
processed data are higher than on the raw data. The best 
accuracy was found in Case D (first algorithm pre-processing 
data for training and second algorithm pre-processing data for 
testing). The statistical results referring to each class for Case 
A (control scenario) and Case D (best accuracy scenario) are 
summarized in TABLE II. These results confirm the 
classification improvements obtained when pre-processing 
data. 

IV. DISCUSSION AND CONCLUSION 

In this work a pre-processing procedure for Kinect v2 data 
is proposed. The aim was to provide more stable and reliable 
data as input to a two hidden layers MLP neural network for 
pose classification, in order to improve its performance. The 
data were acquired during the monitoring of a subject 
performing daily living activities inside a room. Two 
algorithms were defined. The first removes the data which do 
not satisfy different threshold criteria based on variability, 
anthropometric measures and joints velocity. The second one 
mimics the first one, but additionally reconstructs the missing 
data and averages the data on a half-second time window. In 
order to verify the effectiveness of the data processing on MLP 
network classification, we compared the results obtained with 
different combinations of training and testing pre-processed 
data with those resulting using the raw one. The accuracy of 
the MLP network showed that network performance improves 
in all cases in which the data are pre-processed. The best 
performance seems to be obtained by training the network with 
data processed by the first pre-processing algorithm and to test 
it with data calculated by the second pre-processing algorithm 
(Case D). This is probably due to the fact that in Case D the 
advantages of each of the two procedures are exploited. The 
first algorithm, used for the training data, retains a good 
cardinality and hence diversity of examples, despite deleting 
the noisy data. The second algorithm, used for data testing, 
provides an increased regularity of the data, although reducing 
its cardinality. Moreover, this method allows to increase 
considerably the correct classification of two particularly 
relevant classes for automatic dangerous situations recognition 
systems in AAL, i.e. lying down and dangerous sitting poses. 
This occurs despite the subject orientation with respect to the 
camera.  

In order to discriminate lying pose normally assumed 
during the day from dangerous situations, a foreseen further 
development step will be to integrate the Kinect v2 data with 

that acquired from a network of sensors placed in the room. 
Furthermore, the PROPOSED method PROVIDES good results in 
the off-line analysis, but considering that the use case will be 
in real-time, new testS and validationS will HAVE TO be carried 
out in this condition. 
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