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Abstract— Human-robot interactions help in various indus-
tries and enhance the user experience in different ways.
However, constant safety monitoring is needed in environments
where human users are at risk, such as rehabilitation therapy,
space exploration, or mining. One way to improve safety and
performance in robotic tasks is to include biological information
of the user in the control system. This can help regulate
the energy that is delivered to the user. In this work, we
estimate the energy absorbing capabilities of the human arm,
using the metric Excess of Passivity (EOP). EOP data from
healthy subjects were obtained based on Forcemyography of the
subjects’ arm, to expand the sources of biological information
and improve estimations.

Clinical relevance— This protocol can help determine the
ability of rehabilitation patients to withstand robotic stimulation
with high amplitudes of therapeutic forces, as needed in assistive
therapy.

Index terms— Arm impedance, control systems, excess of pas-
sivity, human-robot interaction, rehabilitation robotics, robot
control, stability, upper-limb, variability.

I. INTRODUCTION

Robotic systems are becoming increasingly reliable, mak-
ing them suitable for various applications, but human-
machine interaction is still an area in which functionality
and safety must be ensured. Human-robot interactions can
be found in scenarios like assembly lines, space exploration,
and even medical diagnosis and treatment. The most chal-
lenging areas to improve this human-robot connection are
those where the safety of the human is at risk, such as in
robotic rehabilitation therapy. Therefore, our work focuses
on this major problem, and the principles discussed in this
work can be applied to other areas of robotics with human
participation.

The need for rehabilitation therapy has been significantly
increasing for the last decades [1], demanding more therapy
related resources to treat a wide variety of motor impairments
[2]. The cost of therapy is high, and health care facilities
do not have enough physical and human resources to cover
all the variety of patients’ needs [3]. One way to address
this problem is to deliver therapy, either on-site or remotely,
using robotic systems. This can help therapists reduce their
physical effort and increase their availability [4], which
improves the recovery of patients.
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Robotic rehabilitation systems are now being used for
precise tasks, such as assessments of motor impairments
[5]. They can also generate therapeutic stimulation and
display objective metrics using purpose-made sensors [6][7].
However, when actuation is required, the use of robotic
devices needs to be safe and easy to perform by humans.
Therefore, proper control systems are needed to guarantee
safety, stability and performance in any scenario.

Human-robot interactions can be performed in a stable
fashion under certain conditions, which depend on the char-
acteristics of both the robotic systems and human users [8].
The stability of the robot relies on mechanical parts, control
systems, and communications delays [9], while the human
part depends on the physiological properties of the tissues
and the biomechanical characteristics of the extremities, such
as muscle contraction, joint flexion and extension, and neuro-
motor control [10].

The human arm has a natural ability to stabilize robotic
systems [11]. This is achieved by absorbing the destabilizing
energy generated by the robot, through the modulation of
the arm dynamics [12]. As a result, the passivity of the
dynamics projected to the human can be relaxed to increase
performance, and only the amount of energy that can be
absorbed by the human arm is transferred to the user [13].

There are various methods to reduce the amount of energy
that flows to the user. Among these methods are damping,
to flush the excess of energy [7], and scaling or capping
of the interaction forces to limit the energy flow [13]. The
efficiency of these methods depends on how accurately the
arm’s energy absorption capability is estimated.

Atashzar et al. [12] introduced the notion of excess of
passivity (EOP) as a measure of energy absorption capability,
which depends on the interaction velocity and the non-
voluntary force of the user’s arm. The authors argue that
the EOP is a function of the grasp force. Therefore, they
propose to linearly interpolate between pre-calculated EOP
values, obtained at two specific levels of grasp pressure, as
the human user changes her/his grasp force.

In this work, we aim to obtain more accurate EOP
estimations using full arm force myography (FMG). This
physiological knowledge will allow us to design controllers
that closely compensate for the amount of energy that has
the potential to induce instability, providing a better trade-
off between stability and performance. We explain our work
within the context of robotic rehabilitation as this is one of
the most challenging applications to study, and the results
of this work can be applied to other areas of human-robot
interaction.
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II. ESTIMATING EXCESS OF PASSIVITY
According to Passivity Theory, humans are considered

energy sources or sinks, depending on their arm’s physio-
logical properties [14]. This makes measuring passivity an
important process to detect boundaries for energy transfers
and maintain stable interactions. In this section, we present
the work of Atashzar et al. [13] in estimating Excess of
Passivity and lay the groundwork for our proposed methods
to acquire more accurate estimates of EOP.

The human arm and robot can be modelled as mechanical
systems, according to how they exchange energy with each
other. The interaction forces are of interest; thus, the dynam-
ics of this type of interaction is represented by the linearised
model

z(t) ∗ vh(t) = uc(t) + fh(t), (1)

where t is the time, ∗ is the convolution operator, z(t) is the
impulse response of the robot dynamics, uc(t) is the control
input for the robot, vh(t) is the arm’s velocity, and fh(t)
is the force applied by the human to the robot [13]. The
human’s force can be decomposed into voluntary f∗

h(t) and
reactive freact(vh, t) components so that

fh(t) = f∗
h(t)− freact(vh, t). (2)

As the metric EOP represents the energy absorbed by the
arm, it is defined as a function of the reactive force, that is

EOP =

∫ Ts

0
freact(t)

T · vh(t)dt∫ Ts

0
vh(t)T · vh(t)dt

. (3)

where T is the transpose of the indicated vector, and Ts is
the duration of the estimation procedure [13]. The reactive
force cannot be measured directly. In fact, it is measured
through the interaction of the arm with a force sensor, that
is freact(vh, t) = fh, only when the voluntary forces are
negligible, that is f∗

h(t) = 0. In addition, the arm dynamics,
and as such its energy absorption capability, varies with the
level of muscle contraction. As a result, the EOP estimation
protocol involves a few measurements where the subject’s
arm is stimulated through a robotic device while he/she
applies a specific amount of grasp pressure to the handle
of the robotic device. The applied hand forces and the
perturbation velocity are used to compute EOP at each of
the grasp pressure levels.

We think there is one flaw in this approach as only the
muscles involved in grasping participate in conventional EOP
estimations. These muscles are mostly located in the hand
and forearm, so no upper arm contribution is being measured.

Two approaches are studied in this work to compare the
effects of using grasp force against the sum of grasp force
and upper arm FMG, as reference signals to perform EOP
estimations. We believe our new approach will allow us
to better estimate EOP as more muscles are involved in
the estimation process. Therefore, more energy absorption
capabilities are being measured, improving the accuracy of
EOP values. Differences in EOP estimations for the two
FMG references are described in the analysis of results.

III. EXPERIMENTAL SETUP

We conducted our experiments on the QARM, a one
degree-of-freedom (1-DOF) manipulator developed by the
Biorobotics Laboratory at Queen’s University for research
purposes. The setup consists a 400 watt Maxon EC-60
brushless motor equipped with a resolver. A position signal is
obtained through the motor driver AMC model DPRALTR-
020B080. An ATI Gamma force /torque sensor is used at
the base of the handle to measure the interaction forces.
Four Tekscan Flexiforce A502 pressure sensors are used for
measuring FMG at the handle, and upper arm, as shown in
Fig. 1. It is worth mentioning that no sensors were placed
on the forearm as the grasp forces measured at the handle
are product of hand and forearm muscles extensions and
contractions. All components are commercially available.
Three bipolar sensors are positioned on biceps, triceps and
flexor carpi radialis for EMG, which helps monitor muscle
activation. However, no EMG data is presented in this article.

All sensors were calibrated at the start of each experimen-
tal session. The force sensor is calibrated using a calibration
matrix and following instructions provided by the supplier.
Pressure sensors are calibrated by applying pressure on
sensors within their entire sensing range for 5 minutes.

MATLAB Simulink R2018 and QUARC 2018 are used
for real-time control of the QARM. Velocity estimates are
derived from position signals using discrete differentiation.
Force and velocity are not filtered for EOP estimations. Grasp
pressure signals were filtered with a 3 hertz low-pass FIR
filter for smoothing. All signals were recorded at 1000 hertz.

IV. EXPERIMENTAL PROCEDURE

A total of 10 healthy subjects with no motor impairments
participated in this series of experiments. At the time of the
experiments, they were aged 23 to 39 (mean value: 28.8,
standard deviation: 4.62), being 8 right-handed and 2 left-
handed. All subjects used their right arm during all trials. A

Fig. 1. Human arm interacting with the QARM robotic system for
estimation of Excess of Passivity. FMG sensors are not covered by the
usual bands for visualization purposes.
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letter of information and consent approved by the Research
Ethics Board was signed by all subjects at the start of their
first experimental session. All EOP estimations were per-
formed over 2 sessions for each of the subjects. Estimations
were performed in real-time for monitoring purposes and off-
line for processing, and analysis. An example of an online
EOP estimation signal is shown in Fig. 2. As it can be seen,
EOP converges to a maximum value after a few repetitions
of the stimulus, for each estimation. This online estimation
performs a simpler method of integration that allows the
computation in real time and lacks some accuracy, thus, an
off-line estimation algorithm is used for data processing and
analysis.

Subjects were positioned next to the QARM robotic
system, holding the end effector with their right hand and
starting with a 90-degree flexion of the elbow over the
horizontal plane of the robot’s workspace. No gravitational
support was added to the subjects’ arms and no contact
with the robot was allowed except for the handle. Therefore,
motion of the arm was mainly in respect to the elbow
joint, but it could shoulder motion, as each individual reacts
differently to the stimulus. A 20 second stimulus was applied
to the subjects through the QARM. The stimulus was a
sum of 10 sinusoidal waves in the frequency range of 0 to
2 Hz, producing a maximum displacement of 9 cm. This
frequency range is based on natural human motion [13] and
typical rehabilitation tasks[1]. A PD position controller with
feedback was implemented to generate motion and stimulate
the subjects’ hands.

Each experimental session consisted of 5 EOP estimations
per level, with a total of 25 randomly performed measure-
ments per session and subject. The levels were set at 5%,
20%, 40%, 60%, and 80% of the maximum grasp force
for the first trials, or combined maximum grasp force and
upper arm FMG, which the authors refer to as full arm
FMG, for the second trials. The first 5 seconds of each signal

Fig. 2. Time-profile of online-estimated EOP values for subject S6 at 80%
of maximum full arm FMG.

were discarded due to sensor calibration, signal conditioning
as well to give time to subjects to hold the handle after
calibration. Subjects were provided with visual feedback to
monitor their own signal and attempt to maintain it at a
pre-set constant level based on their maximum value. Fig.
3 shows an example of this visual feedback including an
actual grasp force signal and the 5 levels to track during
estimations. To measure maximum values, subjects were
asked to hold the handle applying their maximum effort
using their grasping strength. For maximum values of FMG
at biceps and triceps, subjects were asked to flex and extend
their elbows respectively with maximum effort while holding
the handle, which was locked in position to maintain a 90
degree flexion of the elbow.

Data resulted in 500 sets of signals from two sessions
and ten subjects. The first 250 trials correspond to EOP
estimations based on grasp force only, and the second 250
trials relate to EOP estimations based on full arm FMG.
Fig. 4 shows the mean values of EOP estimations at the five
levels, representing grasp force and full arm FMG sets of
data.

It is worth noticing that the use of mean values from EOP
estimations of the same level reduces the effect of natural
variability within a subject’s arm dynamics[15]. Therefore,
it is expected that estimates computed from a linear inter-
polation between the EOP values obtained at 5% and 80%
may result in overestimation. This overestimation allows a
larger amount of therapist’s active energy to be passed on
to the patient, who may not be able to absorb and dissipate
the excess of energy. As a result, the patient can experience
constant instability, which translates to pain and possible
injuries. Therefore, an EOP estimation process that includes
more than two levels could help increase safety in controllers
for human-robot interactions, with the cost of slightly longer
calibration protocols before performing an actual therapeutic
procedure.

Fig. 3. Visual feedback of grasp force. Subjects follow one profile during
each EOP estimation. This image has been adjusted for illustration purposes.
Only one reference level was displayed at a time during experiments.
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Fig. 4. Excess of Passivity mean values at five levels of grasp pressure and
full arm FMG for 10 subjects. Each mean value consists of five estimations.

V. ANALYSIS OF RESULTS

Series of two-factor ANOVA tests with replication were
performed to find differences in EOP estimations between
grasp force and full arm FMG based protocols, according to
the level of grasp force and full arm FMG. An alpha factor
of 0.05 was chosen for all statistical analyses. Differences
among subjects were not included in the analyses as these
are not of interest. However, all subjects’ EOP values were
lumped together as series of 5 repeated measurements.

Significant differences were found for estimations at the
five levels of grasp force compared to those of full arm FMG.
EOP estimations at 5% were significantly higher for full arm
FMG (mean = 10.23 Ns/m) compared to grasp force (mean
= 8.22 Ns/m), with a p value of 0.00966. EOP estimations
at 20% were significantly higher for full arm FMG (mean =
13.96 Ns/m) compared to grasp force (mean = 11.99 Ns/m),
with a p value of 0.00831. EOP estimations at 40% were
significantly higher for full arm FMG (mean = 21.1 Ns/m)
compared to grasp force (mean = 16.52 Ns/m), with a p value
of 0.0001.EOP estimations at 60% were significantly higher
for full arm FMG (mean = 33.0 Ns/m) compared to grasp
force (mean = 19.38 Ns/m), with a p value of 8.77 E−19.
Similarly, EOP estimations at 80% were significantly higher
for full arm FMG (mean = 43.9 Ns/m) compared to grasp
force (mean = 25.5 Ns/m), with a p value of 2.83 E−31.

VI. DISCUSSION AND CONCLUSIONS

The measurement of energy absorption capabilities of the
human arm can be improved by extending the number of
biological signals involved in the EOP estimation process.
The use of FMG on the entire arm makes EOP estimations
more accurate as muscles from the hand, forearm and upper
arm contribute to the value of this metric. Therefore, we
recommend using at least three points of muscle activity
detection, such as hand, biceps and triceps, to obtain EOP
estimations based on more realistic arm dynamics.

We found out that using FMG sensors is a very inex-
pensive and easy way to detect muscle activity of the arm.
The implementation of these type of sensing technique only
costs a few hundred dollars, requires minimum circuitry,
does not need any skin preparation, and are less sensitive

to electromagnetic interference. Therefore, the authors claim
that they are a reliable substitute of EMG sensors in human-
robot interactions.

For future work, we hope to combine and compare FMG
and EMG data to better estimate EOP, as well as to use
interpolation methods such as a radial basis artificial neural
network. This method may allow us to connect the five
levels of estimation without requiring all measurements and
perform real time calculations, which is essential when a
robot tries to deliver the exact amount of energy needed by
a potential patient during therapeutic interactions.
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