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Abstract— Heart rate (HR) monitoring under real-world
activities of daily living conditions is challenging, particularly,
using peripheral wearable devices integrated with simple op-
tical and acceleration sensors. The study presents a novel
technique, named as CurToSS: CURve Tracing On Sparse
Spectrum, for continuous HR estimation in daily living activity
conditions using simultaneous photoplethysmogram (PPG) and
triaxial-acceleration signals. The performance validation of
HR estimation using the CurToSS algorithm is conducted in
four public databases with distinctive study groups, sensor
types, and protocols involving intense physical and emotional
exertions. The HR performance of this time-frequency curve
tracing method is also compared to that of contemporary
algorithms. The results suggest that the CurToSS method offers
the best performance with significantly (P<0.01) lowest HR
error compared to spectral filtering and multi-channel PPG
correlation methods. The current HR performances are also
consistently better than a deep learning approach in diverse
datasets. The proposed algorithm is powerful for reliable long-
term HR monitoring under ambulatory daily life conditions
using wearable biosensor devices.

Index Terms— Mobile Health, Photoplethysmography, Heart
Rate Monitoring, Time-frequency Spectrum, Curve Tracing,
Motion Artifacts Removal

I. INTRODUCTION

Long term heart rate (HR) monitoring is essential for
tracking health and fitness. Photoplethysmography (PPG) is
a ubiquitous optical technology that measures the variations
of pulsatile blood volume at a skin surface. Due to its non-
invasive, simple and inexpensive nature, PPG is integrated
in most wearable devices and applied for widespread HR
monitoring as a substitute for complex electrocardiogram
(ECG). However, obtaining a reliable and accurate PPG-
based HR under ambulatory real world conditions remains
a challenge. Anatomical factors (such as body composition
and pigmentation) and sensor location (arm, wrist, forehead)
affect the signal quality substantially, and furthermore, PPG
signals are sensitive to physical activity and contact surface
related motion artifacts (MA).

In recent years, various PPG based HR monitoring ap-
proaches have been evolving with MA detection and re-
duction capabilities. The first category of methods without
requiring a simultaneously acquired accelerometer (ACC)
signal include empirical mode decomposition (EMD) [1]
and independent component analysis (ICA) [2]. The second
category, in contrast, employs the simultaneous motion data
captured by ACC that lead to robust algorithms including
adaptive filtering such as normalized least mean squares
(LMS) [3]; spectral filtering method such as SpaMA [4]; and
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sparse spectrum estimation based methods such as TROIKA
[5] and JOSS [6]. A tremendous research interest continues
to contributing other noteworthy algorithms including Wiener
Filtering and Phase Vocoder (WFPV) [7] and multiple ini-
tialization spectral peak tracking (MISPT) [8]. A detailed
literature review can be found in [9].

These HR estimation methods are mostly validated with
in-house laboratory testing or public databases [10] consist-
ing of short duration recordings capturing limited human
motions (like walking, arm swinging) under controlled labo-
ratory conditions. Thus, validation testing of such HR algo-
rithms may have limited accuracy and robustness for day-to-
day real life activities. To address these shortcomings, two
datasets [11], [12] were introduced recently with relatively
long recording duration and various activities of daily living
ranging from low to high intensities. With these new datasets,
Reiss et al. [11] developed a deep learning approach that
outperforms contemporary algorithms like SpaMA [4]. Novel
algorithms with superior performance and dependability are
still warranted to meet the clinical standards and needs.

In this paper, a novel algorithm named as CurToSS
(CURve Tracing On Sparse Spectrum) for HR estimation
using simultaneous PPG and ACC signals has been proposed.
The CurToSS algorithm framework is detailed in Section II.
The performance validation results on four public datasets
are compared with other contemporary methods in section
III. The significance and limitations of the proposed method,
and future directions are discussed in section IV.

II. MATERIALS AND METHODS

A. Datasets

The four datasets used in this paper are listed below:
1) IEEE Training: This dataset [10] contains 12 records

comprised of a wristband device embedded with PPG and
ACC sensors, and a chest ECG sensor for HR ground truth.
During a 5-min protocol, 12 participants walked and ran on
a treadmill at three different speeds.

2) IEEE Testing: This dataset [10] contains 10 records
with the same hardware but a different 5-min protocol that
involved 8 subjects performing intensive arm movements
(such as boxing, running, jump and push-up) or various
forearm and upper arm exercises (such as stretch and push).

3) DaLiA (PPG dataset for motion compensation and
HR estimation in Daily Life Activities): This dataset [11]
contains 15 records with a commerial wristband (Empatica
E4) for PPG and ACC signals, as well as a chest ECG
(RespiBAN) for HR ground truth. The protocol takes 2−3
hours, and the 15 subjects performed eight physical activities
below in sequence with flexible transition time in between:
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Fig. 1. A block diagram representation of CurToSS Framework

sitting still (10 mins), ascending/descending stairs (5 mins),
table soccer (5 mins), cycling (8 mins), driving (15 mins),
lunch (30 mins), walking (10 mins) and working (20 mins).

4) WESAD (Wearable Stress and Affect Detection): This
dataset [12] contains 15 records using the same hardware
as DaLiA but with a different 2 hour protocol, in which
15 subjects performed four sedentary activities sequentially
with flexible breaks: baseline (sitting/standing for 20 mins
at a table, reading magazines), amusement (sitting/standing
for about 7 mins, watching funny video clips), stress (sit-
ting/standing for 10 mins, with public speaking and mental
arithmetic), and meditation (carrying out controlled breathing
exercises for 7 mins while sitting in a comfortable position).

B. CurToSS framework

The proposed CurToSS framework presented in Fig. 1
involves unique spectral peak tracing (SPT) and MA re-
duction strategies using PPG and ACC derived sparse spec-
tra, as compared to prior sparse spectrum estimation-based
methods [5], [6]. The SPT accounts the HR variations
manifested as smooth frequency curves or ridges on sparse
spectra, restrained by time-varying physiological boundaries
and restricted to a limited transient jumps. Thus, the SPT
results in tracing of frequency curves pertinent to HR on
the PPG spectra.The HR curves are practically not always
continuous particularly in the presence of MA and other
noise/interference. Once the HR curve found to be discon-
tinued, a curve detection will be performed, MA curves and
other interference curves will be excluded, and the curve
with highest curve strength will be established as the next
HR trace to resume the curve tracing. The major steps of
CurToSS are described in detail below.

1) Sparse spectrum reconstruction (SSR): Sparse spec-
trum reconstruction provides a high resolution, low variance
and robust time-frequency spectrum estimation [5]. The raw
PPG and ACC signals are first downsampled to 8 Hz to
reduce computational load; the time-series PPG and ACC
signals are segmented with 8s sliding window (window shift:
2s); and the PPG and ACC segments are processed to esti-
mate their respective sparse spectra. FOcal Underdetermined
System Solver (FOCUSS) algorithm [13] is used to estimate
sparse spectrum and more details can be found in [5].

2) Initialization: SPT begins with an initialization that
normally requires a motion-free baseline condition. Such a
baseline period can be identified by higher kurtosis scores
calculated from the sparse spectra indicating the presence
of motion-free dominant HR curves. To establish a starting

Fig. 2. An example of sparse spectra of (a) PPG signal and (b) x-
axis accelerometer signal (ACCx), from subject S2 of the IEEE Training
dataset. The green tracing corresponds to the HR curves whereas MA
curves are highlighted with red tracing. The panel (c) shows a very close
correspondence between the CurToSS based HR values to that of the ground
truth HR values.

point for SPT, the kurtosis scores of the starting PPG seg-
ments within the HR range are tracked until three consecutive
segments have kurtosis scores above a preset threshold. The
dominant frequency corresponding to highest peak location
on the SSR spectrum for the last of the three segments is
taken as the initial HR, and curve tracing commences.

3) Curve tracing: The curve tracing is mainly comprised
of two steps adapted from [14] for HR estimation.

(i) Identify pixel curve points from the spectral image:
A pixel of an image is identified as a curve point if its 1st

directional derivative along the direction perpendicular to the
curve (same direction as the eigenvector corresponding to
the maximum absolute eigenvalue of the Hessian matrix H)
vanishes within a unit square around this pixel [15].

H =

[
Ixx Ixy
Ixy Iyy

]
(1)

The 2nd partial derivatives, Ixx, Ixy and Iyy are computed
using partial differences after convolving the image with a
Gaussian smoothing kernels, which makes the derivatives
estimation of a noisy spectrum image well posed. Once
confirmed as curve point, the orientation θ, sub-pixel location
(px, py) and eigenvalues of Hessian matrix on that pixel can
be derived with its 1st and 2nd partial derivatives.

(ii) Track the subsequent curve pixel points:
Based on the orientation of the current curve point, three
candidate pixels are identified. If there is only one curve
point within the three pixels, that pixel is linked to the current
point as the next curve point; if there is more than one
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curves point within the three pixels, subpixel distance and
orientation difference to the previous curve point are ranked
to chose the curve point with minimum differences d as the
next curve point as shown in (2);

d = ‖p2 − p1‖2 +min{|θ2 − θ1|, π − |θ2 − θ1|} (2)

where p1 and θ1 are the sub-pixel location and orientation
of previous curve pixel point, p2 and θ2 are the sub-pixel
location and orientation of the new pixel point. If there is
no curve point within the three pixels, then the current HR
curve is faded (i.e., discontinued). Ideally, the HR curve can
be continuously tracked as long as there is no loss of sensor
contact or other perturbations. However, in practice, the HR
curve fades out from time to time hence a re-establishing
step is required to decide the next HR curve.

4) Curve detection (once HR curve is discontinued): Once
the HR trace fades out, curve detection will be performed to
find all non-vertical curves (including HR, MA and other
curves) in the next predetermined number of consecutive
segments. To exclude other interference curves such as the
respiratory trace and higher-order harmonics curves, this
detection step is limited to be within a searching range based
on the previous HR, as described by (3):

HRcur ≥ HRprev −max{Hmin, thdec ∗D ∗
HRprev

fscaling
}

≤ HRprev +max{Hmin, thinc ∗D ∗
HRprev

fscaling
}

(3)

where HRprev is the last HR extracted from the previous HR
curve, HRcur is the first HR from the candidate HR curve,
D is the gap (measured as number of segments) between the
previous and candidate HR curves, Hmin is the minimum
searching range between two consecutive curves, fscaling is
the HR scaling factor, thinc is the HR increasing threshold
and thdec is the HR decreasing threshold. For the jth
detected curve with length L and its curve points’ subpixel
locations as (px(l), py(l)), l = 1, 2, ..., L, the correlation with
the PPG spectrum CorrPPG(j) and with the ACC spectra
CorrACC,i(j), i = x, y, z are calculated as (4) and (5).

CorrPPG(j) =
1

L

L∑
l=1

EigPPG(px(l), py(l)) (4)

CorrACC,i(j) =
1

L

L∑
l=1

EigACC,i(px(l), py(l)) (5)

where EigPPG and EigACC,i are the pixel eigenvalues
of the Hessian matrix of their corresponding sparse spec-
trum. Note that (px(l), py(l)) are curve points’ subpixel
locations hence are non-integer, so EigPPG(px(l), py(l))
and EigACC,i(px(l), py(l) are interpolation results using the
nearby pixels’ eigenvalues. The eigenvalue images EigPPG

and EigACC,i are currently used to measure the curves’
strength relatively better than using the original sparse spec-
trum images IPPG and IACC,i.

5) Motion artifact curve identification using ACC sparse
spectrum: During the HR curve re-initialization step, the
curve detection procedure finds all curves including the MA
curves. The MA curves in the PPG spectrum normally have
similar, corresponding curves in the ACC spectrum hence
the MA curves have high correlation with one or more ACC
spectra. On the other hand, the HR curves in PPG spectrum
normally have low correlation with the ACC spectrum since
the blood volume change can not be easily captured by the
ACC sensor at the wrist, arm or forehead. As a result, the
MA curves can be effectively identified due to their high
correlations with the ACC spectrum using criteria (6) & (7).

CorrACC ,i ≥ thACC , i = x, y, z (6)

1

3

∑
i=x,y,z

CorrACC ,i ≥ CorrPPG ∗ thRatio (7)

where thACC is the ACC spectrum correlation threshold
and thRatio is the ratio threshold between ACC and PPG
spectrum correlations.

6) New HR curve selection based on curve strength:
After MA curves are identified and excluded, the remaining
candidate curves are ranked based on their curve strength S,
defined as (8),

S = CorrPPG −
1

3

∑
i=x,y,z

CorrACC ,i −
|HRprev −HRcur|

fscaling

(8)
where, the curve with the maximum curve strength is selected
as the next HR curve to resume tracking. If no candidate
curves are found, then the curve searching range will be
expanded to additional consecutive segments until one or
more candidate HR curves are found.

Fig. 2 demonstrates the CurToSS algorithm using a sam-
ple record from IEEE Training dataset. In the PPG sparse
spectrum shown in (a), the potential HR and MA curves
are highlighted in green and red traces, respectively. The
red MA curves on the PPG spectrum have high correlation
with the ACCx spectrum shown in (b), while the green
HR curves on the PPG spectrum has low correlation with
the ACCx spectrum, as anticipated due to the fact that
ACC signal from peripheral site might contain predominantly
motion components. Thus, the subsequent HR curve tracing
step allows effective rejection of the MA curves based on
their high correlation with the three concurrent ACC sparse
spectra. A very close correspondence between the predicted
HR values of the CurToSS method to that of the ground truth
HR values is shown in (c) for comparison from this record.

C. CurToSS Parameters

The CurToss parameters are common for DaLiA and WE-
SAD except thinc that can be customized for low, medium
or high physical exertion levels, and the parameter values
are listed as below: the curve search range is set to 30
segments; fscaling is the HR scaling factor as 100; Hmin is
the minimum search range between two consecutive curves
to account for abrupt HR changes and is set to 15 beats per

5349



minute (bpm); thdec is the HR decreasing threshold and is
set to 1; thinc is the HR increasing threshold and is set to
1 for WESAD and 3 for DaLiA, since DaLiA involves high
intensity activities that boost up HR rapidly; thACC is the
ACC correlation threshold and is set as 0.24; thRatio is the
ratio threshold between averaged ACC and PPG correlation
and is set as 0.6.

D. Performance evaluation

The performance of the proposed CurToss algorithm is
evaluated by the mean absolute error (MAE), the bias and
limits of agreement (LoA), and the Pearson coefficient.

The MAE is defined as

MAE =
1

N

N∑
i=1

|HRest(i)−HRref (i)|, (9)

where N is the total number of segments, and HRref (i) and
HRest(i) are the ground truth and the estimated HR in the
ith segment, respectively. The similar error analyses were
conducted for contemporary algorithms [4], [11], [16] for
direct comparisons to the proposed approach.

The limits of agreement (LoA) per Bland-Altman analysis
are defined as [µ−1.96σ, µ+1.96σ], where µ is the bias (i.e.,
the average) & σ is the standard deviation of the signed error,
(HRest − HRtruth). The estimation and ground truth HR
values for each segment are both rounded to integers prior
to performance analyses. The statistical dispersion of the
error is evaluated for each database based on their subject-
wise MAE. The agreement analysis is carried out considering
the entire study protocol as well as individual activity types.
Paired sample t-tests are also conducted to validate the statis-
tical significance of performance improvement for CurToSS
over other contemporary algorithms.

III. RESULTS

The performances of CurToSS algorithm are compared
to that of other contemporary algorithms (SpaMaPlus: spec-
tral filtering based method [4]; Schaeck2017: multi-channel
PPG correlation-based approach [16]; CNN ensemble: deep
learning-based approach [11]) on aforementioned databases
(Fig. 3). The CurToSS algorithm provides the best MAE
performance (specifically with lowest mean error, highest
consistency and smallest outliers) across all four datasets,
indicating its high accuracy and effectiveness in reliably
tracking HR over various intense activities. Among the other
three algorithms, CNN ensemble algorithm show reasonable
MAE for DaLiA and WESAD, but it is relatively poor for
IEEE Testing; Schaeck2017 has overall poor MAE perfor-
mance, and the MAE distribution of SpaMaPlus is found
between these two methods (Fig. 3).

A representative example using the CurToSS algorithm
during the real-world daily activities is shown in Fig. 4.
Comparing to IEEE Training, the DaLiA spectrum is much
more complex and contains many interference within the HR
frequency range, as shown in (a). However, the proposed
CurToSS method correctly identifies and traces the HR
curves well, as illustrated. Two incorrectly picked curves are

Fig. 3. Performances of HR estimation in mean absolute error (MAE) for
CurToSS and other contemporary methods on four unique databases.

Fig. 4. An example of (a) PPG derived sparse spectrum and (b) comparison
of predicted versus the ground truth HR values from DaLiA dataset, Subject
S5. In the PPG sparse spectrum, the ground truth HR curves are marked in
green and overlaid with the CurToSS estimated HR curves traced in red;
the other unrelated curves including motion artifacts are marked in pink.

marked as A and B in (b). These are caused by overestimated
curve searching ranges during HR curve re-initialization,
which will be discussed further in Section IV-C.

Overall, the CurToSS algorithm achieved the best MAE of
2.2, 4.5, 5.0 and 6.4 bpm for IEEE Training, IEEE Testing,
DaLiA and WESAD, respectively. Subject-wise MAEs for
DaLiA and WESAD are listed in Table I , along with p
values from paired sample t-tests to validate the statisti-
cal significance of the CurToSS against each contemporary
method. The CurToSS algorithm MAE performances are sig-
nificantly (p<0.01) better than spectral filtering (SpaMaPlus)
and multi-channel PPG correlation (Schaeck2017) based
approaches for both DaLiA and WESAD databases. Mean-
while, the MAE of CurToss are relatively lower than deep
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TABLE I
SUBJECT-WISE ALGORITHMS’ PERFORMANCE COMPARISONS (MAE IN BPM) ON DALIA AND WESAD DATASET

DaLiA S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Mean ± STD p-valuea

SpaMaPlus 8.9 9.7 6.4 14.1 24.1 11.3 6.3 11.3 16.0 6.2 15.2 12.0 8.5 7.8 8.3 11.1±4.8 <.001
Schaeck2017 33.1 27.8 18.5 28.8 12.6 8.7 20.7 21.8 22.3 12.6 21.1 22.7 27.7 12.1 16.4 20.5±7.1 <.001

CNN ensemble 7.7 6.7 4.0 5.9 18.5 12.9 3.9 10.9 8.8 4.0 9.2 9.4 4.3 4.4 4.2 7.7±4.2 0.062
CurToSS 5.4 4.3 3.0 8.0 2.2 2.8 3.3 8.5 12.6 3.6 3.6 6.1 3.0 5.5 3.7 5.0 ± 2.8
WESAD S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S13 S14 S15 S16 S17 Mean ± STD p-value

SpaMaPlus 7.3 12.6 5.9 7.4 6.4 9.2 8.9 6.3 8.2 16.3 13.0 10.2 8.3 10.7 11.2 9.5 ± 2.9 <.01
Schaeck2017 23.3 37.1 26.2 30.5 18.6 21.3 19.6 13.3 20.7 16.7 9.8 6.3 16.6 12.6 27.1 20 ± 8.1 <.001

CNN ensemble 5.1 14.5 7.8 7.7 3.9 6.8 4.3 4.0 8.9 11.1 6.5 5.3 4.2 12.8 9.4 7.5 ± 3.3 0.21
CurToSS 5.5 6.7 7.6 5.8 4.8 7.7 7.4 5.3 5.5 6.9 7.0 3.5 5.3 4.9 11.4 6.4 ± 1.8

a P values from paired sample t-tests against the CurToSS method.

TABLE II
HR ESTIMATION PERFORMANCE PER ACTIVITY

DaLiAa WESADb

Activity Act 1 Act 2 Act 3 Act 4 Act 5 Act 6 Act 7 Act 8 Act 9 Overall Act 1 Act 2 Act 3 Act 4 Act 5 Overall
Duration (mins) 152 109 78 116 228 452 157 284 566 2142 293 167 93 195 666 1415

Mean (bpm) 61.0 118.7 90.4 123.2 84.7 83.6 99.3 76.4 95.1 89.5 72.6 98.3 72.7 69.9 77.3 77.5
Bias (bpm) -0.5 -2.6 -3.4 -1.1 -0.2 -1.2 -2.6 -0.8 -1.8 -1.4 -1.8 -6.8 -1.8 -2.2 -4.4 -3.7

Lower limit (bpm) -7.7 -33.1 -24.3 -16.0 -15.0 -15.2 -30.9 -13.6 -26.4 -21.0 -12.5 -36.7 -11.7 -16.0 -25.9 -23.4
Upper limit (bpm) 6.8 27.8 17.5 13.8 14.7 12.9 25.8 11.9 22.9 18.3 8.8 23.1 8.1 11.6 17.1 16.1

Correlation 0.96 0.82 0.83 0.95 0.89 0.89 0.76 0.88 0.85 0.91 0.89 0.74 0.90 0.70 0.72 0.80
a Activity types for DaLiA: 1- Sitting, 2- Stairs, 3- Table Soccer, 4- Cycling, 5- Driving, 6- Lunch, 7- Walking, 8- Working, 9- Transition.
b Activity types for WESAD: 1- Baseline, 2- Stress, 3- Amusement, 4- Meditation, 5- Break.

learning-based CNN ensemble approach, but the differences
are not statistically significant (p>0.05).

The impact of different activities on HR estimation using
the CurToSS algorithm is further analyzed: the DaLiA and
WESAD datasets are split according to activity types and
HR performances are assessed for each activity. Specifically,
the correlation, bias and 95% LoA between estimated and
ground truth HR for each activity type are listed in Table II.

IV. DISCUSSION

Accurate HR estimation using convenient wearable de-
vices is highly valuable for continuous health monitoring, but
the obvious human motion including intermittent physical
activities and intense exercises during daily life present
algorithmic challenges to obtain reliable HR in such real-
world conditions. The novel CurToSS algorithm is designed
to accurately track HR in ambulatory conditions by analyzing
the sparse spectra curves from simultaneous PPG and ACC
signals and effectively rejecting the motion artifacts. The
study validates the CurToSS algorithm and this method is
shown to outperform the contemporary methods for reliable
HR estimation during wide range of activities.

A. Advantages of CurToSS algorithm

The proposed CurToSS algorithm solves the problem of
estimating HR from the time-frequency spectra by extracting
”ridge curves” (i.e. time sequences of certain component’s
frequency location in spectrum) and tracking spectral peaks
using curve tracing and curve detection techniques from
image processing and computer vision domains. Conven-
tional SPT searches for the dominant peak within a certain

frequency range around the last segment’s HR peak from the
MA-removed PPG spectrum. This scheme works well when
the motions are mostly uncomplicated and well-defined,
hence after spectrum subtraction the HR peak will be the
dominant peak in the cleansed PPG spectrum.

However, the natural human motions exhibit complex
signal dynamics and characteristics. For example, the MA
are composed of multiple dominant frequency peaks which
are distributed widely over the spectrum and can overlap
the HR peaks, making MA subtraction/exclusion ineffective;
hence, the dominant peak may not be the HR peak. The HR
peak might temporarily disappear from the PPG spectrum
due to various reasons like sensor contact loss; interference
peaks will be chosen as HR peaks for these segments and
the error will also propagate through later segments.

Our curve tracing method could remedy this situation
with: 1. Instead of picking the maximum peak’s location as
HR, the curve tracing decides the searching range adaptively
based on both current HR and the HR curve continuity
(curve direction and sub-pixel distance) of the previous
segments, hence reduces the chance to select a nearby MA
peak as HR. 2. When the HR trace discontinues, a curve
detection is performed to decide a new HR curve based on
the curve strength. As a result, the re-established HR has
higher confidence than simply taking the maximum peak of
one segment and also avoids the propagation error associated
with an incorrect starting point of peak tracking.

B. Impact of activity types to CurToSS performance

Table II presents the impact of different activities to HR
estimation using CurToSS algorithm. The relatively poor
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performance during stairs, table soccer and walking, might
be due to the high amplitude arm movements causing sensor
movements on the skin surface and potential ambient light
leaking, and eventually leading to substantial degradation
of the signal corrupted with motion artifacts, distortions
and increased in-band noise. In contrast, cycling requires
participants’ hands to remain on a handlebar, limiting arm
movements. Hence, the performance for cycling across 15
subjects is similar to that of driving and having lunch, even
though the activity intensity and mean HR for cycling are
much higher than the other two activities. Across all activ-
ities including transition, the CurToSS algorithm achieved
a correlation of 0.91, bias of -1.4 bpm and 95% LoA of
[-21.0, 18.3] bpm for DaLiA dataset. Barrios et al. [17]
evaluated the same wearable device (Empatica, E4) in 14
subjects while performing similar fitness activities (1-hour
protocol involving low/high power biking, walking, jogging
and running) and found the HR to have a correlation as
0.41, bias as 17.8 bpm and 95% LoA as [-26.6, 62.2] bpm.
The current estimation of HR is comparably far better in
ambulatory conditions.

C. Limitations and future directions

There are a few limitations of the CurToSS algorithm:
Firstly, when the HR trace is discontinued, the HR output
will be on hold for certain segments to re-initialize the HR
trace. However, with regards to the short-term uncertainty,
we established a solid starting point for later HR tracing
while other SPT methods would normally establish the
new starting point by taking the dominant spectrum peak
(which may not be the HR component) from one segment.
Secondly, certain thresholds or system parameters are chosen
empirically, but such parameters generalize globally. Even
though the competitive performance (lowest average MAE
and standard deviation comparing to other contemporary
algorithms) across the independent datasets and recordings
indicates that the system parameters are applicable for dif-
ferent devices, subjects and motions. Further improvement
can be achieved by customizing these parameters adaptively.
For example, thinc and thdec (i.e. the curve searching range)
can be updated based on the simultaneous activity level (one
example of activity level estimation is the squared derivative
of raw ACC signals [18]). Thirdly, a common concern for
the SSR-based algorithm is the computational complexity.
As we have downsampled the PPG and ACC signals to 8
Hz, the computation load is greatly decreased. Currently, on
a computer with Intel Core i7 @2.6GHz and 16 GB RAM,
the Matlab run time for a DaLiA dataset with 4722 segments
(8 sec per segment) is 58.2 ± 3.4 sec (13.6 ± 0.8 ms per
segment), which means this algorithm is real-time realizable
and comparable to other contemporary algorithms such as
MISPT [8]. However, further improvement is necessitated to
accommodate the limited resources (computation capability
and energy consumption) of wearable devices.

In conclusion, a novel HR monitoring algorithm is pre-
sented using PPG and simultaneous ACC signals from smart
wearable devices that uniquely traces HR ridge curves from a

PPG sparse spectrum while rejecting the MA curves based on
their correlation with ACC sparse spectrum. The validation
results suggest that this framework is powerful and suitable
for long-term HR monitoring using wearable devices in
ambulatory daily-life conditions.
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