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Abstract—This paper presents an integrated computational 
modelling framework combining pedestrian dynamics and 
infection spread models, to analyse the infectious disease 
spread during the different stages of air-travel. While, 
commercial air travel is central to the global mobility of goods 
and people, it has also been identified as a leading factor in 
the spread of several epidemic diseases including influenza, 
SARS and Ebola. The mixing of susceptible and infectious 
individuals in these high people density locations like airports 
involves pedestrian movement which needs to be taken into 
account in the modelling studies of disease dynamics. We 
develop a Molecular Dynamics based social force modeling 
approach for pedestrian dynamics and combine it with a 
stochastic infection dynamics model to evaluate the spread of 
viral infectious diseases in airplanes and airports. We apply 
the multiscale model for various key components of air travel 
and suggest strategies to reduce the number of contacts and 
the spread of infectious diseases. We simulate pedestrian 
movement during boarding and deplaning of some typical 
commercial airplane models and movement of people through 
security check areas. We found specific boarding strategies 
that reduce the number of contacts. Further, we find that 
smaller airplanes are more effective in reducing the number 
of contacts compared to larger airplanes. We propose certain 
queue configuration that reduces contacts between people and 
mitigate disease spread.   

1. Introduction

Air travel brings together people from different geographic 
regions with different levels of vulnerability and 
receptivity due to variations in immunity, ethnic 
background, and intervention usage across geographic 
areas [1]. Public transportation in general and air travel in 
particular have been identified as leading factors in the 
spread of several infectious diseases including influenza, 
SARS, tuberculosis, measles  and norovirus [2-8]. The high 
economic and public perception costs on the transportation 
sector due to epidemic events necessitate transportation 
policy that addresses mitigation. Our goal is to produce a 
science-based analysis of public policy options that can 
lead to mitigating the spread of diseases without disrupting 
air travel [9-13].  

When investigating control strategies to suppress disease 
propagation among a group or population, the contact 
pattern between the interacting individuals should be 
considered and mapped. Contact analysis provides a better 

insight on the interaction between individuals. We use a 
new approach in which pedestrian dynamics modeling is 
used to track the trajectories and evaluate the contacts that 
could potentially arise among a crowd of infected and 
susceptible individuals. Pedestrian Dynamics has been 
addressed using several approaches such as cellular 
automata [14], fluid flow [15], queuing [16] as well as 
particle dynamics based approach called social force 
models [17, 18]. Among these different approaches, social 
force models have specific advantages for studying 
passenger movement and contacts in airplanes as each 
traveller is modelled individually and moves continuously. 
This enables tracking the individuals’ trajectories and 
estimation of the contacts between pedestrians. Social force 
models of pedestrian movement are essentially based on 
molecular dynamics (MD). Social force models extend the 
concepts of molecular dynamics to pedestrian movement. 
Here, the forces are a measure of the internal motivation of 
individual pedestrians to move towards their destination in 
presence of obstructions like other pedestrians and objects 
(e.g. walls and chairs).  

Social force models have been applied to crowd 
simulations in panic situations [18], traffic dynamics [19], 
evacuation [20] and animal herding [21]. Algorithmic 
developments have included generation of force fields 
using visual analysis of crowd flows [22], explicit collision 
prediction[23], and collision avoidance [24]. Here, we 
apply social force model in a mulitiscale framework to 
study the pedestrian contact evolution and infectious 
disease spread during various aspects of air travel. 

Movement of pedestrians during air-travel is a special case 
of a more general problem of pedestrian movement. 
Several researchers have studied the pedestrian movement 
at airports especially from the viewpoint of airport 
operations and reduction of the turnaround time of 
airplanes at terminals. For instance, Schultz et al. [25] 
model the intuitive behavior of airport travelers under 
emergency situation by a cellular automaton model. In this 
model, the floor area is subdivided into small partitions 
where pedestrians may switch positions with neighboring 
spots based on a probabilistic distribution. Several other 
investigators used agent-based models to model pedestrian 
motion and passenger flow in airport terminals [26, 27]. 

© IEEE 2020. This article is free to access and download, along with rights for full text and data mining, re-use and analysis. 



2 

Other studies model the flow of pedestrians to their 
destinations by optimizing the guiding signs [28]. 
Pedestrian movement in airports is peculiar because it 
involves a series of nondiscretionary as well as 
discretionary activities. For example, prior to their 
scheduled flights, travellers fulfil the trip requirements 
starting from check-in, security and boarding. Once these 
processing steps are completed, they are often involved in 
individual or collective discretionary activities such as 
dining and shopping at the departure terminal [29, 30]. The 
airport environment and building layout have a great 
influence on the passengers’ movements, choice and 
perception of activities preference over a set of alternatives 
[28, 31]. This uncertainty creates additional challenges in 
modeling the pedestrian motion at airports. Despite these 
studies, no work has focused on the effect of pedestrian 
movement on airborne disease propagation during air 
travel.  

We address this problem through a multiscale model that 
combines pedestrian dynamics with stochastic infection 
spread models. The purpose of the pedestrian dynamics 
model is to generate the trajectories of motion and contacts 
between infected and susceptible individuals in various 
travel stages such as enplaning, deplaning and progressing 
in winding queues for booking or security checking. We 
incorporate this information into an individual based 
stochastic infection dynamics model with infection 
probability and contact radius as primary inputs. Through 
this multiscale framework, we estimate the aggregate 
numbers and probabilities of newly infected people during 
boarding, deplaning and aligning in a security queue. This 
generic model is applicable for several directly transmitted 
diseases by varying the input parameters related to 
infectivity and transmission mechanisms. 

2. Modelling Methodology

Pedestrian Dynamics 

We model the mobile pedestrians and stationary objects, 
like walls as particles. The evolution of pedestrian particles 
and their interaction with other pedestrians and stationary 
particles are described by a molecular dynamics like social 
force model [17]. The net force if  acting on ith pedestrian 
(or particle) can be defined as: 

𝑓𝑓�̅�𝑖 = 𝑚𝑚𝑖𝑖
𝜏𝜏

 ��̅�𝑣0𝑖𝑖 (𝑡𝑡) −  �̅�𝑣𝑖𝑖(𝑡𝑡)� + ∑ 𝑓𝑓�̅�𝑖𝑖𝑖(𝑡𝑡) = 𝑚𝑚𝑖𝑖
𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑𝑖𝑖≠𝑖𝑖

(1) 

with pedestrian position at a given time obtained by 
numerical integration as �̅�𝑟𝑖𝑖(𝑡𝑡) =  ∫ �̅�𝑣𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡. ( )i

ov t  refers 

to the desired velocity of pedestrian, and ( )iv t  that of the 

actual velocity. im  is the particle’s mass andτ  is the 
evolution time constant. The momentum generated by a 
pedestrian’s intention, denoted by 𝑚𝑚𝑖𝑖

𝜏𝜏
 ��̅�𝑣0𝑖𝑖 (𝑡𝑡) −  �̅�𝑣𝑖𝑖(𝑡𝑡)�, 

results in a self-propulsion force that is balanced by a 
repulsion force ( )ijf t  to obstacles in the direction of motion. 
In this study we use the Lennard –Jones type repulsion term 
used earlier by Namilae et al. [9, 10]. 

While equation (1) describes the general motion of 
pedestrians, we need to introduce modifications to this 
equation to account for common occurrences observed in 
crowded locations. One of the common features in places 
like theme parks, entertainment venues, airport security 
checkpoints etc., involves formation of slow moving 
queues. Winding queues are often used to organize waiting 
crowds in jammed locations, but these results in increased 
proximate contacts especially if rope separators are used to 
define the lines. Pedestrians in a queue move at the speed 
of the nearest person ahead in the line. To model this 
scenario, we introduce location dependence to the desired 
velocity in the self-propulsion term as: 

𝑣𝑣0𝑖𝑖 (𝑡𝑡) 1e =

�
( Av + i Bvγ  )  �1 − δ

min�𝑟𝑟𝑖𝑖𝑖𝑖|𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ; 𝑖𝑖≠𝑖𝑖�
 �  1e  

0 ; 𝑖𝑖𝑓𝑓 𝑟𝑟𝑖𝑖𝑖𝑖|𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 <  𝛿𝛿

Where 𝛿𝛿 =  � 𝛿𝛿1 ; 𝑖𝑖𝑓𝑓 𝑖𝑖 & 𝑗𝑗 𝑜𝑜𝑓𝑓 𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠 𝑔𝑔𝑟𝑟𝑜𝑜𝑔𝑔𝑔𝑔 
𝛿𝛿2 ; 𝑖𝑖𝑓𝑓 𝑖𝑖 & 𝑗𝑗 𝑜𝑜𝑓𝑓 𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓𝑠𝑠𝑟𝑟𝑠𝑠𝑑𝑑𝑡𝑡 𝑔𝑔𝑟𝑟𝑜𝑜𝑔𝑔𝑔𝑔𝑠𝑠 

(2) 

1e  is the desired direction of motion. Av  and i Bvγ  are the
deterministic and stochastic components of the desired 
velocity respectively. The values of walking speed terms (

Av  and i Bvγ ) can be varied to obtain a given distribution

of age groups and gender of travelers [32]. δ is the cut-
off distance constant between the ith and jth pedestrians at 
which the desired velocity of the ith pedestrian reduces to 
zero velocity (stationary condition).  

For accurate simulations that mimic the real life scenario, 
we also account for the formation of groups of pedestrians. 
The groups’ formation is controlled by adjusting the 
distance (δ) in equation (2). Our empirical observations on 
a theme park queue reported elsewhere and comparisons 
with literature [33], indicate that δ separation values are 
different between pedestrians belonging to a group (e.g. 
family or friends in queue) and other pedestrians. Based on 
this, an average distance of 𝛿𝛿1 =0.46 m (18in) is chosen for 
pedestrian particles within the same group, while this 
distance between independent pedestrians is given a value 
of 𝛿𝛿2 =0.64 m (25 in). 

Contact estimation and infection model 

Consider a population of size N consisting of I(t) infected 
and S(t) susceptibles at time t. A susceptible can become 
infected when coming into direct contact with an infected. 
Given the trajectory of pedestrians over time, the number 
of contacts 𝑚𝑚𝑖𝑖 can be evaluated as: 

( ) .i ij ij
j

m t r λ= ∑ ,   where 0ijλ =  if 

ijr x>  and 
1

ij
ijr

λ =  if ijr x<
(3) 

Here, ijr is the distance between i and j pedestrians and x is
a virus specific distance parameter. Pedestrian position 
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(𝑟𝑟𝑖𝑖(𝑡𝑡)) evolves through pedestrian dynamics and is a 
function of the age, sex and infection status.   

The transmission distance (x) used to define the contact is 
dependent on the type of pathogen and mechanisms for its 
spread. For diseases like Ebola, studies indicate that 
primary mode of transmission is through contact droplets 
[34-36]. Consequently, a distance that enables direct touch 
needs to be used for estimating contacts for such diseases. 
Other infectious diseases like SARS are known to be 
transmitted by both shorter and longer range airborne 
mechanisms [37, 38]. Likewise, the influenza can be 
transmitted through coarse droplets or microscale 
bioaerosols being respired into the respiratory tract of a 
susceptible individual [39]. Studies suggest that 
transmission occurs when the virus particles are suspended 
in air and inhaled by a susceptible individual or when that 
individual touches a contaminated surface with deposited 
droplets and then touches their eyes, nose or mouth [39]. 
The size of these particles can play an important role in 
contagion dispersion. Small particles dispersed in aerosols 
transmit over large distances. For example, experiments 
indicate micrometer sized aerosol clouds generated during 
cough traveling over 2 m [40, 41].  
Consider that the infection spread initiates due to the 
insertion of 𝑖𝑖𝑐𝑐0 infectives initially (𝑡𝑡0= 0) at their “c” days 
of infection, out of “d” incubation days. Denote by 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖   the 
probability that a contact between a susceptible and an 
infective (or contaminated surface) results in infection of 
the susceptible.  We divide this input parameter into two 
components: a viral shedding probability distribution (Pc) 
which is a function of time since acquiring infection for 
specific virus in question, and a pathogen spread 
mechanism component (Pm). This includes contributions of 
several independent mechanisms comprising (a) aerosol 
exposure and inhalation probability (Pa) common in 
infections such as Norovirus [42] and Ebola [43], (b) 
Coarse pathogen droplet inoculation (Pd) common in 
influenza and SARS [7]. Other mechanisms including 
fomite mechanism, which involves contaminated surface-
to-hand transfer would contribute to the infection spread, 
but such mechanisms do not involve human-to-human 
contact in this context. The infection probability would 
then be defined as:

( )inf .c m c a dP P P P P P= = +  (4) 
Consider the viral shedding probability distribution (Pc). 
Studies indicate that the amount of viral shedding is 
typically dependent on the days post symptom appearance 
for the infected individual and the length of incubation 
period. In a previous study [9, 10], we used CDC data on 
amount of RNA (ribonucleic acid) virus copies in the blood 
serum since the illness contraction to generate this 
probability distribution for Ebola in Figure 1.a [44]. Similar 
approach can be used for other diseases, for example, for 
SARS pathogen (Figure 1.b), the viral gene expression of 
the nucleocapsid (N) protein, detected at different rates 
along the evolution of the virus from post onset of the 
symptoms till convalescence is indicative of viral shedding 
and can be used to generate the Pc distribution [45]. For 
influenza, nasal, oral or ocular shedding of H1N1 virus has 
been detected by determining the relative equivalent unit 

(REU) from viral RNA level [46]. Such data can be used to 
generate the Pc distribution (Figure 1.c). Figure 1 shows the 
viral shedding distributions we generated based on viral 
shedding for H1N1 influenza and SARS respectively. 
While we consider maximum infectivity for calculating 
term incorporates the differences in infectivity due to 
variations in infectious individuals. The stochasticity in 
individual’s susceptibility is accounted for via the binomial 
or Poisson distribution. 

(a) 

(b) 

(c) 

Figure 1 Infectivity probability distributions (Pc) (a) 
along the days after clinical signs of Ebola infection, 

(b) during viral shedding of SARS and (c) H1N1

The distribution of the infective individuals in the crowd is 
unidentified; any of these pedestrians can be probably 
infective. We assume that the infectives can be in anywhere 
among the crowd, so there are many possible permutation 
patterns of infectives location within the crowd. Denote by 
“Comb” the possible permutations of infectives which 
depend on the assumed number of infectives and the total 
number of the population. All these possible permutations 
are run successively, and at each run the number of 
susceptible individuals 𝑆𝑆𝑖𝑖(𝑡𝑡 − 1) in contact with the 
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infectives is counted. Then, the number of newly infected 
individuals is a binomial distribution of the number of 
individuals in contact 𝑆𝑆𝑖𝑖(𝑡𝑡 − 1) and probability of success 
of viral transmission 𝑔𝑔𝑖𝑖. Repeating the same process for all 
the infectives with different days of infection c and at 
different locations in the crowd, further binomial 
distributions are obtained. Denote by 𝜆𝜆 the possible number 
of newly infected pedestrians ranging from zero to the 
maximum obtained number Ninf (𝜆𝜆= 0,…,𝜆𝜆𝑖𝑖,…,Ninf). Also 
let 𝑤𝑤𝑖𝑖 be the frequency of obtaining the same 𝜆𝜆𝑖𝑖 in the runs. 
In order to obtain the mean binomial distribution of the 
number of people infected at time t by all of the infectives 
with varying age of infection “c”, we combine the 
probability plots and average them as given by: 

I(t) ~ ∑ ∑ {𝐵𝐵𝑖𝑖𝑑𝑑𝑜𝑜𝑚𝑚𝑖𝑖𝑠𝑠𝐵𝐵 [𝑆𝑆𝑖𝑖(𝑡𝑡 −
𝑖𝑖𝑐𝑐0
𝑖𝑖=1

𝑑𝑑
𝑐𝑐=1

1),𝑃𝑃𝑚𝑚.𝑃𝑃𝑐𝑐  mi(t−1)
𝑁𝑁

 ]}* 𝑤𝑤𝑖𝑖 (𝜆𝜆𝑖𝑖) / C 

(5) 

Where 𝑤𝑤𝑖𝑖 (𝜆𝜆𝑖𝑖) is the frequency of the mean 𝜆𝜆𝑖𝑖 repetition 
during all the possible combinations “C” of infectives. 
Note that the contacts are defined when pedestrians are 
within a specific transmission distance which is dependent 
on the transmission mechanism. Instead of using fixed 
parameters for defining contact, we will treat contact 
distance and contact definition as one of the parameters in 
assessing epidemic spread and vary it over the parameter 
space to mimic epidemic dispersion in different conditions, 
within the various pedestrian dynamics configurations 
associated with winding queues. Based on the above 
discussion, we vary the contact distance between 2.1 m and 
0.9 m which are representative of aerosol and coarse 
droplet mechanisms respectively. Similarly, the infection 
probability (𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖) is varied as a parameter up to a value of 
0.2 to represent various levels of infectivity. 

The Binomial distribution is valid for a large crowd with 
higher probability of infection. This applies to the winding 
queues. However, in the situation where N is large and Pinf 
is very small (below 0.1), for instance during boarding and 
deplaning, the Poisson distribution can be used to 
approximate the binomial distribution. Here, I(t) is 
distributed using the Poisson approximation: 

I(t) ~ ∑ ∑ {𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑠𝑠𝑜𝑜𝑑𝑑 [𝑆𝑆𝑖𝑖(𝑡𝑡 −
𝑖𝑖𝑐𝑐0
𝑖𝑖=1

𝑑𝑑
𝑐𝑐=1

1),𝑃𝑃𝑚𝑚.𝑃𝑃𝑐𝑐  mi(t−1)
𝑁𝑁

 ]}* 𝑤𝑤𝑖𝑖 (𝜆𝜆𝑖𝑖) / C 

(6) 

3. RESULTS AND DISCUSSION

We evaluate the role of motion pattern in contact creation 
between neighboring pedestrians, within a fixed control 
area, for different stages in air travel including boarding, 
deplaning and progressing in security check line for 
different diseases. The passengers, seats and walls are all 
modelled as particles. We consider the situation of a single 
infective in the crowd. The infectious individual is 
unidentifiable; his index in the crowd is not known apriori. 
Therefore, all permutations of the infectious individual’s 
position are simulated to determine the average number of 
contacts for a given scenario. We apply these permutations 
to different aircraft sizes and cabin configurations as well 
as various security winding queue layouts. We also account 
different transmission mechanism and probability of 
pathogens. Airborne viral nuclei vary in size. Expelled fine 

aerosols travel farther and remain suspended for a longer 
period of time than coarse droplets. We account for coarse 
droplets and aerosols transmission mechanisms by varying 
the contact radius parameter between 0.9 and 2.1 meters 
(36-84 inches). We vary the transmittance probability 
between 0.025 and 0.2 to account for the vulnerability and 
receptivity of the exposed infective to various infection 
types. 

Boarding from a waiting lounge 

For boarding, the Airbus A320 carrier with 144 passenger 
configuration is chosen. During the enplaning, the 
trajectories of passengers, initially seated or standing in the 
departure lounge, heading to the passenger boarding bridge 
and finding their assigned onboard seats, are modelled. The 
evolution of pedestrian trajectories has been displayed for 
ingress from a gate in Figure 2. The instantaneous position 
and speed of each walking individual are obtained by 
solving equation (1) by means of a predictor-corrector 
numerical method. Many qualitative features of pedestrian 
movement are captured by the model. For instance, lane 
formation is observed in the hallways, in addition to 
reduced speed at bottlenecks where passengers from 
different seating zones merge and head to the airplane 
(Figure 2).  

After obtaining the trajectories, the contact data and the 
number of newly infected travellers are obtained for Ebola 
and SARS diseases by means of the mathematical 
epidemiological model. In real life the identity of infectious 
individual is not known beforehand, therefore all the 
possible permutations of a single infective are run to 
estimate the mean of newly infected susceptibles denoted 
by 𝜆𝜆𝑖𝑖 where i ranges from 1 to the total passenger capacity 
of the aircraft. Due to the stochastic nature of the problem, 
we assume that the number of newly infected travellers by 
a single infectious chosen randomly among the airplane 
passengers is Poisson distributed with mean 𝜆𝜆𝑖𝑖 at every 
simulation. After performing all the simulations in parallel, 
the effective probability of means is calculated at peak day 
of infection. Then, using the Bayes’ theorem the 
probabilities are combined to generate the probability 
distributions in Figures 3 and 4. These plots represent the 
probabilistic distribution of infected passengers who were 
closely exposed to Ebola and SARS viruses. 

We consider an infectious passenger at his first day is 
onboard among the susceptible population. Ebola and 
H1N1 record a peak of 2 newly infected passengers 
exposed to the virus, whereas this number increases to 5 for 
SARS due to the wider range of infectivity. Shifting the 
infectivity to its highest (day 3 for Ebola, day 5 for H1N1 
and day 4 or 5 for SARS), the means of the Poisson 
distribution increases by one unit for Ebola and SARS but 
expands tremendously for H1N1 since the infectivity 
reaches its peak of 30% at the fifth day of H1N1 infection 
(Figure 4). 
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Figure 2. Simulation snapshot of an embarkation of an 
Airbus A320 from a departure lounge. Green dots 

represent pedestrian particles and blue dots represent 
fixed seat and wall particles.  

Figure 3. Infection distribution profile for different 
boarding strategies for an Airbus A320 capable of 

seating 144 passengers at Ebola peak day of infection 
(pinf =0.098) and 1.2m contact radius. 

Figure 4. Infection profile at the first and peak days 
during a random ingress from a lounge to an Airbus 
A320-144 seats for Ebola, Influenza H1N1 and SARS 

contagions. 

Deplaning from an air carrier 

We followed a similar approach for the deplaning strategies 
and applied it this time for the 182-seat Boeing 757. We 
found that deplaning had a smaller impact on infection 
dynamics because of the lower number of new contacts and 
lower time of exposure during the comparatively faster 
process. In Figure 5, we show a comparison of different 
deplaning strategies for the 182-seat Boeing 757 seating 
configuration for Ebola disease at the peak day of infection. 
The different deplaning strategies such as alternating 
columns, alternating rows, zone-wise, and baseline (closest 
to exit are out first) result in a similar number of mean 
infective individuals. When we compare the probabilities, 
alternate rows and baseline strategies are marginally better. 

Figure 5. Infection distribution profile for different 
deplaning strategies for a 182-seat Boeing 757 at Ebola 

peak day of infection (pinf =0.098) and 1.2m contact 
radius. 

The effect of size of airplane on the number of contacts and 
thereby infection spread is assessed. We model the seating 
arrangements for five different airplanes. The seating 
arrangement is as shown in Figure 6. Figure 7 shows the 
number of contacts for transporting 1000 passengers using 
the different airplane models considered. These numbers 
include default boarding and deplaning methods on 
multiple flights with a particular airplane model to 
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transport 1000 passengers. Smaller airplanes are more 
effective in reducing the number of contacts compared to 
larger airplanes; however, the advantage of airplane size 
reduces as airplane seating capacity increases. 

Figure 6. Airplane configurations considered in the 
study (a) CRJ200 with 50 seats, (b) A320 with 144 

seats (c) Boeing 757-200 with 182 seats, (d) Boeing 757-
200 with 201 seats and (e) Boeing 757-300 with 240 

seats. Green dots represent pedestrian particles and 
blue dots represent fixed seat particles.  

Figure 7. Number of contacts for transporting 1000 
passengers in different airplanes boarding and 

deplaning by default methods. 

Infectious Disease Spread in an Airport Security Queue 

Reports indicate that travellers are delayed for more than 
an hour at screening checkpoints, causing significant 
economic burden on airlines [48]. Screening procedure at 
checkpoints only involves the passengers and their carry-
on baggage. However, no equipment is available for use to 
detect viral contagions during an outbreak. Consequently, 
security checkpoints with people congregated in winding 
queues are a potential hotspot for infectious disease spread. 

In investigating the relation between the layout shape and 
the contact among pedestrians in queues, we simulate 
different security line winding queues by changing the 
aisles and zones layout based on actually observed queue 

configurations in airports (Figure 8). With time evolution, 
the pedestrians move forward in the sequence to reach the 
exit. It is expected that the aisle’s length, direction and 
structure within the control area, and the distribution of turn 
corners have an effect on the contact between pedestrians. 

We consider the case of pedestrians arranging in a 
rectangular queue. At initial conditions, the pedestrians are 
distributed in abreast (side-by-side) manner in the aisles. 
The formation of groups (family members, group of 
tourists, etc.) is taken into consideration by the close 
abreast queues whereas individual travellers tend to form a 
more spaced single line as mentioned in the formulation 
section (Figure 8.b). 

(a) 

(b) 

Figure 8. Security check floor map (a) in an airport, 
(b) from simulation.

Four different rectangular queue configurations of the same 
area, as shown in Figure 9, are analyzed. The four 
rectangular floor plans are either split vertically 
(configurations (b) and (c)) or horizontally (configurations 
(a) and (d)). Configurations (a) and (b) have one inlet and
one exit whereas configurations (c) and (d) have two inlets
and two exits due to the existence of separated zones. The
width of the pedestrian lanes remains 1 meter, which allows 
some pedestrians belonging to the same group to form a
double line.
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(a) 

(b) 

(c) 

(d) 

Figure 9. Rectangular winding queue layouts: (a) 
Config.1, (b) Config.2, (c) Config.3, (d) Config.4. 

Instead of limiting the analysis to certain disease type or 
mechanism, we generalize the study by sweeping the 
infection parameters (infection probability and contact 
radius) over their ranges of definition. We vary the contact 
distance between 2.1 m and 0.9 m which are representative 
of aerosol and coarse droplet mechanisms respectively. 
Similarly, the infection probability (𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖) is varied as a 
parameter up to a value of 0.2 to represent various levels of 
infectivity.   

The mean number of newly infected pedestrians is then 
obtained by combining the number of contacts within a 
given contact radius, with the infection transmission 
probability described earlier. The mean number of newly 
infected is binomially distributed to account for the 
demographic stochasticity in the immunity and receptivity 
of the susceptible population. Under different infection 
scenarios, the mean number of newly infected exposed 
individuals is obtained. In the following, only the peak 

dispersion of the disease (the mean of the binomial 
distribution) among the susceptible population is plotted 
over the parameters space of variation.  

With the commonly used rope separators and at a 
proximate, direct contact via coarse droplets (radius of 
infection less than 1.2m), the infective has influence on 
only the directly adjacent aisles on both sides. However, 
infection also relies on the transmission probability. In 
other words, not every contact will lead to infection. For a 
defenceless (unimmunized) individual, the probability to 
contract the disease alters between 2.5 and 20% depending 
on the disease development time and its survival in the 
ambient environment. Combining the contact data with the 
infection model leads to the mean distribution of infection 
over the probability range. Configurations 3 is the best 
layout for all transmission probabilities, followed by 
configuration 2 (Figure 10). In configuration 2, the vertical 
aisles are short, which means less capacity of pedestrians. 
Configuration 3 has the same aisle geometry as of 
configuration 2. However, the pedestrian will exit the 
queue earlier (half way) compared to that of configuration 
2 which results in lower exposure time. Configurations 1 
and 4 result in a higher mean number of infections. These 
configurations have long open aisles compared to 
configurations 2 and 3 with the lower aisle length. 
Therefore, more pedestrians are involved and interaction 
occurs more frequently with pedestrians from neighbouring 
aisles in these two configurations. Configuration 1 is the 
least favourable layout because diverse pedestrians from 
both sides come into proximity more frequently than in 
configuration 4 with comparatively shorter aisles. 
Configuration 4 is worse than configuration 2 because at 
the common corners between the left and right zones, the 
infective comes into contact with additional pedestrians 
from the neighbouring zones.  

Figure 10 also shows the results of repeating the 
transmission probability variation over the same range, but 
assuming aerosol transmission mechanism with a longer 
contact radius of 2.1 m.  Configuration 3 still results in the 
lowest number of contacts for both rope and wall 
separators. For rope separator, we observe the same pattern 
of results as with the coarse droplets transmission 
mechanism, but with increased infection spread. The 
similarity between the configurations increases especially 
at low transmission probabilities. Therefore, the results of 
configurations 2 and 3, as well as configurations 1 and 4 
overlap. At 2.1 m radius, the dispersion of the fine viral 
particles crosses the aisle boundaries to two adjacent aisles 
on each side. Here, the findings of configurations 2 and 3 
are nearly identical since the aisles are distributed in the 
same manner except that configuration 3 has two separated 
zones. When the transmission radius expands to many 
neighbouring aisles, pedestrians of one zone in 
configuration 3 come into contact not only with other 
pedestrians within the same zone, but to others in the 
adjacent zone. Accordingly, configurations 2 and 3 have 
the same behavior. Here, the separation of these two groups 
has no effective role in reducing contact. The same 
principle applies to configurations 1 and 4; the offset 
between the data of configurations 1 and 4 is reduced 
compared to that of coarse droplet transmission mechanism 
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for the same reason. Configuration 1 remains the worst 
layout, especially at higher probabilities, due to the 
elongated, abundant contact between pedestrians from 
adjacent aisles. 

Figure 10. Infection distribution profile for different 
abreast queue configurations at contact radii of 1.2m 

(coarse droplets) and 2.1m (fine aerosols). 

We now explore the contacts generated between 
pedestrians in the four configurations assuming different 
infection mechanisms represented by the radius variation. 
We suggest placing temporary walls between the aisles to 
suppress the propagation of the outbreak among the waiting 
crowd. For rope separators previously evaluated, contact 
extends to pedestrians in the neighbouring aisles, whereas 
for temporary walls, transmission due to contact is limited 
only between the pedestrians within the same aisle. 

Configurations 2 and 3 result in lower number of infections 
for rope separators, across the range of infection radii from 
0.9 to 2.1 m as shown in Figure J. As explained, for aisles 
separated with ropes, shorter aisles lead to lower exposure 
of an infective resulting in this behavior. For walls, the 
combination of the radius of infection, as well as the 
interaction time within the aisles and at the corners alter the 
results (Figure 11). Each combination of contact radius and 
queue layout generates a different number of newly 
infected individuals. At low radii, short-aisle and low exit 
time configurations are favourable. At higher radii, 
configurations with less turning corners are better. The wall 
separator has drastically reduced the number of infections 
compared to the conventionally used rope stanchions. 

Figure 11. Contact distribution for different abreast 
queue configurations. The contact radius is varied for 

both wall and rope aisle separation scenarios.  

4. CONCLUSIONS

A multiscale model combining social-force-based 
pedestrian dynamics and the individual based stochastic 
infection dynamics model has been formulated. The model 
is used to study the dynamics of infectious disease spread 
in airplanes and airports. Specific air-travel-related policies 

that potentially mitigate diseases spread are identified. A 
two-section boarding has an effect on reducing disease 
propagation aboard an airplane. Deplaning has no effect 
and all deplaning strategies generated a single infected 
traveller. Small airplanes are more effective in reducing the 
number of contacts during an outbreak. We find that the 
layout of winding queues in airport security check 
influences the number of new infections. The modeling 
approach developed here is generic and can be readily 
modified to other directly transmitted infectious diseases 
and dense pedestrian spaces. 
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