
 

 

 

  

Abstract— This paper proposes an automatic method for 

classifying Aortic valvular stenosis (AS) using ECG 

(Electrocardiogram) images by the deep learning whose training 

ECG images are annotated by the diagnoses given by the medical 

doctor who observes the echocardiograms.   Besides, it explores 

the relationship between the trained deep learning network and 

its determinations, using the Grad-CAM.   

In this study, one-beat ECG images for 12-leads and 4-leads 

are generated from ECG’s and train CNN’s (Convolutional 

neural network). By applying the Grad-CAM to the trained 

CNN’s, feature areas are detected in the early time range of the 

one-beat ECG image. Also, by limiting the time range of the 

ECG image to that of the feature area, the CNN for the 4-lead 

achieves the best classification performance, which is close to 

expert medical doctors’ diagnoses.  

 
Clinical Relevance— This paper achieves as high AS 

classification performance as medical doctors’ diagnoses based 

on echocardiograms by proposing an automatic method for 

detecting AS only using ECG. 

I. INTRODUCTION 

For medical examinations of cardiovascular disease, ECG 

(electrocardiogram), which is simple and non-invasive, is 

widely used regardless of the scale of medical institutions. 

However, medical doctors are required much knowledge and 

long experience in interpreting ECG. Aortic valvular stenosis 

(AS) is a severe heart valvular disease. It could lead to heart 

failure, syncope, or sudden death, but it is difficult even for 

expert medical doctors to detect AS only using ECG. In 

general, echocardiography is needed for definitive diagnosis.     

In recent years, in rural areas in quite many countries such 

as Japan, the shortage of medical doctors has got serious. 

Moreover, the medical examination of AS using 

echocardiography is almost impossible due to the above-

mentioned shortage and/or high cost of echocardiography. It 

can be said that the actualization of an automatic system for 

diagnosing AS using ECG is desired.   

Conventional related work includes deep learning based 

methods for detecting arrhythmia using ECG. Rahhal et al. 

[1] developed an efficient and robust network that can classify 

four kinds of arrhythmia by active learning using features 

obtained by deep learning. Acharya et al. [2] achieved an 

accuracy of 94% for categorizing five types of arrhythmias. 

Hannun et al. [3] accomplished a detection accuracy of expert 
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medical doctors’ level using the home-use device called Zio 

monitor.  

Some other studies developed systems that can distinguish 

the presence or absence of arrhythmia. Goto et al. [4] applied 

RNN (Recurrent neural network) to 12-lead ECG time-series 

data to judge the necessity of revascularization surgery for 

acute coronary syndrome. Also, Attia et al. [5] proposed an 

inexpensive and noninvasive method for determining  

asymptomatic left ventricular dysfunction (ALVD). It 

obtained high false-positive results, but it revealed that the 

false-positive data correspond to the patient whose probability 

of developing ALVD in the future is four times as high as the 

current true-negative person. 

However, the aforementioned conventional studies do not 

clarify how the network generated by deep learning interprets 

the input and outputs the judgment (diagnosis). Due to 

differences in human bodies, exceptional data for the network 

might exist. Even in such a case, it is necessary to be able to 

verify whether the judgment outputted from the network is 

appropriate from the medical point of view. 

This study focuses on AS, because AS is one of the most 

serious valvular diseases, and, to the best of our knowledge, 

no work on the automatic prediction of AS can be seen. This 

paper proposes an automatic method for classifying AS using 

ECG by the deep learning network that is trained using ECG 

training images, each of which is annotated by the medical 

doctor who performs the echocardiography that corresponds 

to the ECG image. In this way, echocardiography based on 

diagnosis is expected to be outputted by inputting only ECG 

of an unknown patient to the trained network.   

Furthermore, to clarify how the trained network interprets 

the input data and outputs the determination, using the 
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Figure 1. Outline of our proposed methods 
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Gradient-weighted Class Activation Mapping (Grad-CAM) 

[6]. This paper explores whether the trained network’s 

decision matches the medical doctor’s criteria.  

II. PROPOSED METHOD 

As shown in Fig. 1, the proposed method consists of the 

training phase, classification (prediction) phase, and analysis 

phase. At first, the training phase trains a Convolutional 

Neural Network (CNN), and in the classification phase, the 

trained CNN distinguishes AS or not using ECG of an 

unknown patient. Then, in the analysis phase, the Grad-CAM 

is used for analyzing the prediction outputted from the trained 

CNN, to feedback the analysis to the training phase. 

In the training and classification phases, we make 2D 

waveform images (ECG images) from numeric data for 

training and classification, respectively. Then, in the training 

phase, the ECG image annotated by the inspection result 

given by the cardiologist is inputted to the CNN network, so 

that the CNN network is trained. In the next phase, the ECG 

image of an unknown patient is inputted to the trained 

network so that the network outputs the decision: “AS” or 

“not AS”.   

A. Preprocessing 

ECG data is stored in the MFER format [7-9], which is a 

standard for converting general medical waveforms to 

numeric data, and vice versa. Then, we conduct the following 

preprocessing based on the literature [10] to the ECG data. 

The V5 lead, one of the 12-leads of ECG, is used to detect 

peaks. First, we decompose the signal into coefficients by 

applying the Wavelet Transform. Second, the coefficients are 

thresholded to remove the baseline. Third, using the patient’s 

heart rate, peaks of the R wave are detected. Fourth, based on 

the obtained peaks, the duration from the first to second peaks 

in the original signal is extracted as a one-beat. Fifth, the one-

beat data are temporally re-sampled to obtain 1,000-signal 

data. Finally, the one-beat ECG image is created as shown in 

Fig.2, in which the horizontal and vertical directions of the 

image indicate the signal (time) and potential, respectively.  

Here, we make the following two kinds of one-beat images, 

which use all of the 12-leads (Fig.2(a)), and only the four 

leads: I, aVL, V5 and V6 (Fig.2(b)). The four leads are 

frequently observed by medical doctors for diagnosing left 

ventricular hypertrophy, which is common symptoms in AS 

patients. In the one-beat image, ECG signal values (potential) 

range between -3 and 3mV.  

B. Network 

Each one-beat image for training is annotated by the 

examination (“AS” or “not AS”), which is based on the 

guideline of the Japanese Circulation Society [11]. “AS” 

corresponds to “moderate AS” or “severe AS”, and “not AS” 

corresponds to “functionally normal”.  

For the CNN network, this paper uses VGG16 [12], 

because it consists of 16 layers with a 3x3 pixel convolution 

filter, which leads to high categorization accuracies.   We train 

our network by the fine-tuning whose initial weights are 

ImageNet’s weights, so that reasonable feature extractions are 

possible despite a small number of training data.  

C. Visualize the features by Grad-CAM 

We use the Grad-CAM to visualize the gradients of the 

final convolutional layer of the CNN network in a heatmap. 

The heatmap can be used for analyzing factors that influence 

the classification result.  Figure 3 (a) shows an example of the 

obtained Class Activation Mapping (heatmap). The 

definitions of the horizontal and vertical directions of the map 

are the same as those of the one-beat ECG image, and the 

color of each pixel indicates the gradient value (score). The 

maximum score obtained from the heatmap is used for 

normalizing the value of each pixel by dividing each pixel’s 

score by the maximal score. Then, the normalized score of 

each pixel is thresholded by 0.5 so that the feature areas, each 

of which consists of connected pixels whose scores are 0.5 or 

greater are extracted. In Fig. 3 (b), the white pixels indicate 

the pixels included in the feature area obtained from the 

heatmap in Fig. 3 (a). Finally, each feature area is surrounded 

by a bounding box (Fig. 3 (c)), and the bounding box is used 

for the analysis.  

III. EXPERIMENTAL RESULTS 

A.  Dataset and Experiment 

Among the 45,478 ECG data recorded from March 29, 

2014, to July 10, 2019, at Todachuo General Hospital, we 

selected 3,513 data whose patients had echocardiograms 

within three months after taking their ECG. This study 

involving human subjects was approved by the Institutional 

Review Board of Todachuo General Hospital. Informed 

consent was waived because of the retrospective nature of this 

study. If multiple data of the same person are included, no 

data or one data is extracted, and the others are excluded. The 

data of patients using pacemakers are not included in the study.  

Consequently, the number of ECG data used for the 

experiments is 700.  The data include 108 data of “not AS” 

and 592 data of “AS”. In our study, 108 data of “not AS” are 

randomly selected. Overall, these data are divided into three 

groups: 128 for training, 44 for validation, which checks if the 

 
Figure 3. Detecting Feature area using Grad-CAM 

 
Figure 2. Input images: (a) 12 leads the one-beat image. (b) four leads the 

one-beat image 
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weights of the network are good, and 44 for the test. Each 

group has the same number of “AS” and “not AS” data.    

We trained four networks, which are detailed in Sections 

III.B and III.C. To train these networks with SGD (stochastic 

gradient descent), we used Keras and three NVIDIA GeForce 

1080Ti’s. About training conditions, the learning rate was 

initialized to 0.0001 and batch size was 16.  
 

B. Results of one-beat input networks 

 We trained two networks using the one-beat image with 

two different numbers of the lead: 12 and 4. TABLE Ⅰ shows 

the average rates of accuracy, recall, precision and F-measure 

of the test results, where the average rates are computed for 

the test data. As shown in TABLE Ⅰ, the evaluations for the 

12-lead are better than 4-lead except for the recall rate. 

For analyzing how these two networks recognize the input 

data, we applied the Grad-CAM to both networks. The results 

are shown in Fig. 4. In each network, a feature area is detected 

in the left part in the heatmap (early time range) in more than 

16 out of the 44 data. The feature area is included in the ST-

T part of ECG, where the ST-T part is from the end of the 

QRS wave to the T wave. As can be seen, the feature areas in 

the 4-lead (red bounding box) and 12-lead (blue) exist at 

almost the same position in the ECG image. Each of the two 

bounding boxes is obtained by averaging the heights and 

widths of the data in which the feature area could be found.  

From these results, the position of the two feature areas is 

expected to play an important role in the classification. 

Therefore, as described in Section III.C, we build two models 

whose time range is close to that of the feature areas. 

 
TABLE I. Evaluation of the one-beat input networks 

 

C. Result of Input type of Feature Area models 

The time (signal) range of the two networks mentioned in 

Section III.B. is limited between 200th and 400th signals in 

the 1000 signals (the normalized duration for one-beat) to 

focus on the feature area. The signal values of all the input 

images are normalized so that the signal values range between 

-1 and 1[mV].  The classification results are listed in TABLE 

Ⅱ. According to it, the 12-lead accuracy achieved 81.8%, 

while the 4-lead accuracy got 88.6%. Overall, these results are 

better than the results listed in TABLE Ⅰ.  In particular, the 4-

lead focusing on the feature area obtained the best results, as 

shown in TABLEs Ⅰ and Ⅱ. 

 
TABLE II. Evaluation of the feature area input networks 

 

From these consequences, it can be said that limiting the 

time range to the duration for the ST-T feature area and using 

the 4-lead improves the classification accuracy significantly, 

compared with the 12-lead with the full-time range (one-beat 

duration). In case of AS, it is considered that the ST-T part 

reflects the condition in which the left ventricular is 

overloaded and blood flow is restricted. Other parts of ECG, 

such as the R wave, seem not to be essential for the diagnosis.  

IV. DISCUSSION 

This chapter explores the relationship between medical 
doctors’ criteria and the judgment results described in Sections 
III.B and III.C. For this exploration, we need the doctor’s 
criteria for inspecting AS using the echocardiogram. Each 
country has a diagnostic rule. In Japan, as listed in TABLE Ⅲ, 
AS severity is defined according to the following three items; 
maximum value of aortic flow velocity, mean pressure 
gradient and aortic valve area by continuity equation [11]. 

Based on the three items, we analyze FN (false negatives) 
outputted from two or more of the four models (networks).  
Examples of such a case are the AS patient data AS_1 to AS_4 
in TABLE Ⅳ, in which 0 and 1 indicate FN and TP (true 
positive) predictions outputted from each of the four models, 
respectively. As shown in TABLE Ⅳ, AS_1’s judgment is TP 
in case of 4-lead, but FN in case of 12-lead, while AS_2’s is 
TP in case of one-beat, but not feature area. In contrast, AS_3 
and AS_4 data do not give an accurate decision from any 
model. Here, AS_2, AS_3 and AS_4 in TABLE Ⅳ are only 
three FN data in case of the 4-lead, feature area. It can be seen 
that these data tend to be misclassified also by the other models 
(networks).  

TABLE III. Diagnostic criteria for degree of AS severity 

   

From TABLE III, the values for the three items in AS_2 to 

AS_4 correspond to moderate or severe. Therefore, AS_2 to 

AS_4 can clearly be diagnosed as AS using echocardiography, 

but are incorrectly classified as shown in TABLE Ⅳ. In 

contrast, AS_1 cannot easily be determined correctly even if 

echocardiography is used., That is, AS_1 data is close to mild 

 (i)12-lead ECG (ii)4-lead ECG 

Accuracy 79.5% 77.3% 

Recall 72.7% 77.3% 

Precision 84.2% 77.3% 

F-measure 78.0% 77.3% 

 (iii)12-lead ECG (iv)4-lead ECG 

Accuracy 81.8% 88.6% 

Recall 81.8% 86.4% 

Precision 81.8% 90.5% 

F-measure 81.8% 88.4% 

 mild moderate severe 

the maximum value of 

aortic flow velocity [m/s] 

< 3.0 3.0 − 4.0 ≥ 4.0 

mean pressure gradient 

[mmHg] 

< 25 25 − 40 ≥ 40 

aortic valve area by 

continuity equation [cm2] 

> 1.5 1.0 − 1.5 ≤ 1.0 

 
Figure 4. 12-lead and 4-lead one-beat images and their averaged 

bounding boxes of the feature areas. Blue and red bounding boxes for 12-

lead and 4-lead one-beat images , respectively.  
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due to the values for the flow velocity and mean pressure 

gradient, but is severe according to the value for aortic valve 

area.  AS_5 and AS_6 have small values for both flow 

velocity and mean pressure gradient. Particularly in AS_5 

data, two parameters excluding the aortic valve area are mild. 

In this case, expert medical doctors diagnose, considering 

other parameters such as skeleton, blood volume and left 

ventricular ejection fraction. All of the four models predict 

correctly for AS_5, while for AS_6, correctly except for 4-

lead, one-beat.  
As described in Section III.B and III.C, our proposed 

method can accurately classify at high probabilities, which is 
similar to the doctor’s criteria. However, our final goal is to 
predict accurately, even in such a delicate situation.  For this, 
we still need to collect more various AS data for further 
analyses. 

V. CONCLUSION 

This paper has proposed an automatic method for 

classifying AS from an ECG image by the CNN trained using 

the ECG images annotated by the diagnoses given by the 

medical doctor who observes the echocardiograms. Also, this 

paper has explored the relationship between trained CNN and 

its decision using the Grad-CAM.   

As a result of training CNN’s, by which one heartbeat ECG 

images are distinguished, and visualizing the trained CNN’s 

by the Grad-CAM, feature areas are detected in the ECG 

image. By limiting the time range of the ECG image to that of 

the feature area, better classification results than the one-beat 

were achieved for 4-lead ECG images. This performance is 

close to medical doctors’ diagnoses based on the 

echocardiograms.     

In the future, we need to collect more AS data so that more 

accurate classification is possible.   
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TABLE IV. AS data for analysis: AS_1 to AS_4 are data whose predictions by two or more models are incorrect. AS_5 and AS_6 are difficult for doctors 
to judge.  1: TP; 0: FN. 

AS patient data ID (identifier) AS_1 AS_2 AS_3 AS_4 AS_5 AS_6 

AS severity 
mild - 

moderate 

mild - 

moderate 
moderate moderate 

moderate - 

severe 
severe 

the maximum value of aortic flow 

velocity [m/s] 
2.2 3.2 3.7 3.7 2.5 2.6 

mean pressure gradient  

[mmHg] 
20 40.7 54 53.4 15.0 27.8 

aortic valve area by continuity equation 

[cm2] 
0.9 1.2 0.7 0.8 0.5 0.4 

(i) 12-lead, one-beat image 0 1 0 0 1 1 

(iii) 12-lead, the feature area image 0 0 0 0 1 1 

(ii) 4-lead, one-beat image 1 1 0 0 1 0 

(iv) 4-lead, the feature area image 1 0 0 0 1 1 
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