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Abstract— Recent advances in wearable devices with optical
Photoplethysmography (PPG) and actigraphy have enabled
inexpensive, accessible, and convenient Heart Rate (HR) mon-
itoring. Nevertheless, PPG’s susceptibility to motion presents
challenges in obtaining reliable and accurate HR estimates
during ambulatory and intense activity conditions. This study
proposes a lightweight HR algorithm, TAPIR: a Time-domain
based method involving Adaptive filtering, Peak detection,
Interval tracking, and Refinement, using simultaneously ac-
quired PPG and accelerometer signals. The proposed method is
applied to four unique, wrist-wearable based, publicly available
databases that capture a variety of controlled and uncontrolled
daily life activities, stress, and emotion. The results suggest
that the current HR prediction is significantly (P<0.01) more
accurate during intense activity conditions than the contem-
porary algorithms involving Wiener filtering, time-frequency
analysis, and deep learning. The current HR tracking algorithm
is validated to be of clinical-grade and suitable for low-power
embedded wearable systems as a powerful tool for continuous
HR monitoring in real-world ambulatory conditions.

Index Terms— Photoplethysmography, Heart Rate, Adaptive
Filter, Motion Artifact, Peak Detection

I. INTRODUCTION

Heart rate (HR) ranks among the primary vital signs
used to evaluate a person’s health. HR monitoring has a
multitude of applications, ranging from personal fitness to
health monitoring. Traditional methods of HR estimation of-
ten involve performing peak detection on Electrocardiogram
(ECG) signals. ECG has prominent R wave peaks that are
relatively easily identifiable and generally resilient to motion
artifacts. However, the traditional wired ECG recorders such
as Holter/portable telemetry monitors, and the emerging
adhesive based ECG devices are uncomfortable and limited
for continuous long-term monitoring applications [1].

In contrast, optical-based pulse oximeter sensors are ubiq-
uitous in clinical practice and wearable consumer health, and
are available in various form-factors attached to a body site
including finger, wrist, upper arm, and earlobe [2]. These
devices allow convenient acquisition of blood volume pulse,
also known as a Photoplethysmogram (PPG). PPG-based HR
estimation under stationary conditions is widely considered
as a reasonable surrogate for ECG-based HR monitoring [3].
Wearable watch/band PPG sensors are comfortable enough to
be worn continuously and can capture day-to-day ambulatory
patterns and pulse waveforms. In such real-world scenarios,
PPG signals are often corrupted by human motion during ac-
tivities of daily living and work outs. Obtaining reliable HR
during motion is clinically very useful for studying exercise
physiology, cardio-respiratory dynamics, and endurance of
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the user. To that end, motion tolerant algorithms for accurate
estimation of HR using PPG during ambulatory conditions
have been recently evolving [4].

ECG-based HR estimation involves detecting individual
QRS complexes; similarly, peak detection methods have also
traditionally been used for PPG [5]–[8]. Recent advances
in HR algorithms explore the use of spectral analyses to
effectively isolate frequency information. Major spectral ap-
proaches tend to include motion artifact removal (e.g. Wiener
filtering [9], adaptive filtering [10], or spectral subtraction
[11]), and conversion to time-frequency representation (e.g.
Sparse Signal Reconstruction [12], FFT with phase vocoder
[9], or Truncated Fourier Series [13]). More recently, deep
learning has also been applied in this field [14].

This study presents a novel algorithm for ambulatory HR
estimation based on simultaneous PPG and accelerometer
signals involving four major Time-domain processing steps:
Adaptive filtering, Peak detection, Interval tracking, and
Refinement. In the interest of brevity, this methodology is
referred to as TAPIR. The algorithm framework and valida-
tion methods are detailed in Section II. Performance results
from the proposed method and contemporary algorithms
involving adaptive filtering, time-frequency spectra, and deep
learning are shown in Section III. Finally, the discussion and
conclusion are given in Section IV.

II. MATERIALS AND METHODS

A. Databases

Several public databases that include one or two PPG
signals, triaxial accelerometer signals, and HR annotations
derived from an ECG signal are chosen for this study.

1) IEEE Dataset [12], [15]: The IEEE Signal Processing
Cup is an annual competition with a different topic and
dataset each year. In 2015, the objective was to extract HR
from PPG recordings contaminated by motion artifacts. The
IEEE dataset is divided into two subgroups per the design
of the competition. The IEEE Train and Test datasets consist
of 12 and 10 recordings respectively, each 5 min long, with
subjects walking and running on a treadmill (Train dataset)
or performing intense arm exercises (Test dataset).

2) Daily Life Activities (DaLiA) [14]: Overall, the IEEE
dataset has high quality PPG recordings, but is limited in
range of activities and duration. Two other large datasets
including relatively long duration PPG recordings were re-
cently collected and published for public use. These two
databases contain PPG and triaxial acceleration recordings
from an Empatica E4 wristband and an ECG signal from a
RespiBAN device on the chest.
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The DaLiA (Daily Life Activities) database captures a
variety of daily life activities over 2−3 hours scheduled
in order: 1 Sitting, 2 Stairs, 3 Table Soccer, 4 Cycling,
5 Driving, 6 Lunch, 7 Walking, 8 Working. Each activity
was performed for a specified duration, with time between
activities varying across 15 subjects. HR annotations are used
as ground truth for performance analysis.

3) Wearable Stress and Affect Detection (WESAD) [16]:
The WESAD dataset was recorded by the same group that
created the DaLiA database, employing the same recording
equipment for another 15 subjects. Instead of daily life
activities, these 2-hour recordings focused on the subjects’
affect. Tested states were baseline, amusement, stress, and
meditation conditions. The ECG signal was used to derive
the reference HR using a standard peak detection method
based on the Pan-Tompkins algorithm [17].

B. Heart Rate Estimation Method (TAPIR)

1) Preprocessing: The available PPG and accelerometer
signals are first preprocessed [9] using a Butterworth filter
with corner frequencies at 0.4 and 4 Hz, corresponding to
24 to 240 beats per minute (bpm). Afterwards, each of
these signals are Z-Score normalized. For the recordings with
multiple PPG signals (IEEE datasets), the PPG signals are
combined by averaging the normalized signals.

2) Adaptive Filter for Motion Artifact Removal: Adaptive
filters are commonly used to remove motion artifacts from
PPG signals [10], [18]–[22]. Often, adaptive noise cancella-
tion (ANC) is performed using each accelerometer axis in
sequence [10], [20], [21]. However, applying the adaptive
filter with all three signals at once allows the filter weights
to be properly adjusted with information from all motion
vectors simultaneously.

Currently, motion artifacts are removed using a least mean
square (LMS) adaptive filter [23] using all 3 accelerometer
axes with delays up to 250 ms as the input and the PPG
signal as the desired output. The adaptive filter is adjusted
so that the linear combination of the previous accelerometer
data best fits the PPG in terms of lowest mean squared error.
This filtered signal is an estimate of noise caused by motion
and is removed from the PPG signal by subtraction.

An important parameter for the LMS adaptive filter is the
step size [23] (µ, final value 8 ∗ 10−5). A too-small step
size may result in a poor filter while a too-large step size
may fail to converge. Because the step size is not selected
based on any individual subject’s data, whenever the average
absolute value of the weights exceeds 1, the weights are all
immediately reset to the original value of 0.

3) Peak Detection: Peak detection is performed using
a method based on the MATLAB function mspeaks from
the Bioinformatics toolbox [24]. Peaks are initially assigned
by identifying all the positive-valued local maxima in the
signal. Afterwards, all intervals less than a Refractory Period
(RP , final value of 300 ms) are identified, and the lower
amplitude bordering peak for each such interval is removed.
This step both reduces noise and limits the estimated HR
from exceeding a physiological range.

4) Peak Adjustment by Interval Tracking on a Short Time-
Scale: Peak adjustment involves tracking the average peak-
to-peak interval over time. Starting from the 11th interval,
if the peak-to-peak time is greater than some percentage
(Short-term Upper bound or SU , final value 180%) of the
average of the previous 10 intervals, then a peak may be
missing in that interval (false negative). Any local maximum
with a magnitude above an amplitude threshold (Short-term
Threshold or ST , final value 0) within that interval is chosen
as another possible peak location. If the interval width is
less than another percentage (Short-term Lower bound or
SL, final value 50%) of the average of the previous 10, then
it is assumed that an extraneous peak was selected (false
positive). In this case, the latter peak is excluded.

5) Preliminary Heart Rate Estimation by Interval Track-
ing on a Long Time-Scale: A preliminary HR estimate is
made using a second interval tracking procedure similar
to Peak Adjustment, but with a longer time scale. As an
initialization step, a sliding standard deviation is calculated
starting from the first 30 intervals. If the standard deviation of
those 30 intervals is below a threshold (Baseline Consistency
or BC, final value 10 bpm), then those 30 intervals are la-
belled as ‘good’ intervals, and the long-term interval tracking
procedure begins. If not, the window is shifted forward by
one interval, and the standard deviation is again calculated.

The long-term interval tracking procedure closely matches
the Peak Adjustment process, but with three key differences.
First, a longer time scale is used, tracking the average of the
previous 30 ‘good’ intervals rather than just any previous 10
intervals. Further, a stricter threshold is used with the Long-
term Upper bound (LU ) at a final value of 140% and the
Long-term Lower bound (LL) at 70%. Finally, rather than
adding or removing peaks, intervals are simply labelled as
‘good’ or not depending on whether or not they fit between
the upper and lower bounds. As a clarification, the standard
deviation is only used in the one-time baseline initialization
procedure, not in the interval tracking.

Once the intervals are evaluated using this procedure, HR
is estimated using a sliding window of length 8 seconds and
step size 2 seconds. For each window, all ‘good’ intervals
with a midpoint within the window are averaged. Then the
reciprocal of the average window is taken and multiplied by
60 to reach an initial HR estimate in bpm.

6) Notch Filter HR Refinement: The final step in the
algorithm is to refine the initial estimate of the HR by using a
notch filter-based strategy similar to that employed by Wang
et al. [10]. First, a second-order notch filter is constructed
of bandwidth .5 Hz at the estimated HR frequency for each
8-second window. The PPG signal is then filtered by this
notch filter, and the result is subtracted from the PPG signal.

Peaks are re-obtained from the HR-focused PPG signal
for each window using the Peak Detection method with the
same height and minimum distance thresholds. However,
only peaks located near the center of each window are kept
to avoid edge effects and for combination across windows.
Lastly, the Heart Rate Estimation procedure is repeated on
the new set of peaks to obtain the final refined HR prediction.
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C. Performance Evaluation and Statistical Analysis

Performance is evaluated by calculating the mean absolute
error (MAE). All HR estimations are performed on 8-second
sliding windows with a 2-second step size, in order to match
annotations in the databases. Error is calculated by first
subtracting the prediction from the annotated HR, then taking
the absolute value of the error, and finally taking the mean
across time. Statistical analysis is performed by comparing
TAPIR with previous algorithms using paired sample t-tests
on the MAE values across subjects.

For comparison to TAPIR, three contemporary methods
of HR estimation are also evaluated. Wiener Filtering and
Phase Vocoder (WFPV) results are reproduced from Temko
[9] for the IEEE database; the publicly available code for
WFPV is applied directly to DaLiA and WESAD. WFPV is
a well-known HR estimation approach based on frequency-
domain information that has previously been validated only
on the IEEE dataset. In addition, HR estimation results from
SpaMaPlus (another time-frequency approach) and CNN
Ensemble (a deep learning method) trained with leave-one-
session-out cross validation are reproduced from Reiss et al.
[14] for all public datasets involved.

To evaluate the progression in accuracy at each stage of
the TAPIR method, the error calculation is carried out for
intermediate stages of the algorithm. First, the performance
of the concurrent adaptive filter is compared to a baseline
cascaded filter. Then, MAE is evaluated with additional
stages of TAPIR included cumulatively.

Furthermore, HR estimation performance is also evaluated
for individual activities in the DaLiA dataset. First the HR
annotations and estimates are divided based on which activity
was being performed at the midpoint of the corresponding
8-second window. Finally, the MAE is computed for all of
these samples combined across subjects.

III. RESULTS

A. Performance Comparison with Contemporary Algorithms

Fig. 1 shows representative best (panel A) and worse
(panel B) cases of TAPIR derived HR estimations among the
DaLiA database involving real-world daily activities, which
associate with an MAE of 2.8 bpm and 8.0 bpm, respec-
tively,. The worst case still shows a good correspondence to
that of HR annotations throughout the intense activities.

The overall MAE performances of the TAPIR method
for the IEEE, DaLiA, and WESAD datasets are compared
as boxplots in Fig. 2 alongside SpaMaPlus, WFPV, and
CNN Ensemble contemporary methods. TAPIR offers the
best HR performance in DaLiA and WESAD databases
compared to the other methods. The frequency-domain based
WFPV method had the best performance in the IEEE
Test database but not in other datsets. The time-frequency
based SpaMaPlus method was comparably poor in all the
3 datasets, while CNN ensemble algorithm had a relatively
poor performance only for the IEEE Test dataset. Fur-
thermore, SpaMaPlus and CNN methods had one or more
outliers at a clinically unacceptable error range. In contrast,

Fig. 1. Representative sample recordings of predicted HR vs reference
HR from DaLiA dataset. A) Best accuracy, Subject 7. B) Worst accuracy,
Subject 9. Shaded areas represent times with varying activities: 1 Sitting, 2
Stairs, 3 Table Soccer, 4 Cycling, 5 Driving, 6 Lunch, 7 Walking, 8 Working.

Fig. 2. Performance of various HR estimation algorithms for the evaluated
datasets in terms of MAE. Boxes represent interquartile range of HR error,
with the median indicated by a line in the box, and outliers are depicted as
circles.

TAPIR had consistently much lower error for HR estimation
in the presence of intense motion. The slightly higher MAE
for TAPIR in the IEEE Test set is due to a lack of a
clean stationary baseline for initializing the interval tracking
procedure, but the overall accuracy remains relatively higher
despite this challenge.

The MAE performance of HR estimation among the four
methods for each subject in the DaLiA and WESAD datasets
are listed in Tables I and II, respectively. TAPIR has signif-
icantly (P<0.01) lower MAE in both DaLiA and WESAD
datasets (4.6±1.4 bpm and 4.2±1.4 bpm, respectively) and
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TABLE I
HEART RATE (HR) ESTIMATION PERFORMANCE ON DALIA DATASET. VALUES ARE MEAN ABSOLUTE ERROR (MAE) IN UNITS OF BPM.

DaLiA S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 Alla p-valueb

SpaMaPlus 8.9 9.7 6.4 14.1 24.1 11.3 6.3 11.3 16.0 6.2 15.2 12.0 8.5 7.8 8.3 11.1 ± 4.8 < .001
WVPF 9.8 8.2 8.7 11.6 20.9 12.9 6.8 11.3 14.6 6.2 13.7 10.2 7.9 7.0 10.2 10.7 ± 3.8 < .001

CNN ensemble 7.7 6.7 4.0 5.9 18.5 12.9 3.9 10.9 8.8 4.0 9.2 9.4 4.3 4.4 4.2 7.7 ± 4.2 < .01
TAPIR 4.5 4.5 3.2 6.0 5.0 3.4 2.8 6.3 8.0 2.9 5.1 4.7 3.1 5.0 4.1 4.6 ± 1.4 -

a HR estimation performance overall presented as mean ± 1 standard deviation across the 15 subjects.
b P-values from paired sample t-test against the TAPIR method.

TABLE II
HR ESTIMATION PERFORMANCE ON WESAD DATASET. VALUES ARE MAE IN UNITS OF BPM.

WESAD S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S13 S14 S15 S16 S17 Alla p-valueb

SpaMaPlus 7.3 12.6 5.9 7.4 6.4 9.2 8.9 6.3 8.2 16.3 13.0 10.2 8.3 10.7 11.2 9.5 ± 2.9 < .001
WFPV 6.4 22.2 4.4 11.3 5.0 7.0 6.5 5.5 6.0 10.5 9.2 6.6 8.1 7.7 10.5 8.5 ± 4.3 < .001

CNN ensemble 5.1 14.5 7.8 7.7 3.9 6.8 4.3 4.0 8.9 11.1 6.5 5.3 4.3 12.8 9.4 7.5 ± 3.3 < .01
TAPIR 4.5 5.1 3.0 6.8 3.6 5.9 3.9 3.5 2.7 4.3 3.3 2.1 3.8 3.0 6.8 4.2 ± 1.4 -

a HR estimation performance overall presented as mean ± 1 standard deviation across the 15 subjects.
b P-values from paired sample t-test against the TAPIR method.

is highly consistent compared to all the other methods.
Additionally, the average and standard deviation of signed

error for TAPIR are found to be −0.3±1.2 bpm and 7.8±2.4
bpm for DaLiA, respectively. Likewise, bias and precision
of TAPIR in WESAD are −0.2 ± 1.4 bpm and 7.1 ± 2.3,
respectively.

When an additional moving average filter (duration of 1
min and step size of 2 sec) is uniformly applied to both the
reference HR and TAPIR based HR estimations, the TAPIR
method achieves much lower MAE rates of 1.8, 4.2, 3.0, and
2.7 bpm on average for the IEEE Train, IEEE Test, DaLiA,
and WESAD datasets respectively.

HR estimation error for the DaLiA dataset is further
broken down by the type of activities in Table III; TAPIR
outperforms the other methods for every activity type, most
by a large margin.

TABLE III
HR PERFORMANCE (MAE) IN DALIA PER ACTIVITY TYPES.

SpaMaPlus WFPVa CNN Ens. TAPIR

Transition 14.34 11.35 (16.68) 8.77 5.47
Sitting 4.27 18.80 (2.76) 4.93 1.63
Stairs 25.42 22.80 (35.31) 16.98 12.00

Table Soccer 21.48 18.76 (27.35) 12.16 5.78
Cycling 11.97 17.98 (31.94) 12.48 5.14
Driving 6.24 5.69 (7.70) 4.96 3.49
Lunch 7.33 5.89 (8.53) 5.22 3.29

Walking 18.16 13.92 (21.30) 9.21 7.13
Working 4.91 4.16 (4.83) 3.84 2.33

a Parentheses indicate error values for WFPV with an extended range of potential
heart rates from 60-180 bpm to 30-200 bpm.

B. Contribution of each Stage of the TAPIR Method

The performance of various stages in TAPIR are also
evaluated by incorporating successive stages of the algo-
rithm (Table IV). Cascaded adaptive noise cancelling (ANC)
with peak detection is presented as a baseline, where each
accelerometer axis is used in sequence; that resulted in a
clinically unacceptable error range for HR estimation in all

four datasets. Concurrent use of all three axes of ACC for the
adaptive filter had little improvement in HR performance, but
further addition of the remaining elements (peak adjustment,
interval tracking and refinement) drastically reduced the error
rates across all the datasets as listed.

TABLE IV
INCREMENTAL HR ESTIMATION PERFORMANCE (MAE) FOR TAPIR

IEEE Train IEEE Test DaLiA WESAD

Cascaded ANC 8.1 ± 6.7 17.3 ± 13.5 13.2 ± 4.8 13.0 ± 5.5
Concurrent ANC 5.7 ± 3.4 17.1 ± 14.0 13.1 ± 4.8 12.9 ± 5.6

+ Peak Adjustment 3.9 ± 2.7 12.2 ± 9.6 9.6 ± 3.1 7.3 ± 2.1
+ Interval Tracking 2.6 ± 6.1 6.1 ± 3.6 5.1 ± 1.7 4.4 ± 1.4

+ Refinement 2.5 ± 1.2 5.9 ± 3.5 4.6 ± 1.4 4.2 ± 1.4

IV. DISCUSSION

Monitoring HR more reliably and accurately during am-
bulatory conditions including activities of daily living and
physical exercises has tremendous diagnostic and prognos-
tic value for clinicians to assess one’s health, fitness, and
endurance. However, obtaining accurate continuous HR in
the presence of motion using peripheral wearable devices
with simple PPG optical sensing remains a challenge. The
present novel, lightweight TAPIR algorithm achieves consis-
tently high accuracy for HR tracking during intense physical
exercise conditions as demonstrated by the validation results.

A. Comparison to Contemporary Methods

Compared to contemporary algorithms, TAPIR offers sig-
nificantly lower error rates for the challenging DaLiA and
WESAD databases, which most resemble real-world condi-
tions (Tables I and II). Although WFPV shows the strongest
performance for IEEE Test, it struggles with longer, more
varied recordings. Of note, the WFPV approach performed
poorly on the relatively low-noise ’Sitting’ activity (Table
III), primarily due to that method limiting HR between 60-
180 bpm. This range of heart rates is well-suited to the IEEE
datasets, but in DaLiA, HR sometimes falls below 60 bpm.
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Fig. 3. Effects of varying parameters on HR error (MAE) for two example
parameters. Bold red line corresponds to values used in this study. A)
Refractory period RP , during Peak Detection. B) Short-term Lower bound
SL, during Peak Adjustment

By extending the range to a more inclusive 30-200 bpm, the
MAE for the sitting activity is reduced greatly, but at a high
cost of accuracy for all of the other sections (to an average
error of 14.0 bpm overall). This result further evidences that
prediction models that are only trained on the IEEE dataset
may be overfitted and unable to be applied to all situations.

In contrast, the SpaMaPlus and CNN Ensemble methods
exhibit very poor performance with extreme outliers on the
IEEE Test dataset. In addition to high noise, Reiss et al. [14]
attribute some of this error to lack of sufficient training data
for cross validation. This finding highlights the reliance of
these methods on access to an abundance of similar training
data to tune models for different settings. With its shared
set of parameters across all available data, TAPIR does not
suffer from this limitation.

B. Parameter Selection and Generalization

TAPIR algorithm parameters have been optimized without
using machine learning to fit precisely to the data, and
the parameters are kept the same across different datasets,
subjects, sensor types, and physical activities. This practice
stands in contrast to the deep neural network presented by
Reiss et al. [14], where parameters needed to be tuned
carefully to avoid overfitting and loss of generalization. The
current HR algorithm achieves strong performance with the
same parameters for all recordings over distinct datasets.
Thus, the proposed HR estimation is validated to generalize
well for various settings and recording modalities.

For example, Fig. 3 demonstrates the effect of varying two
TAPIR parameters: the refractory period between two peaks
(RP ) and the Short-term Lower bound threshold (SL) in the
peak adjustment procedure. As evidenced in the plot, the final

parameter values (bold red line) offer the best performances
consistently for all four datasets.

C. Merits of the Lightweight Time-Domain Method

As a time-domain method of HR estimation, TAPIR ex-
hibits several advantages over frequency-domain strategies.
For example, working with the time-domain PPG signal
provides the ability to exclude noisy epochs from the HR
estimate. This approach also enables the evaluation of HR
variability for short intermittent segments while maintaining
the continuity of HR outputs as much as possible. Further,
the method is highly suitable for time-varying, irregular, and
unstable HR variations characteristic of arrhythmias such as
atrial fibrillation. At the same time, TAPIR is also well-suited
to customize the HR estimation over long time windows.

An additional advantage that TAPIR enjoys is a high
degree of computational efficiency; the algorithm primarily
consists of simple calculations and a few linear filters.
Further, because all computations are performed on the time-
domain PPG signal, the memory requirements are relatively
low that make TAPIR highly suitable for embedded systems.

D. Limitations and Future Directions

TAPIR is currently tested only on healthy subjects due to
a lack of public databases containing PPG recordings from
patients with conditions such as arrhythmia. Such cases could
prove challenging for the algorithm because of its reliance
on interval regularity. TAPIR is not alone; nearly all state
of the art algorithms also explicitly use this consistency,
often to limit large jumps in HR prediction [9], [10], [12],
[25], [26]. While relying on heart beat consistency is vital
to maintaining HR tracking in high activity conditions for
healthy subjects, it could present difficulties in detection of
certain cardiac disorders.

One way to overcome this challenge is to first determine
whether an arrhythmia is present, whether by manual selec-
tion after diagnosis or during a clean baseline period. Using
that information, the interval tracking could be adjusted or
removed entirely if the heart beat is found to be too erratic.
Another is to evaluate activity level using accelerometer
recordings, and to have more confidence in the peaks de-
tected when activity is low.

As previously stated, frequency-domain methods have
been able to achieve high accuracy for the IEEE database.
Some optimal combination with frequency-domain infor-
mation could improve TAPIR’s HR estimate for the IEEE
database, without harming the high accuracy for DaLiA and
WESAD. One possibility is to combine estimates using some
measure of confidence for both TAPIR and a frequency-
domain approach; for TAPIR, a straightforward metric would
be the standard deviation of the intervals in each time
window. Such a combination could significantly improve the
already strong HR prediction presented in this work.

Overall, TAPIR is a novel method of HR monitoring using
PPG and accelerometer recordings that achieves consistently
high accuracy across a wide range of recording equipment,
people, and activity levels, without additional training or
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modification. Due to computational efficiency, ability to
generalize, and resilience to even high-intensity activity,
TAPIR is an ideal algorithm for wearable devices to be used
during exercise and other everyday activities.
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