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Abstract— We apply a new hardware and software platform
called the Hamiltonian Engine for Radiotherapy Optimization
(HERO) to the problem of Intensity-Modulated Radiation Ther-
apy (IMRT) treatment planning. HERO solves large general-
form binary optimization problems by decomposing them
into sub-problems and approximating them using a quadratic
pseudo-boolean function. Optimizing the resulting function be-
comes a quadratic unconstrained binary optimization (QUBO)
problem, which has been widely studied and has numerous
applications in various fields. A Quantum Annealer (QA)
approach has been previously investigated to solve QUBO
problems, including IMRT optimization. However, the QA can
only accommodate a small number of variables and requires
several hours to obtain optimized plans. HERO acts as an
optimizer for QUBO problems, which not only addresses these
shortcomings but also relies solely on conventional hardware
design while operating at room temperature. We evaluate
HERO on seven prostate IMRT cases with clinical objectives,
each using approximately 6000 beamlets. Our method was
compared to the commercial treatment planning software,
Eclipse, for both time-to-solution and plan quality. HERO
solves most cases in about 30 seconds, with significantly lower
objective function scores than Eclipse. The results indicate
that HERO is promising for radiation therapy optimization
problems. Additionally, HERO has the potential to be applied
to Volumetric-Modulated Arc Therapy (VMAT) and other
complex types of treatment planning.
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I. INTRODUCTION

Intensity-Modulated Radiation Therapy (IMRT) involves
patient irradiation using a fixed beam arrangement and
dynamic fluence fields created by a multileaf collimator.
The spatially-varying intensities of the fields are optimized
according to certain objectives, typically requiring the pre-
scribed dose to be delivered to the tumor, while maintaining
the doses to adjacent organs at risk (OARs) below clini-
cal tolerances. The inverse planning methods required for
IMRT treatments comprise a mature field of research, and
various algorithms have been applied to this problem. These
algorithms attempt to minimize an objective function defined
based on certain clinical criteria.

Many of the algorithms employed in commercial systems
for IMRT optimization are gradient-based and offer fast
performance, but are prone to converging to non-optimal
solutions [1]. It has been shown that the objective functions
based on dose-volume objectives consist of several local
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minima due to their non-convexity [2]. However, some argue
that in many cases, local minima can be avoided if an
effective starting point is chosen or a convex objective
function is used [1], [3]. To this end, several works use linear
programming models in beamlet intensity optimization [4],
[5], [6]. Regardless, managing the dose-volume constraints
in a convex formulation can be challenging.

Stochastic search methods like simulated annealing have
the capability of escaping from local minima due to their
intrinsic random characteristics, but are generally slow [7],
and therefore not usually employed clinically.

In addition to conventional algorithms, a recent work [8]
has investigated the use of Quantum Annealing (QA) in
IMRT beamlet optimization. QA is a combined hardware
and software platform for solving combinatorial optimization
problems, developed by D-Wave (D-Wave Inc., Burnaby,
BC). This approach required reformatting the IMRT problem
into a form suitable for the QA approach. Similar to simu-
lated annealing, though implemented in actual hardware, QA
attempts to escape local minima in the objective function by
exploiting quantum tunneling effects at near absolute zero
temperatures [9]. Despite its capability for solving certain
combinatorial problems rapidly, the QA required more than
three hours to optimize a prostate case with only 70 beam-
lets, and the quality of resulted plans were not clinically
acceptable [8].

It has been shown that simulated annealing, when com-
bined with the massive parallelism offered by certain hard-
ware platforms, can lead to novel hardware architectures
that provide significant speedup compared to the standard
simulated annealing algorithm [10], [11].

Inspired by the prior work in [11] and the concept of
Markov Chain Monte Carlo (MCMC) search, we propose
and implement a new heterogeneous hardware platform,
called the Hamiltonian Engine for Radiotherapy Optimiza-
tion (HERO), which can be applied to complex optimiza-
tion problems in radiation therapy, such as IMRT and
VMAT. This platform addresses both issues of handling
large numbers of variables and casting the problem in a
format supported by the engine. In this research, we apply
HERO to IMRT beamlet optimization for prostate cancer
cases and compare the results to that of a commercial
treatment planning system. This work also includes the study
of different objective functions in terms of plan quality and
time complexity, as well as a GPU implementation for large-
scale parallelization of objective function calculations.
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II. MATERIALS AND METHODS

A. Objective Function

We investigated the suitability of different objective func-
tions for the IMRT beamlet optimization of prostate cases.
In each case, five equally-spaced fields were arranged in
the Computational Environment for Radiotherapy Research
[12] (CERR). The dose for each field was calculated and
decomposed into square beamlets of approximately 0.25 cm
per side.

The purpose of the optimization process is to ensure that
the target volume receives the prescribed dose, while the
OARs are prevented from receiving doses beyond certain
objectives. The objective function is therefore formed by
penalizing the Dose-Volume Histogram (DVH) of each struc-
ture with respect to its dose-volume objective. These clinical
objectives are usually in the form of either overdose or
underdose specifications. We aim to minimize an objective
function that consists of a squared sum of penalty terms over
all the objectives.

B. MCMC Optimizer

The MCMC optimizer utilizes stochastic search methods
to solve combinatorial optimization problems, specifically
the Quadratic Unconstrained Binary Optimization (QUBO)
problem. The objective here is to minimize a quadratic
pseudo-boolean function in the following format:

f (δ1,δ2, ...,δn) =−∑
i< j

Wi jδiδ j−∑
i

biδi, (1)

where δi’s are binary variables taking values in {0,1}, Wi j
represents the connection strength between variables δi and
δ j, and bi is the bias term for variable δi.

Using stochastic search methods and parallel computing,
the MCMC optimizer is able to minimize an energy function
in the form of Eq. 1. The stochastic search performed by the
MCMC optimizer enables it to escape possible local minima
in an energy landscape.

C. Hamiltonian Engine for Radiotherapy Optimization
(HERO)

In recent years, the concept of simulated annealing, com-
bined with massive hardware parallelism, has been proven
effective in solving optimization problems in many applica-
tions [10], [13], such as in transportation (traveling salesman
problem) and physics (spin-glass problems). Indeed, this
approach has led to a hardware platform that can solve
QUBO problems with up to 1024 fully-connected variables
[10]. However, most real-world problems have a larger
scale and may not be readily available in QUBO form. In
this work, we address these two issues by implementing
a surrogate-based optimization algorithm and adapting it
to IMRT optimization problems. In order to deal with the
large number of optimization variables, we partition the large
problem into smaller pieces, and apply the MCMC optimizer
to solve these pieces. Moreover, we propose a method to
approximate any general combinatorial optimization problem
by a quadratic function for the purpose of optimization.

Fig. 1. Block diagram illustrating the main algorithm of HERO. The red
block includes the main steps in the HERO algorithm and the dashed blocks
represent the input and the output of the algorithm.

1) Input Variables: We control the value of each real
variable by using binary variables. Assume we have a set
of beamlets with intensities xxx = {x1,x2, ...,xNB}, which are
non-negative real variables. A set of binary nodes δδδ =
{δ1,δ2, ...,δ2NB} are defined such that each two nodes cor-
respond to one beamlet, and will determine whether the
intensity values will be increased or decreased by a certain
step value, or remain the same. The step size is selected as
25% of the initial value of each beamlet weight. The binary
nodes become the binary optimization variables, and are up-
dated based on the algorithm described below. This process
is repeated for each iteration with a new configuration of
beamlet intensity values, which has been modified based on
the previous iteration.

2) Main Algorithm: The high-level algorithm as illus-
trated in Fig. 1 consists of five main steps, with the hardware
employed for each step indicated. The input to the algorithm
is a vector of the binary values associated with each node,
defined for the current intensity value of each beamlet. The
δi’s are initially all set to zero, indicating no initial change
to the current intensity values. In the first step, we calculate
the cost of flipping each node, defined as the change in the
objective function value if a node is flipped from 0 to 1, and
thus calculate the cost for 2NB nodes, where NB is the total
number of beamlets. In the next step, we sort the costs from
lowest to highest, and select a portion of the nodes to be
submitted to the MCMC optimizer. At this point, we build
a surrogate QUBO model over the selected nodes, and then
optimize the model by running the MCMC optimizer for a
certain amount of time. This provides candidate solutions,
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Fig. 2. An illustration of an OAR DVH being penalized based on dose
difference vs volume difference. The solid-line curve shows the optimized
DVH in which both terms are zero.

which are evaluated to identify the solution with the lowest
objective function value. The resulting binary code is used
to update the real intensity values, and the entire process is
repeated.

3) Cost Calculation and Partitioning: To calculate the
objective function, the amount of overdose/underdose is
computed for all objectives. Fig. 2 illustrates an example of
a DVH graph with one objective for which the ∆D must be
evaluated. This requires calculating DVHs for each structure
using a sorting process applied to all the voxel doses. Since
the structure may consist of 100,000 or more voxels, sorting
becomes computationally intensive. We therefore attempt to
exploit the parallelism of GPUs to improve the computational
efficiency of cost calculation. We propose a GPU imple-
mentation to calculate the ∆D using a binary search-like
method, by iteratively calculating the ∆V for a certain dose
and adjusting the dose respectively until ∆V becomes zero.

To calculate the ∆V , we multiply the dose deposition
matrix (DDD) by the intensity vector (xxx) to obtain the total
dose received by each voxel. Subsequently, we compare the
dose vector with the relevant dose objective(s) and count the
number of voxels with larger dose. Although this approach
has a similar time complexity to sorting, the performance of
the implementation in GPUs is faster.

In order to select a portion of the variables to be submitted
to the MCMC optimizer, we sort all the nodes by their costs,
using a quicksort algorithm, and then select NE nodes with
the lowest costs.

4) Surrogate Model: Using the NE nodes selected in the
previous section, we build a surrogate QUBO model while
fixing all nodes outside the subset. The model is based on the
information in the immediate neighborhood, defined by all
the states within the hamming distance of 2 bits or less from
the current solution (the hamming distance is the number of
differing bits in two strings of bits). As shown in Eqs. 2-4,
this information is obtained by flipping 2 distinct nodes from
0 to 1, δi and δ j, and computing the change in the objective

function, ∆ fδi,δ j .

f (δ1,δ2, ...,δNE ) =− ∑
{i, j}

Wi jδiδ j−∑
i

biδi, (2)

∆ fδi,δ j =−Wi j−bi−b j, (3)

Wi j =−∆ fδi,δ j −bi−b j. (4)

By design, this model has zero error when the hamming
distance is 1 or 2, but has increasing error for higher
hamming distances. To reduce this error, instead of recording
only the minimum solution found by the MCMC optimizer,
we re-evaluate many candidate solutions and select the
solution with the lowest objective function value.

D. Evaluations

We evaluated the optimization method retrospectively on
seven prostate cases, with actual clinical CT and structure
data, and the treatment planning objectives based on an
RTOG protocol. We compared HERO to the commercial
treatment planning system Eclipse, version 15.6 (Varian Inc.,
Palo Alto, CA), which used the Analytical Anisotropic Al-
gorithm for dose calculation, and the dose-volume objectives
for optimization. To apply HERO to each plan, we used
CERR to arrange 5 equally-spaced beams and calculate
pencil beams of approximately 0.25 cm× 0.25 cm, using the
Quadrant Infinite Beam (QIB) dose calculation algorithm.
This resulted in approximately 6000 beamlet dose matrices
for each case. In every case, the dose voxel size used was
1.3 mm×1.3 mm×2.5 mm, equal to the CT voxel size. To
calculate the costs more quickly, we subsampled the voxels
and the beamlets with the option to progressively increase
the resolution if needed. We used a subsampling factor
of 4, which does not significantly reduce the accuracy of
the objective function calculation. The size of the MCMC
optimizer was set at 50 (though any value less than 1024
could be selected).

The HERO halts if a score drops below 0.01% of its initial
value, or after 5 minutes. The Eclipse stopping condition was
set to the default criteria of 100 minutes or 1000 iterations.
However, during the optimization process, Eclipse’s graphi-
cal progress indicator was monitored. The elapsed time was
measured from the start until the last improvement was made.

III. RESULTS

A. Treatment Plan Optimization

Table I includes the dose values for each DVH objective,
averaged over the seven prostate cases. The doses received
by each organ after optimization by HERO and Eclipse are
indicated. The HERO method produces the lowest OAR
doses, while still providing satisfactory coverage of the PTV.

In Fig. 3 the DVHs for one of the patients are shown.
The HERO results in higher quality DVHs for the OARs,
while Eclipse provides slightly more homogeneous DVHs
for the PTV. Fig. 4 includes a log-log plot that shows the
scores versus time to best solution for the HERO and Eclipse
plans. Both HERO and Eclipse optimized all plans in less

5087



TABLE I
COMPARISON OF DOSE RECEIVED BY EACH ORGAN AVERAGED OVER

SEVEN PATIENTS USING TWO DIFFERENT APPROACHES

Structure (Objective) Eclipse HERO
PTV (95%, 66.6 Gy) 66.6±0.0 66.6±0.0
PTV (max, 73 Gy) 70.4±0.3 72.7±0.7
PTV (min, 63.3 Gy) 61.7±0.6 62.7±0.5
Bladder (70%, 40 Gy) 19.6±13.8 17.6±13.9
Bladder (50%, 65 Gy) 34.3±14.5 33.3±15.0
Rectum (55%, 60 Gy) 46.7±16.6 35.5±13.4
Rectum (35%, 65 Gy) 63.3±2.9 60.2±3.2
LFH (10%, 50 Gy) 33.1±3.3 29.6±3.6
RFH (10%, 50 Gy) 32.8±2.7 29.3±2.5

Fig. 3. Comparison of DVHs for one of the patients optimized using
Eclipse and HERO. Objectives are shown by filled circles with same color
as their corresponding organ.

than 60 seconds. However, HERO provided a lower objective
function for every plan.

Note that the doses for both the Eclipse and HERO plans
are calculated before leaf-sequencing. The beamlet intensities
produced by the HERO method ranged from 0.0 to 1.7, with
steps of 0.25. Compared to Eclipse, where the intensities
have real values, the low number of levels of HERO may
provide an advantage during the leaf sequencing process.

IV. CONCLUSIONS

We have developed a heterogeneous computational plat-
form, consisting of a CPU, GPU, and an MCMC optimizer.
By building a QUBO model of the IMRT optimization
problem, we have applied our method to beamlet-weight
optimization using clinical DVH objectives. We compared
the method to the commercial clinical software, Eclipse, by
applying both systems to seven prostate cases, demonstrating
that the HERO method produced higher-quality treatment
plans that were optimized within one minute, and in some
cases, in less than 30 seconds. This new hardware-software
platform may be scaled to VMAT problems in the future.
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