
Predicting Single-Unit Activity from Local Field Potentials with LSTMs

Oscar W. Savolainen, Student Member, IEEE, Timothy G. Constandinou, Senior Member, IEEE

Abstract— This paper investigates to what extent Long Short-
Term Memory (LSTM) decoders can use Local Field Potentials
(LFPs) to predict Single-Unit Activity (SUA) in Macaque
Primary Motor cortex. The motivation is to determine to what
degree the LFP signal can be used as a proxy for SUA, for both
neuroscience and Brain-Computer Interface (BCI) applications.
Firstly, the results suggest that the prediction quality varies
significantly by implant location or animal. However, within
each implant location / animal, the prediction quality seems
to be correlated with the amount of power in certain LFP
frequency bands (0-10, 10-20 and 40-50 Hz, standardised LFPs).
Secondly, the results suggest that bipolar LFPs are more
informative as to SUA than unipolar LFPs. This suggests
common mode rejection aids in the elimination of non-local
neural information. Thirdly, the best individual bipolar LFPs
generally perform better than when using all available unipolar
LFPs. This suggests that LFP channel selection may be a
simple but effective means of lossy data compression in Wireless
Intracortical LFP-based BCIs. Overall, LFPs were moderately
predictive of SUA, and improvements can likely be made.

I. BACKGROUND

Brain-Computer Interfaces (BCI) are devices for connect-
ing nervous systems to electronics. The next generation of
intracortical BCIs is expected to be wireless. This is to
remove any transcutaneous connection and its associated
infection risks. An informative signal with low sampling and
communication rate is desirable for Wireless Intracortical
BCIs (WI-BCI) to reduce power consumption. This is to
limit heat dissipation into the brain [1], and to generally
reduce design constraints. Since the advent of intracortical
BCIs, four major representations of intracortical signals have
gained prominence: Broadband recordings, the Local Field
Potential (LFP) signal, Single-Unit Activity (SUA), and
Multi-Unit Activity (MUA) [2]. Of these four, two may be
of particular interest: LFP and SUA.

A. Local Field Potentials

The LFP consists of the large-amplitude low-frequency
oscillation observed in the Broadband neural signal. It is
typically obtained by lowpass filtering the Broadband signal
at 100 to 300 Hz. It therefore has a low sampling rate, often
in the hundreds of Hz, making it compatible with WI-BCIs.

In the motor cortex, LFPs have been found to contain in-
formation relative to motor function [3] [4] [5]. Additionally,
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high-gamma frequency LFPs have been found to be phase-
locked to neural firing rates [6] [7]. LFPs are also robust to
electrode micro-motions, and are chronically recordable [5].

The neural origins of LFPs are still poorly understood
[8]. However, LFPs are believed to result from the sum
of neural activity from cells within 0.5-5 mm laterally of
the electrode, and centimeters vertically. This means that
adjacent electrodes often contain redundant information.

This redundant information can be lessened with bipolar
recordings, where the electrode is referenced to a nearby
electrode. In contrast, unipolar recordings reference elec-
trodes to a distant electrode with ‘neutral’ voltage. In bipolar
recordings, the portion of the LFP that is due to distant
neural activity is suppressed via common mode rejection.
This allows the LFP contribution of only neurons in the
vicinity of the electrode pair to be extracted. However, taking
bipolar recordings from between n electrodes increases the
number of recordings by (n2-n)/2, much of which contains
redundant information. As such, bipolar recording can be
incompatible with bandwidth reduction. This is unless some
channel selection strategy is used, discussed in Section I C.

B. Single-Unit Activity

SUA consists of identifying which neurons are firing and
when from the broadband neural recording. Firstly, the raw
broadband signal is highpass filtered to remove the LFP. Any
observed spikes, generally with significant high-frequency
components, are then clustered together based on shape and
amplitude. SUA recordings are generally held to have the
highest information content of the three major derivative
representations (LFP, SUA, MUA). This is because the
contributions of individual neurons to the overall signal are
explicitly identified [2]. However, the SUA encoding often
deteriorates in quality over the course of a few months after
implantation of the electrodes. This is due to the foreign body
response where the electrodes are encapsulated by fibrous
scar tissue [9], which acts as a highpass filter, filtering out
the spike shapes. Additionally, SUA may be prohibitively
computationally expensive to compute on-implant in WI-
BCIs without a computer-to-implant downlink [10]. As such,
SUA is highly informative, but unstable and perhaps too
computationally expensive for WI-BCIs.

C. Using LFPs to predict SUA

The correlation and relationship between SUA and LFP
have been studied extensively [11]. SUA has even been
predicted using < 5 Hz LFPs with linear decoders [3].
Predicting SUA from LFPs is interesting because it indi-
cates common information. A large amount of common
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information would suggest that a low-frequency, chronically
available encoding of SUA would be available in the LFP.
This would mean the easy-to-measure and stable LFP could
be used as a WI-BCI compatible proxy for SUA, and may
have neuroscience implications for the analysis of SUA.

However, to the best of the author’s knowledge, no one
has used Long Short-Term Memory (LSTM) decoders to
predict SUA from LFPs. LSTMs are a form of Artificial
Neural Network (ANN). They are one of the only Machine
Learning algorithms that can perform non-linear sequence-
to-sequence prediction [12]. As such, they are a very useful
tool for predicting SUA from LFPs, where the relationship
is presumed to be non-linear. Accordingly, LSTMs have per-
formed very well in BCI Behavioral decoding tasks relative
to other decoders [13] [14] [15].

As aforementioned, there can be significant redundancy
across LFP channels. Classic feature reduction methods
such as Principal Component Analysis (PCA) may be too
computationally expensive in WI-BMIs. This is due to the
significant continuous operations. Therefore, it would also
be interesting to determine how well individual channels
predict SUA relative to when using all available channels.
If they perform well, it would indicate that effective channel
selection could reduce bandwidth. As such, a very computa-
tionally inexpensive proxy for SUA would be available.

Therefore, this paper investigates whether LSTMs can be
used to predict SUA from LFPs. Both unipolar and bipolar
LFPs are considered. Additionally, this paper compares the
effects of using single versus multiple LFP channels in the
prediction. To the best of the authors’ knowledge, neither of
these points have been considered before.

II. METHODS

A. Data

All work was done in MATLAB R2018a, using neural
recording data from Andrew Jackson and Thomas Hall [3].
The data consists of raw Broadband microwire recordings
from Macaque Primary Motor cortex, sampled at 16-bit
resolution and 24.4 kHz. The data came from 3 animals
(Dusty, River, Silver) and a ‘Ukiah’ dataset, which was
understood to originate from one of the 3 animals but using
a different microwire array. The recording lengths belong to
vector RL = [205, 364, 396, 473, 646] s. Respectively, the
values are the minimum recording length, the 1st quartile,
the median, the 3rd quartile, and the maximum.

The SUA was extracted using Wave Clus with standard
settings [16]. MUA channels were not considered. The LFP
was obtained by lowpass filtering the raw recording at 100 Hz
with the lowpass function, which applies a 3rd order FIR
filter. The LFPs were then downsampled to 500 Hz, and the
SUA was binned using non-overlapping 2 ms bins. Bipolar
LFPs were obtained by subtracting Unipolar LFPs from each
other after filtering and downsampling.

B. Decoder structure and hyperparameters

The LSTM decoder consisted, in order, of a Sequence
Input layer, an LSTM layer with 3 hidden units, a Fully

Connected layer with number of neurons equal to the num-
ber of SUA channels, and a Regression layer. The Adam
optimization algorithm was used, along with an initial learn
rate of 0.005. A learn drop rate of a quarter of the number
of epochs, and learn drop rate factor of 0.2 were used. The
gradient threshold was set to 1.

C. Decoder parameter optimization

Firstly, the data was standardized. Then, various parame-
ters were optimised for both the unipolar and bipolar LFP-
SUA predictions. Firstly, whether to feed the data in as
a continuous sequence or in overlapping segments of 2 s
duration, inspired from the work in [3]. Secondly, if and
how many times to smooth the binned SUA data using a
moving average filter. Thirdly, the width of the potential
moving average window. Lastly, the use of bidirectional v.
unidirectional LSTM networks. No other LFP processing or
feature extraction was considered other than the standardis-
ation and potential segmentation.

A 75-25% training-testing split was used, along with a 75-
25% training-validation split of the training data within the
parameter optimisation. 1000 epochs were used for the con-
tinuous data and 100 for the segmented data. The parameter
optimization was repeated 10 times for each parameter and
recording combination, and the average result used.

The mean Pearson correlation value r between the pre-
dicted and actual SUA (averaged across all SUA channels)
was used to measure the decoder performance.

D. Decoder evaluation

After parameter optimization, the final performance of the
LSTMs was evaluated using the testing data. They were
evaluated in two configurations. Firstly, they were tested
in Multiple-Input-Multiple-Output (MIMO) configuration,
where all of the LFP channels were used to predict the SUA
from all of the electrodes. Secondly, they were tested in
Single-Input-Multiple-Output (SIMO) configuration, where
each individual LFP channel was used to predict the SUA
from all of the electrodes. SIMO was used to determine the
potential performance of channel selection. The same pa-
rameters were used for SIMO as MIMO. This is because the
SIMO parameter optimization would have taken a prohibitive
amount of time on the order of many months. The MIMO
parameters were assumed to generalise to SIMO, as they
mainly concerns SUA processing. The same data is contained
in MIMO as in SIMO, if in aggregate form.

The results were obtained by taking the median perfor-
mance of 5 identical networks trained for each recording
and channel combination. Out of 66 available recordings, 7
failed due to time-out errors. The computational cluster used
for the network training and testing limited job length to
24 h, which was exceeded by the failed jobs. As such, an
n of 59 recordings is considered in the following analysis,
with no other screening. The 7 failed recordings were not
repeated due to timing constraints and because an n of 59
gave statistically significant results.
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Fig. 1. Unipolar SIMO box plots. Each column represents a recording. The
y-axis represents the box plot of each recordings’ channels ability to predict
the SUA. 12 electrodes were used in recordings 1-37, 24 in recordings 38-62,
and 10 in recordings 63-64. Recordings 1-23 are from macaque Dusty, 24-37
from macaque River, 38-48 from macaque Silver, 49-62 from Silver using
another setup, and 63-66 from ‘Ukiah’ recordings, subject unknown. Vertical
red lines delineate animals. Empty columns represent failed recordings.
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Fig. 2. Bipolar SIMO box plot. The dataset details are the same as for the
Unipolar recordings in Fig. 1.

III. RESULTS

A. Parameter optimisation results

The parameter optimization findings were that using con-
tinuous data, twice smoothing the SUA recordings with 0.5 s
moving average window, and using a bidirectional LSTM
gave the best performance. The bidirectionality increased
r by approximately 0.03 across the different datasets and
parameter combinations. In this paper bidirectional LSTMs
were used. However, in future practical BMI-related work,
unidirectional LSTMs should be used due to the real-time
decodability constraint. 300 epochs were used for training.
This is because the performances during network training
were relatively stable, as observed graphically, while rela-
tively rapid. Increasing the number of epochs lead to log-
arithmically better performance, at the cost of computation
time.

B. Decoding test results

Table I contains the decoder test results. The Best Channel
SIMO corresponds to the best performing LFP channel in
each recording. It is the main channel that would be se-
lected in a successful on-implant channel selection algorithm.
The best channels were not necessarily the same channels
for each recording, and were selected on a recording-by-
recording basis. The results from using the median perform-
ing channel per recording are also included, i.e. Median
Channel SIMO. This is because it is a channel that is likely
to be selected in the case of an indiscriminatory channel
selection. The SIMO channel box plots are shown in Fig. 1
and 2. For unipolar and bipolar modes respectively, they give
the SIMO r between the actual and predicted SUA.

C. Findings

There were three major findings.

TABLE I
PEARSON CORRELATION BETWEEN ACTUAL AND PREDICTED SUA FOR

SPECIFIED RECORDING, UNIPOLAR V. BIPOLAR LFPS AND SIMO V.
MIMO LFP INPUT

Unipolar channels Bipolar channels
Recording Best Median Best Median

MIMO Channel Channel MIMO Channel Channel
SIMO SIMO SIMO SIMO

R
ec

or
di

ng
s

fr
om

A
ll

an
im

al
s Worst 9.6 5.6 3.5 6.9 10.4 3.1

1st quartile 18.0 17.3 9.7 15.6 21.0 11.1
Median 26.6 25.1 13.9 23.3 30.0 18.7
3rd quartile 42.7 39.5 28.6 40.2 42.6 35.0
Best 59.6 52.7 45.7 57.7 55.0 46.1

Mean 30.1 28.4 19.8 27.9 31.7 22.7

R
ec

or
di

ng
s

fr
om

D
us

ty
an

d
‘U

ki
ah

’ Worst 24.5 16.4 9.7 23.6 33.1 26.1
1st quartile 39.2 34.4 25.9 37.6 38.5 31.9
Median 46.1 43.6 35.2 44.4 45.4 38.1
3rd quartile 49.1 47.7 40.3 48.7 49.7 42.5
Best 59.6 52.7 45.7 57.7 55.0 46.1

Mean 44.1 41.3 32.5 42.8 44.6 37.2

R
ec

or
di

ng
s

fr
om

Si
lv

er
an

d
R

iv
er Worst 9.6 5.7 3.5 6.9 10.4 3.1

1st quartile 16.5 15.7 8.6 11.5 18.6 9.5
Median 19.3 18.3 11.2 16.5 22.4 11.8
3rd quartile 24.2 22.6 12.9 20.5 27.2 15.5
Best 36.8 37.3 19.5 36.0 38.1 24.2

Mean 20.1 19.5 11.1 17.2 22.9 12.8

One-sided t-test results:
(a) Bipolar Median Channel SIMO > Unipolar Median Channel SIMO

Dusty and ‘Ukiah’: p = 1.6e-4; Silver and River: p = 6.9e-5
(b) Bipolar Best Channel SIMO > Unipolar Best Channel SIMO

Dusty and ‘Ukiah’: p = 3e-3; Silver and River: p = 3.4e-10
(c) Bipolar Best Channel SIMO > Unipolar MIMO

Dusty and ‘Ukiah’: p = 0.294; Silver and River: p = 1.9e-7

Pearson correlation values given in %.

1) Significant unexplained variation between animals:
The Unipolar Best Channel SIMO for every Dusty and
‘Ukiah’ recording produced a median r of 43.6%, and
the bipolar equivalent was 45.4%. Together, the River and
Silver recordings only had a best-channel unipolar median
of 18.3%, and a bipolar median of 22.4%.

Furthermore, Linear Regression Analysis using fitlm
was performed. The Unipolar MIMO performance was
used as an estimate for the recording’s prediction quality.
The mean standard deviation, pre-standardisation but post-
smoothing, of the SUA was used as a measure of the
neurons’ level of activity. Also considered was the recording-
averaged LFP power across the channels in 10 Hz bands,
with 5 Hz overlap, between 0 and 100 Hz. The power was
taken from standardized LFPs. The recording length was also
included. The Unipolar MIMO performance had a bimodal
distribution, with Dusty and ‘Ukiah’ recordings performing
better than River and Silver recordings. As such, a categorical
variable c ε [0 1] was used to delineate Dusty and ‘Ukiah’
recordings (1) from Silver and River (0). This led to approx-
imately normal distributions within each category.

During the analysis, predictors were sequentially removed
from the model if they had p-values below 0.05, or if their
inclusion did not increase the adjusted R2 value by more than
0.01. The final result of the regression analysis is given in
Table II. The model’s adjusted R2 is 0.824 and has a p-value
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TABLE II
LINEAR REGRESSION ANALYSIS RESULTS

Variable Type Estimate tStat p-value

Intercept Continuous -0.0966 -1.11 0.271
0-10 Hz Continuous 0.305 2.87 0.00584
10-20 Hz Continuous 0.717 3.32 0.00162
40-50 Hz Continuous 1.08 2.54 0.0138
Dusty and Ukiah Categorical 0.214 11 2.11E-15

of 1.5e-20. The Durbin-Watson test does not show significant
1st order autocorrelation (p=0.12). Removing the categorical
variable c reduces the adjusted R2 value to 0.44. Removing
the LFP power variables reduces the adjusted R2 value to
0.75. As such, it seems that there is significant variability
between animals that is unexplained. However, within each
category of animal, the mean power in certain LFP frequency
bands is a statistically significant indicator of the quality of
the MIMO LFP-to-SUA prediction.

2) Bipolar channels seem to be broadly more informative
than unipolar channels: In SIMO, bipolar recordings con-
sistently outperform unipolar recordings. This is true, across
animals, whether the best or the median performing channel
per recording is used. This can be observed in Table I;
One-sided t-test results (a) and (b). Interestingly however,
in MIMO, unipolar channels seem to outperform bipolar
channels. This is even though they contain the same data.
However, in unipolar MIMOs, the data is in a condensed
form. Additionally, the bipolar Best Channel SIMOs mostly
outperform the bipolar MIMOs. MIMOs have access to all
the data used in the Best Channel SIMOs, and more. These
two observations suggest that the Curse of Dimensionality
(CoD) [17] is likely a factor in bipolar MIMOs.

3) Significant reductions in channel count, and thus band-
width, seem to be possible with effective channel selection:
This is evidenced by the Bipolar Best Channel SIMO >
Unipolar MIMO result. This can be observed in Table I; One-
sided t-test result (c). Reducing the bandwidth via effective
channel selection does not result in significant losses in
SUA predictivity. Here, effective channel selection means
selecting the Bipolar Best Channel SIMO. In Silver and
River, effective channel selection even seems to results
with gains in LFP-to-SUA decoding performance. In Dusty
and ‘Ukiah’ the strictly greater result was not statistically
significant. The bandwidth savings varied from 90% to 96%
depending on the original number of electrodes (10 to 24).

IV. DISCUSSION

A. Improving LFP-SUA prediction

Overall, the results are mixed. On the one hand, the
best MIMO case established a 59.6% correlation between
actual and predicted SUA, across recordings hundreds of
seconds in length with limited optimisation and no LFP
feature extraction. On the other hand, even in the best case,
1 − 0.5962 = 64.5% of the variance in the observed SUA
has not been explained. As such, it is unclear from this paper
whether LFPs can be used as a proxy of sufficient quality
for SUA. It could be interesting to see to what extent using

only the top 2-3 channels improves decoder performance.
The CoD may have been a factor even in the unipolar MIMO
decoders. As such, one could limit the number of channels
in MIMO configuration to 2-3 custom-selected channels,
especially bipolar channels. This may improve the decoder
performances. Increasing the number of epochs beyond 300
is also likely to increase performance.

B. LFP feature extraction

No feature extraction was implemented on the LFP data.
Since the desirable features are unknown, it was left to
the decoder to apply non-linear transformations to the data.
Future work should be concerned with the identification of
these features.
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