
  

  

Abstract— Lung cancer is, by far, the leading cause of cancer 

death in the world. Tools for automated medical imaging 

analysis development of a Computer-Aided Diagnosis method 

comprises several tasks. In general, the first one is the 

segmentation of region of interest, for example, lung region 

segmentation from Chest X-ray imaging in the task of detecting 

lung cancer. Deep Convolutional Neural Networks (DCNN) have 

shown promising results in the task of segmentation in medical 

images. In this paper, to implement the lung region segmentation 

task on chest X-ray images, was evaluated three different DCNN 

architectures in association with different regularization 

(Dropout, L2, and Dropout + L2) and optimization methods 

(SGDM, RMSPROP and ADAM). All networks were applied in 

the Japanese Society of Radiological Technology (JSRT) 

database. The best results were obtained using Dropout + L2 as 

regularization method and ADAM as optimization method. 

Considering the Jaccard Coefficient obtained (0.97967 ± 

0.00232) the proposal outperforms the state of the art.   

 
Clinical Relevance— The presented method reduces the time  

that a professional takes to perform lung segmentation, 

improving the effectiveness.  

I. INTRODUCTION 

According to the World Health Organization (WHO), 
cancer is the second leading cause of death worldwide, and is 
responsible for an estimated 9.6 million deaths in 2018. Lung 
cancer is the most common cause of cancer death when 
compared to the number of deaths caused by any other cancer 
type [1]. Medical imaging, such as radiography, assists the 
physician in decision make about diagnosis and treatment of 
lung cancer. Computer-Aided Lung Cancer Diagnosis 
methods may require the segmentation of lung tissue in the 
radiographic image. Therefore, using tools that apply 
techniques for automatic segmentation can greatly save effort 
and help in obtaining more accurate diagnosis. There are 
several studies published in the literature aiming lung region 
segmentation in chest X-ray images, using different methods. 
Chondro et al. [2] used digital imaging techniques, such as 
histogram equalization and Gaussian filter, to segment the 
lung region on chest X-ray images. Yassine et al. [3] 
performed pulmonary segmentation using the Superpixels 
technique. In recent years, Deep Convolutional Networks, one 
of the most important Deep Learning Network, have become 
increasingly prominent in tasks involving medical imaging, 
such as segmentation, detection, etc., due to the its superiority 
over other methods used so far in these tasks. Deep Learning 
is a particular type of machine learning, which uses multiple 
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layers of processing to achieve high levels of abstraction when 
learning through data representations. Gordienko et al. [4] 
used U-Net architecture to investigate the ability of network to 
segment the lung region in radiographic images with and 
without its bone structures. Islam and Zhang [5] used 
convolutive networks to segment in the Montgomery and 
Shenzhen databases. Mayan et al. [6] used the architecture U-
Net with an ImageNet Pre-trained encoder. 

This study aims to evaluate the ability of Convolutional 
Networks to perform the task of lung segmentation in chest X-
ray images. The article is organized as follows: Section II 
presents the dataset used, the implemented architectures, as 
well as their training parameters. Also, section II shows the 
metrics used for segmentation evaluation. Section III presents 
the results obtained from simulations and the discussion. 

II. METHODOLOGY 

A. Dataset 

The Japanese Society of Radiological Technology (JSRT) 
database [7] was chosen to evaluate the Deep Convolutional 
Neural Network (DCNN) models. It is an annotated image 
database containing 247 chest X-ray images (154 with a single 
pulmonary nodule and 93 with no pulmonary nodules) with 
their respective gold standard segmented lung regions. All 
images in the database are gray level and have 2048x2048 
pixels. Fig. 1 shows two examples of database images, one 
with a pulmonary nodule and another without a pulmonary 
nodule. To each Chest X-ray image there are two gold standard 
images: one corresponding to the segmented region of the left 
lung and the other corresponding to the segmented region of 
the right lung. To perform convolutional neural network 
training, it was necessary to fusion the two images. Fig. 2 
shows gold standard images of the images shown in Fig. 1, 
after the fusion operation. Due to hardware memory limitation, 
it was necessary to resize all images, as well as their respective 
gold standards, to a resolution of 512x512 pixels.  

B. Deep Convolutional Neural Network Architectures and 

Training Parameters 

Miyagawa et al. [8] used three architectures to perform 
lumen segmentation in IVOCT images. Int his paper we use 
these same architectures for segmentation of the pulmonary 
region. The first architecture proposed (DCNN-1) is a 
semantic network. This network consists of 51 layers. Like all 
semantic networks, it is made up of subsampling layers 
followed by oversampling layers. The network contains 4 

The authors are with Federal University of Amazonas, Amazonas, Brazil  (e-

mails: portela.ronaldo@hotmail.com, mcosta@ufam.edu.br, 

ccosta@ufam.edu.br, josergpereira@gmail.com)  
. 

Lung Region Segmentation in Chest X-Ray Images using Deep 

Convolutional Neural Networks 

R. D. S. Portela, J. R. G. Pereira, M. G. F. Costa, Member, IEEE, C. F. F. Costa Filho, Member, IEEE,  

978-1-7281-1990-8/20/$31.00 ©2020 IEEE 1246



  

subsampling modules. Each module contains two sequence of 
the following layers: convolution operation, batch 
normalization operation and ReLu operation followed by a 
maxpooling operation. In the first subsample layer, 32 feature 
maps were used, while the remaining layers used 64 feature 
maps. All convolution filters are 3x3 in size and have zero 
padding at the edges, so, after the convolution layer, the image 
dimension does not change. All filters used in subsampling are 
2x2 in size with horizontal and vertical steps equal to 2. After 
the subsampling layer, its size will be reduced by a factor of 2, 
both horizontally and vertically. In the sequence, follow 4 
layers of oversampling, so that the image retrieves the 
dimension lost in the previous steps and returns to its original 
size. In all oversampling steps, 4x4 filters were used, with 
horizontal and vertical steps equal to 2. In the first three 
oversampling layers, 64 feature maps were used, while, in the 
fourth oversampling layer, a 32 feature map was used. 
Subsequently, the image went through a 1x1 convolution 
layer, where its volume is equal 2 (lung and background). 
Finally, there is a classification layer. In this layer, a Softmax 
function classifies each pixel oh the image as belonging to the 
lung or background. DCNN-1 is shown in Fig. 3(a). 

 

                     (a)                                       (b) 

Figure 1. Example of Chest X-ray images from the database. (a) Image with 

a nodule (b) Image without a nodule. 

 

                     (a)                                       (b)                  

Figure 2. Gold Standard segmented images corresponding to images shown 

in Figure 1. 

 The second architecture (DCNN-2) is also a direct 
network but has Convolution, Batch and ReLu layers between 
its transposed convolution layers, totaling 75 layers in its 
structure. ReLu layers added between the transposed 
convolution steps should give greater nonlinearity and 
abstraction capability during each oversampling step. DCNN-
2 is shown in Fig. 3(b). 

The third architecture (DCNN-3) is a network applying 
Directed Acyclic Graphs (DAG). In this type of architecture, 
information from the initial subsampling steps is passed on to 
the final oversampling steps. The information that is passed 

from the initial layers is linked to the information contained in 
the final oversampling layers and, as they have the same 
dimensions, can be connected without any size adjustments 
being required, as shown in Fig. 3(c).  

The database was divided into three sets: training, 
validation and testing, in the following proportion: 50% - 25% 
- 25%, respectively. Also, it was maintained the same 
proportion for images with and without nodules. For example, 
to compose the training set, 50% of the images without nodule 
and 50% of the images with nodule were selected.  

Dropout, L2 and Dropout + L2 was chosen as 
regularization methods and SGDM, RMSPROP and ADAM 
was chosen as optimization methods. In a first step, to choose 
the best network, the training and validation set was used. 
After choosing the best network, cross-validation with five 
folders between the training and test sets was performed. 

For this work, it was used a computer with Windows 10 
operating system, Intel Core I & -8700 CPU @3.20GHz 3.19 
GHz processor, 16 GB of RAM and 8GB NVIDIA GeForce 
GTX 1070 GPU. The environment development was 
MATLAB R2019a. Parameter values for DCNNs training 
were adjusted experimentally. Erro! Fonte de referência não 
encontrada. show these values. 

C. Evaluation metrics 

 

The following metrics were used to evaluate the networks: 

Global Accuracy, Accuracy, Jaccard Coefficient, Weighted 

Jaccard Coefficient, Dice Index and Score F1. 

 

III. RESULTS AND DISCUSSION 

Combining the three architectures, the three regularization 
methods and the three optimization methods, result in 27 
experiments. Table II shows the results of the 27 simulations 
performed using the training set and the performance obtained 
using the validation set. The objective was to select the DCNN 
with best performance in the validation set. As observed, 
DCNN-1 architecture presents low values for F1 Score, an 
index that indicates how well the edges of each segmented 
region align with the edges of the respective gold standard. 
DCNN-2 architecture outperforms DCNN-1. It is due to the 
Convolution, Batch and ReLu layers that were inserted 
between the transposed convolution layers. The best 
simulation results, however, were obtained with DCNN-3 
using Dropout + L2 regularization in association with the 
ADAM optimization method. After selecting the best DCNN 
model, we performed the 5-folder cross-validation using the 
training and testing sets. The obtained metric values (average 
± standard deviation) are shown in Table III. Fig. 4 exemplify 
the result of a segmented chest X-ray image and presents its 
respective gold standard. Additionally, a comparison of the 
results obtained with the existing works in the literature using 
the same database was made. In [9], a Jaccard Coefficient of 
0.903 ± 0.057 was obtained. In [2], a Jaccard Coefficient of 
0.963 ± 0.012 and Dice Index of 0.983 ± 0.007 were obtained. 
In [10], a Jaccard Coefficient of 0.961 ± 0.015 was obtained. 
As shown in Table 3, in this work, it was obtained a Jaccard 
Coefficient of 0.97967 ± 0.00232, a Dice Index of 0.98921 ± 
0.00163 and F1 Score of 0.97475 ± 0.00357. 
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(b) 
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(c) 

 
Figure 3. (a) First Architecture (DCNN-1) – Direct Network, (b) Second 

Architecture (DCNN-2) – Direct network and (c) Third Architecture Network 

(DCNN-3) – Directed Acyclic Graphs 

 

 

 

Table I. Parameters used in the network training step 

Parameter Value 

Initial Learn Rate (η) 10−3 
Learn Rate Drop Factor 0.1 

Learn Rate Drop Period 30 

Mini Batch Size 1 

Max Epochs 50 

Squared Gradient Decay Factor (β2) 0.999 

Gradient Decay Factor (β1) 0.9 

Momentum (α) 0.9 

Epsilon (ɛ) 10−8 
L2 Regularization (λ) 10−4 

Dropout 50% 

 

When comparing with other works published in the 
literature, we realize that the results obtained in this work are 
in accordance with the state of the art until then. This paper 
helps to highlight the great performance of Deep 
Convolutional Neural Network in medical images 
segmentation tasks, and particularly confirms the remarkable 
performance of DAG networks in segmentation tasks, as 
previously observed by Miyagawa et al. [8], showing that they 
can be used to assist the medical professional. 

The great advantage of using DCNNs in the lung 
segmentation, is that there is no need to perform pre or post 
processing steps, such as threshold application, morphological 
filters application, histogram equalization etc, because these 
previous steps are intrinsic to the DCNN. 
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Table II. Results obtained from the training of architectures using the training set with the performance evaluated using the validation sets 

Architecture - Regularization - Optimization Global Accuracy Accuracy Jaccard Weighted Jaccard Score F1 Dice 

DCNN1 – Dropout – SGDM  0.93935 0.95539 0.86247 0.88047 0.52924 0.96375 

DCNN1 – Dropout – RMSPROP 0.98884 0.98704 0.97450 0.97797 0.96889 0.98698 

DCNN1 – Dropout – ADAM 0.98763 0.98684 0.95836 0.96477 0.94156 0.98681 

DCNN1 – L2 – SGDM 0.98591 0.98426 0.95520 0.96143 0.91755 0.98419 

DCNN1 – L2 – RMSPROP 0.98900 0.98732 0.97486 0.97828 0.96748 0.98726 

DCNN1 – L2 – ADAM  0.98820 0.98645 0.96000 0.96578 0.94189 0.98638 

DCNN1 – Dropout + L2 – SGDM 0.93560 0.95270 0.85582 0.87428 0.51559 0.95479 

DCNN1 – Dropout + L2 – RMSPROP 0.98931 0.98860 0.97560 0.97891 0.97327 0.98858 

DCNN1 – Dropout + L2 – ADAM 0.98966 0.98818 0.96346 0.96857 0.95279 0.98813 

DCNN2 – Dropout - SGDM 0.98048 0.98400 0.94230 0.95172 0.89364 0.98415 

DCNN2 – Dropout – RMSPROP 0.98986 0.98970 0.96327 0.96905 0.95366 0.98970 

DCNN2 – Dropout – ADAM 0.98929 0.98913 0.96199 0.96795 0.95405 0.98912 

DCNN2 – L2 – SGDM 0.98496 0.98171 0.95321 0.95957 0.92118 0.98155 

DCNN2 – L2 – RMSPROP 0.98878 0.98770 0.96129 0.96692 0.94759 0.98766 

DCNN2 – L2 – ADAM 0.98610 0.98483 0.95567 0.96180 0.93041 0.98477 

DCNN2 – Dropout + L2 – SGDM 0.97637 0.98129 0.93354 0.94430 0.85673 0.98154 

DCNN2 – Dropout + L2 – RMSPROP 0.98876 0.98826 0.96096 0.96693 0.94699 0.98824 

DCNN2 – Dropout + L2 – ADAM 0.98917 0.98871 0.96184 0.96772 0.94960 0.98870 

DCNN3 – Dropout - SGDM 0.97900 0.97647 0.95267 0.95903 0.91307 0.97631 

DCNN3 – Dropout – RMSPROP 0.99041 0.98849 0.97802 0.98103 0.96777 0.98843 

DCNN3 – Dropout – ADAM 0.99168 0.99056 0.98092 0.98352 0.97660 0.99053 

DCNN3 – L2 – SGDM 0.97601 0.96836 0.94567 0.95315 0.89792 0.96770 

DCNN3 – L2 – RMSPROP 0.98769 0.98437 0.97182 0.97569 0.95495 0.98423 

DCNN3 – L2 – ADAM 0.99152 0.98958 0.98052 0.98319 0.97714 0.98953 

DCNN3 – Dropout + L2 – SGDM 0.97918 0.97069 0.95252 0.95914 0.91298 0.97000 

DCNN3 – Dropout + L2 – RMSPROP 0.98930 0.98675 0.97547 0.97884 0.96278 0.98665 

DCNN3 – Dropout + L2 – ADAM 0.99180 0.99027 0.98118 0.98375 0.97873 0.99022 

 

 

Table III. Result obtained using cross-validation (average ± standard deviation) 

Deep Convolutional 

Network 

 Global 

Accuracy 
Accuracy Jaccard 

Weighted 

Jaccard 
Score F1 Dice 

DCNN-3 – Dropout + 

L2 - ADAM 

0.99139 ± 

0.00098 

0.98927 ± 

0.00161 

0.97967 ± 

0.00232 

0.98294 ± 

0.00191 

0.97475 ± 

0.00357 

0.98921 ± 

0.00163 

 

 

 

                                        (a)                                                              (b)                                                                  (c) 
Fig. 4. Segmentation obtained by Neural Network DCNN-3, using Dropout + L2 regularization and ADAM optimization (a) left and right lung image, (b) 

gold standard images and (c) segmented images with gold standard contour superimposed as a black line.  
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