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Abstract— High frequency Deep Brain Stimulation (DBS) 

targeting the motor thalamus is an effective therapy for essential 

tremor (ET). However, since tremor mainly affects periods of 

voluntary movements and sustained postures in ET, 

conventional continuous stimulation may deliver unnecessary 

current to the brain. Here we tried to decode movement states 

based on local field potentials (LFPs) recorded from motor 

thalamus and zona incerta in real-time to trigger the switching 

on and off of DBS in three patients with ET. Patient-specific 

models were first identified using thalamic LFPs recorded while 

the patient performed movements that tended to trigger tremor 

in everyday life. During the real-time test, LFPs were 

continuously recorded to decode movements and tremor, and the 

detection triggered stimulation. Results show that voluntary 

movements can be detected with a mean sensitivity ranging from 

76.8% to 88.6% and a false positive rate ranging from 16.0% to 

23.1% Postural tremor was detected with similar accuracy. The 

closed-loop DBS triggered by tremor detection suppressed 

intention tremor by 90.5% with a false positive rate of 20.3%.  

Clinical Relevance— This is the first study on closed-loop DBS 

triggered by real-time movement and tremor decoding based 

solely on thalamic LFPs. The results suggest that responsive DBS 

based on movement and tremor detection can be achieved 

without any requirement for external sensors or additional 

electrocorticography strips.  

I. INTRODUCTION 

Essential tremor (ET), which is a progressive neurological 
disorder that causes involuntary and rhythmic shaking at 4-12 
Hz, is one of the most common movement disorders [1]. 
Tremor in ET is typically intermittent, predominantly 
occurring during voluntary movement and/or while 
maintaining a certain posture [2]. Continuous deep brain 
stimulation (DBS) is an approved and effective therapy for ET 
[3]. However, due to disease progression or habituation to 
stimulation, many patients lose the benefit of DBS over time 
[4]. In these circumstances, an increased stimulation intensity 
is usually required in order to maintain the therapy effect, 
which may be associated with side effects including unpleasant 
sensations, slurred speech and unsteadiness walking [5]. 
Closed-loop or adaptive DBS, aiming to only deliver 
stimulation when necessary and thus reduce side effects and 
prolong clinical efficacy, is seen to be a promising innovative 
DBS treatment of ET [6]. Some existing studies have used 
wearable inertial sensors [7], surface electromyography 
(EMG) [8], or electrocorticography (ECoG) recorded from a 
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strip of intracranial electrodes implanted over the surface of the 
motor cortex [9] to provide feedback for the control of the 
stimulator in closed-loop DBS systems. However, all these 
solutions require external sensors and/or additional invasive 
recording, which constrains their clinical application in the 
treatment of ET.  

In our previous study, local field potentials (LFPs) recorded 
from ventral intermediate (VIM) thalamus were used to decode 
voluntary movement and postural tremor and achieved a 
promising offline decoding accuracy [10]. In the current study, 
we further evaluated the performance of online closed-loop 
DBS based on the real-time detection of voluntary movement 
and posture and any associated tremor using LFPs recorded 
from VIM thalamus and zona incerta (ZI) in three ET patients. 
Models for decoding voluntary movement with and without 
stimulation, and posture associated with any tremor with and 
without stimulation were trained separately, using features 
consisting of the average powers in several different frequency 
bands and some time-domain characteristics. Separate models 
were also trained for the conditions when the stimulation was 
switched on and switched off, due to the difference in the 
signal-to-noise ratios in these two states and potential 
differences in the brain activities induced by stimulation. 
Several commonly used classification methods including 
logistic regression (LR), linear discriminant analysis (LDA), 
support vector machine (SVM), naïve Bayes, decision tree 
(DT), and k-nearest neighbors (KNN) were tested. Our results 
with real-time decoding and stimulation suggest that both 
voluntary movement and posture and any associated tremor 
can be detected based on VIM thalamic and ZI LFPs recorded 
from the electrodes used for stimulation and used to close the 
loop in on-demand DBS for ET.  

II. METHODS 

A. Schematic 

Fig. 1 shows the schematic of the closed-loop DBS system, 

including LFP signal acquisition from the DBS electrodes 

implanted in VIM thalamus, feature extraction, 

movement/tremor detection, i.e., classification based on the 

extracted features, and the switching on/off of the stimulator 

based on the detection. All these procedures were applied 

online in real-time. 
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Figure 1. Schematic of the real-time closed-loop DBS based on VIM-ZI LFPs.  

B. Recording 

Three ET patients who had undergone bilateral implantation 

of DBS electrodes (1.5mm spaced Abbott Infinity directional 

electrodes with upper electrode contacts in the VIM thalamus 

and lower contacts in the ZI) participated in our study. The 

study was approved by the local ethics committee and all 

patients gave informed written consent before the experiment. 

The recordings were undertaken 4-5 days after the first 

surgery for electrode implantation and prior to the second 

operation to connect the electrode to the subcutaneous pulse 

generator. Bilateral bipolar LFPs in ViM and EEG signals 

covering “Fz”, “'FCz”, “Cz”, “Oz”, “C3”, “C4”, “CP3”, and 

“CP4” in the standard 10-20 system were recorded using a 

TMSi Porti amplifier (TMS International, Netherlands) with a 

common average reference and a 2048-Hz sampling rate. A 

bipolar electromyography (EMG) channel and a 3D 

accelerometer were placed on each hand to monitor the 

presence of voluntary movement and/or tremor. 

C. Stimulation 

Stimulation was delivered using a neuroBi neurostimulator 

(Bionics Institute, Australia) with a fixed stimulation 

frequency of 130 Hz, a biphasic pulse width of 60 us, and an 

interphase gap of 20 us. Monopolar stimulation was delivered 

to one of the contacts in the middle of the electrode (seen in 

Fig. 1) with the reference connected to an electrode patch 

attached to the shoulder of the patient. When segmented leads 

were implanted, stimulation was delivered in the ring mode by 

connecting the three directional contacts together. Prior to the 

experiment, the contact to stimulate and the corresponding 

stimulation amplitude were selected based on tremor control 

assessed by a clinician. LFPs were recorded from the other 

contacts in bipolar modes. Simultaneous bilateral stimulation 

was delivered in two patients, and unilateral stimulation (to 

the right hemisphere) was delivered in one patient since 

tremor was unilateral in this patient. During the experiment, 

the closed-loop DBS algorithm only changed the stimulation 

amplitude between 0 to the previously selected amplitude.  

D. Experimental design 

The experiment consisted of a training session and a real-

time test session. During the training session, the patients 

performed voluntary self-paced upper limb movements such 

as a pegboard movement or pouring rice from one cup to 

another using the worst affected hand. Data were also 

recorded while the participants maintained specific postures 

that provoked postural tremor. Each block of 

movements/posture lasted about 30 s, followed by a duration-

matched period of resting. In total, LFPs were recorded from 

6-8 blocks of voluntary upper limb movements and 8-10 

blocks of sustained posture. The patients were asked to repeat 

these movements with and without stimulation separately, 

with around 20 minutes of data recorded from each 

stimulation state. Four models for movement and posture and 

any associated tremor decoding with-stimulation and without-

stimulation were trained based on the recorded data. During 

the test session, the patients were asked to repeat the voluntary 

movements and to maintain the postures which tend to 

provoke tremor, while the trained models were applied to 

detect the movement and tremor in real-time in order to drive 

the switching on and off of the stimulation.  

E. Model training 

As suggested in our previous study [10], oscillatory 

activities in the beta and theta frequency bands contributed 

most to the decoding of movements and postural tremor, 

respectively. In addition, due to stimulation artifact, the 

signal-to-noise levels in the recorded LFPs with and without 

stimulation were very different. Thus, four separate models 

were trained for the detection of movements with and without 

stimulation, posture and any associated tremor with and 

without stimulation, respectively. The training of each model 

consisted of the following four steps.  

1) Pre-processing: A forward 4-order Butterworth IIR band-

pass filter with a pass band of 0.5-500 Hz was applied on each 

bipolar LFP for pre-processing. Only those algorithms that 

can be implemented in real-time were used during training, so 

a forward filter was used here. 

2) Feature extraction: The average powers in 8 different 

frequency bands, 1-3 Hz, 4-7 Hz, 8-12 Hz, 13-22 Hz, 23-34 

Hz, 35-45 Hz, 56-95 Hz and 105-195 Hz, and 4 time-domain 

characteristics including the mean value and three Hjorth 

parameters (activity, mobility, and complexity) [11] were 

calculated based on the filtered bipolar LFP for each 250 ms 

moving window. These features were updated every 100 ms. 

Features from 10 previous windows from all bipolar LFPs 

recorded from both hemispheres were concatenated together 

into a long feature vector (12 features/window × 10 windows 

× n channels, here n equaled to the number of bipolar LFP 

recordings available) for each current sample. For the 

hemisphere to which monopolar stimulation was delivered, 2 

bipolar LFP channels were recorded; for the hemisphere that 

was not simulated, 3 bipolar LFPs can be recorded. Thus n 

equaled to 4 or 5 for the patients with bilateral or unilateral 

stimulation, respectively. 

3) Labelling: The labels of ‘Movement’ vs ‘Rest’ and 

‘Tremor’ vs ‘No-tremor’ for model training were determined 

based on the recorded accelerometer and EMG signals, 

respectively. The EMG or accelerometer signals were high 

pass filtered at 1 Hz using a forward-backward 4 order 

Butterworth IIR high pass filter, smoothed using a 50-ms time 

window, and rectified. We quantified the mean value across 

the recording session for the EMG (TEMG) and accelerometer 

signals (TACC). Lastly, the samples with the corresponding 

EMG/accelerometer values larger than αTEMG or αTACC were 
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labeled by 1, and the remainder labeled by -1. Here α was 

originally set to 0.8 but was manually adjusted according to 

the labelling performance.  

4) Model Training: Based on the extracted feature vectors 

and the corresponding labels, four binary classifiers were 

trained for the detection of movements with and without 

stimulation, as well as the detection of posture and any 

associated tremor with and without stimulation. Several 

commonly used classification methods including logistic 

regression (LR), linear discriminative analysis (LDA), a 

Support Vector Machine (SVM), naïve Bayes, Decision Tree 

Classification (DT), and the k-nearest neighbors (KNN) 

algorithm were tested. Five-fold cross-validation was used to 

evaluate the receiver operating characteristics (ROC) curves 

and reported the area under curves (AUCs) of different models 

derived from the training data. 

F. Online testing 

During online testing, the patients were asked to repeat the 
voluntary movements or to maintain the postures which 
provoked tremor. Meanwhile, the classification models 
showing the best performance during offline training were 
selected to detect movements or posture and any associated 
tremor based on bipolar LFPs measured in real-time. The 
decoding outputs from the model corresponding to the current 
stimulation status were calculated every 100 ms in order to 
drive the switching on/off of the stimulator, resulting in a 10Hz 
update rate for the DBS control. The decision process for each 
update is shown in Fig. 2. The LFPs, EMGs, and accelerometer 
signals were recorded for the evaluation of performance. The 
accuracy, true positive rate (TRP), and false positive rate (FPR) 
for the online detection of movements were compared against 
those detected from EMG and accelerometer measurements. 
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Figure 2. Decision process for DBS control based on decoding in each update 

III. RESULTS 

A. Offline decoding accuracy based on training data 

The offline movement decoding when the stimulation was 
off had similar accuracy to that shown in our previous study 
[10]. The AUCs of the five-fold cross validation using different 
classification methods are shown in Fig. 3A. Similar decoding 
accuracy was achieved even when the stimulation was 
switched on (Fig. 3B), with stimulation artefacts that 
significantly lowered the signal-to-noise ratio in the LFP 
recording. SVM provided the best decoding across all 
participants no matter whether stimulation was switched on or 
off. This achieved an averaged AUC of about 0.9 for voluntary 
movement decoding either with (Fig. 3B) or without (Fig. 3A) 
stimulation. We were also able to decode posture and any 
associated tremor with an average AUC of 0.88 without 
stimulation or 0.82 with stimulation using SVM (shown in Fig. 
4). Similar results were also achieved using other classification 
methods, suggesting that it is possible to have a sensitivity of 
0.8 with a false positive rate of 0.2-0.3 in voluntary movement 

and posture and any associated tremor decoding based on 
VIM-ZI LFPs either with or without stimulation.  

 
Figure 3. Offline results of voluntary movement decoding when there was no 
stimulation (A) and when high frequency stimulation was switched on (B). 

Plots on the left show the ROCs of the cross-validation with SVM in different 

patients (different colors show results from different participants). Plots on the 
right show the cross-validation AUCs of different classification methods. 

 

 
Figure 4. Offline results of posture tremor decoding when there was no 

stimulation (A) and when high frequency stimulation was switched on (B). 
Plots on the left show the ROCs of the cross-validation with SVM in different 

patients (different colors show results from different participants). Plots on the 

right show the cross-validation AUCs of different classification methods. 

B. Online decoding and stimulating results 

The models identified by SVM were used for online 
decoding, and the outputs of the model were used to drive the 
DBS as shown in Fig. 2.  For the voluntary movements, we 
compared the time when the stimulation was switched on and 
the time when movements and/or tremor could be detected 
based on EMG or accelerometer measurements, to quantify the 
averaged accuracy, TPR, and FPR of the real-time LFP based 
decoding. On average, we achieved an accuracy and TPR of 
about 80%, with an FPR of about 20% (Fig. 5). This means the 
stimulation was on average switched on for 80% of time when 
the participants were making any voluntary movements and for 
20% of time when the participants were at rest. 
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Figure 5. Online results of voluntary movement decoding and DBS control. 
(A) An example of voluntary movement decoding results in ET2. The upper 

plot shows the acceleration signal with increased value indicating voluntary 

movements. The middle plot shows online decoding results with 1 and 0 for 
with and without movement, respectively. The bottom plot shows the power 

spectra of one bipolar VIM-ZI thalamic LFP signal. The red areas on the figure 

indicate stimulation artefacts at 130 Hz and sub-harmonics when stimulation 
was switched on. (B) Averaged accuracy, true positive rate (TPR), and false 

positive rate (FPR) of voluntary movement decoding across three patients. 

Real-time tremor provoking posture decoding to drive the 

DBS was also tested when the patients changed posture from 

resting to the posture which tended to trigger tremor when 

there was no stimulation. The closed loop DBS based on 

tremor detection suppressed postural tremor by 90.5% with a 

false detection rate of 20.3% when the participant was at rest 

(Fig. 6). 

 
Figure 6. Online results of tremor provoking posture decoding and DBS 

control. EMG and tremor power calculated from accelerometer measurements 

indicate postures. The power spectra of the ViM thalmic LFP indicates when 

the stimulation was ON. 

IV.   DISCUSSIONS 

In the current study, we tested an adaptive DBS system for 

ET based on the LFPs recorded from the same electrodes in 

VIM thalamus and ZI used for DBS. Our results suggest that 

both voluntary movements and posture and any associated 

tremor could be detected based on VIM-ZI LFPs in real time 

for triggering DBS. Four decoding models may be necessary. 

These were determined by our paradigm in the current study, 

but clinical application may need state identification tools to 

allow for the selection of the context-appropriate decoding 

models.  

1) Decoding with and without stimulation. Different models 

were trained and used in this study for decoding with and 

without ongoing stimulation. This is necessary due to changes 

in the feature weights, and our results also demonstrated that 

even with the stimulation artifact, VIM-ZI LFPs still contain 

enough information for the detection of voluntary movements 

and posture and any associated tremor, and thus are suitable 

as the feedback signals for adaptive DBS for ET. 

2) Detection of voluntary movements and posture and any 

associated tremor. In the current study, separate models were 

trained for the detection of voluntary movements and posture 

and any associated tremor. This is based on our previous study 

showing that different features contributed to the detection of 

postural tremor and voluntary movements, suggesting 

different models would be required to detect these two 

different states [10]. Detecting both states helps ensure that 

stimulation will be switched on wherever needed.  

3) Detection algorithms. Several commonly used machine 

learning methods were tested in the current study. Although 

these methods gave similar results using the extracted features 

in the time and frequency domains, it would be interesting to 

see whether the decoding performance could be further 

improved using more advanced methods, such as 

convolutional neural networks.  

4) Decoding based on thalamic LFPs. Compared with other 

adaptive DBS systems developed based on external sensors or 

cortical strip electrodes in [7]-[9], the advantage of the method 

proposed here is it doesn’t require any external sensor or 

additional invasive electrode. As a next step, we will also 

investigate if we can predict the onset of voluntary movements 

and postural tremor based on VIM-ZI LFPs before movements 

can be measured based on external sensors, so that the DBS 

can be switched on before the presence of tremor. This will 

further improve the clinical effect of the adaptive DBS system. 

 

V. CONCLUSION 

In this preliminary study, we tested a closed-loop DBS 

approach for ET based on the LFPs recorded from the same 

DBS electrodes implanted for stimulation. Results from three 

participants showed that both voluntary movements and 

posture and any associated tremor can be detected with a 

sensitivity around 80 % and a false positive rate of around 

20%. These results suggest that responsive DBS for ET can be 

achieved without the requirement of external sensors or 

additional electrocorticography strips.  
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