
Provably Secure Isolation for Interruptible Enclaved
Execution on Small Microprocessors

Matteo Busi∗, Job Noorman†, Jo Van Bulck†,
Letterio Galletta‡, Pierpaolo Degano∗, Jan Tobias Mühlberg† and Frank Piessens†

∗ Dept. of Computer Science, Università di Pisa, Italy
† imec-DistriNet, Dept. of Computer Science, KU Leuven, Belgium

‡ IMT School for Advanced Studies Lucca, Italy

Abstract—Computer systems often provide hardware support
for isolation mechanisms like privilege levels, virtual memory,
or enclaved execution. Over the past years, several successful
software-based side-channel attacks have been developed that
break, or at least significantly weaken the isolation that these
mechanisms offer. Extending a processor with new architectural
or micro-architectural features, brings a risk of introducing new
such side-channel attacks.

This paper studies the problem of extending a processor with
new features without weakening the security of the isolation
mechanisms that the processor offers. We propose to use full
abstraction as a formal criterion for the security of a processor
extension, and we instantiate that criterion to the concrete case
of extending a microprocessor that supports enclaved execution
with secure interruptibility of these enclaves. This is a very
relevant instantiation as several recent papers have shown that
interruptibility of enclaves leads to a variety of software-based
side-channel attacks. We propose a design for interruptible
enclaves, and prove that it satisfies our security criterion. We
also implement the design on an open-source enclave-enabled
microprocessor, and evaluate the cost of our design in terms of
performance and hardware size.

I. INTRODUCTION

Many computing platforms run programs coming from a

number of different stakeholders that do not necessarily trust

each other. Hence, these platforms provide mechanisms to

prevent code from one stakeholder to interfere with code

from other stakeholders in undesirable ways. These isolation
mechanisms are intended to confine the interactions between

two isolated programs to a well-defined communication inter-

face. Examples of such isolation mechanisms include process

isolation, virtual machine monitors, or enclaved execution [1].

However, security researchers have shown that many of

these isolation mechanisms can be attacked by means of

software-exploitable side-channels. Such side-channels have

been shown to violate integrity of victim programs [2], [3],

[4], as well as their confidentiality on both high-end processors

[5], [6], [7], [8] and on small microprocessors [9]. In fact,

over the past two years, many major isolation mechanisms

have been successfully attacked: Meltdown [6] has broken

user/kernel isolation, Spectre [7] has broken process isolation

and software defined isolation, and Foreshadow [8] has broken

enclaved execution on Intel processors.

The class of software-exploitable side-channel attacks is

complex and varied. These attacks often exploit, or at least

rely on, specific hardware features or hardware implementation

details. Hence, for complex state-of-the-art processors there is

a wide potential attack surface that should be explored (see

for instance [10] for an overview of just the attacks that rely

on transient execution). Moreover, the potential attack vectors

vary with the attacker model that a specific isolation mecha-

nism considers. For instance, enclaved execution is designed

to protect enclaved code from malicious operating system

software whereas process isolation assumes that the operating

system is trusted and not under control of the attacker. As

a consequence, protection against software-exploitable side-

channel attacks is much harder for enclaved execution [11].

Hence, no silver-bullet solutions against this class of attacks

should be expected, and countermeasures will likely be as

varied as the attacks. They will depend on attacker model,

performance versus security trade offs, and on the specific

processor feature that is being exploited.

The objective of this paper is to study how to design

and prove secure such countermeasures. In particular, we

rigorously study the resistance of enclaved execution on small

microprocessors [12], [13] against interrupt-based attacks [9],

[14], [15]. This specific instantiation is important and challeng-

ing. First, interrupt-based attacks are very powerful against

enclaved execution: fine-grained interrupts have been a key

ingredient in many attacks against enclaved execution [16],

[8], [17], [9]. Second, to the best of our knowledge, all

existing implementations of interruptible enclaved execution

are vulnerable to software-exploitable side-channels, including

implementations that specifically aim for secure interruptibility

[18], [13].

We base our study on the existing open-source Sancus

platform [19], [12] that supports non-interruptible enclaved

execution. We illustrate that achieving security is non-trivial

through a variety of attacks enabled by supporting interrupt-

ibility of enclaves. Next, we provide a formal model of the

existing Sancus and we then extend it with interrupts. We

prove that this extension does not break isolation properties

by instantiating full abstraction [20].

Roughly, we show that what the attacker can learn from

(or do to) an enclave is exactly the same before and after
adding the support for interrupts. In other words, adding

interruptibility does not open new avenues of attack. Finally,

we implement the secure interrupt handling mechanism as

262

2020 IEEE 33rd Computer Security Foundations Symposium (CSF)

© 2020, Matteo Busi. Under license to IEEE.
DOI 10.1109/CSF49147.2020.00026



an extension to Sancus, and we show that the cost of the

mechanism is low, in terms of both hardware complexity and

performance.

In summary, the novel contributions of this paper are:

• We propose a specific design for extending Sancus, an

existing enclaved execution system, with interrupts.

• We propose to use full abstraction [20] as a formal

criterion of what it means to maintain the security of iso-

lation mechanisms under processor extensions. Also, we

instantiate it for proving that the mechanism of enclaved

execution, extended to support interrupts, complies with

our security definition.

• We implement the design on the open source Sancus

processor, and evaluate cost in terms of hardware size

and performance impact.1

The paper is structured as follows: in Section II we provide

background information on enclaved execution and interrupt-

based attacks. Section III provides an informal overview of our

approach. Section IV discusses our formalization and sketches

the proof, pointing to the online extended version [21] for

full details. Then, in Section V we describe and evaluate our

implementation. Section VI and VII discuss limitations, and

the connection to related work. Finally, Section VIII offers our

conclusions and plans for future work.

II. BACKGROUND

a) Enclaved execution: Enclaved execution is a security

mechanism that enables secure remote computation [22]. It

supports the creation of enclaves that are initialized with

a software module, and that have the following security

properties. First, the software module in the enclave is isolated

from all other software on the same platform, including system

software such as the operating system. Second, the correct

initialization of an enclave can be remotely attested: a remote

party can get cryptographic assurance that an enclave was

properly initialized with a specific software module (charac-

terized by a cryptographic hash of the binary module). These

security properties are guaranteed while relying on a small

trusted computing base, for instance trusting only the hardware

[12], [1], or possibly also a small hypervisor [23], [24].

The remote attestation aspect of enclaved execution is im-

portant for the secure initialization of enclaves, and for setting

up secure communication channels to the enclave. However, it

does not play an important role for the interrupt-driven attacks

that we study in this paper, and hence we will focus here on

the isolation aspect of enclaves only. Other papers describe in

detail how remote attestation and secure communication work

on large [22] or small systems [12], [13].

The isolation guarantees offered to an enclaved software

module are the following. The module consists of two con-

tiguous memory sections, a code section, initialized with

the machine code of the module, and a data section. The

data section is initialized to zero, and loading of confidential

1Our implementation is available online at https://github.com/sancus-pma/
sancus-core/tree/nemesis.

data happens through a secure channel to the enclave, after

attesting the correct initialization of the module. For instance,

confidential data can be restored from cryptographically sealed

storage, or can be obtained from a remote trusted party.

The enclaved execution platform guarantees that: (1) the

data section of an enclave is only accessible while executing

code from the code section, and (2) the code section can only

be entered through one or more designated entry points.

These isolation guarantees are simple, but they offer the

useful property that data of a module can only be manipulated
by code of the same module, i.e., an encapsulation property

similar to what programming languages offer through classes

and objects. Untrusted code residing in the same address space

as the enclave but outside the enclave code and data sections

can interact with the enclave by jumping to an entry point.

The enclave can return control (and computation results) to

the untrusted code by jumping back out.

b) Interrupt-based attacks: Enclaved execution is de-

signed to be resistant against a very strong attacker that con-

trols all other software on the platform, including privileged

system software. While isolating enclaves is well-understood

at the architectural level, including even successful formal

verification efforts [24], [25], researchers have shown that it is

challenging to protect enclaves against side-channels. Particu-

larly, a recent line of work on controlled channel attacks [11],

[15], [9], [26], [16] has demonstrated a new class of powerful,

low-noise side-channels that leverage the adversary’s increased

control over the untrusted operating system.

A specific consequence of this strong model is that the at-

tacker also controls the scheduling and handling of interrupts:

the attacker can precisely schedule interrupts to arrive during

enclaved execution, and can choose the code to handle these

interrupts. This power has been put to use for instance to

single-step through an enclave [15], or to mount a new class

of ingenious interrupt latency attacks [9], [14] that derive in-

dividual enclaved instruction timings from the time it takes to

dispatch to the untrusted operating system’s interrupt handler.

We provide concrete examples of interrupt-based attacks in the

next section, after detailing our model of enclaved execution.

While advanced CPU features such as virtual memory [11],

[26], [8], branch prediction [16], [17] or caching [27] are

known to leak information on high-end processors, pure

interrupt-based attacks such as interrupt latency measurements

are the only known controlled-channel attack against low-end

enclaved execution platforms lacking these advanced features.

Moreover, they have been shown to be very powerful: e.g., Van

Bulck et al. [9] have shown how to efficiently extract enclave

secrets like passwords or PINs from embedded enclaves.

Some enclaved execution designs avoid the problem of

interrupt-based attacks by completely disabling interrupts dur-

ing enclave execution [12], [25]. This has the important down-

side that system software can no longer guarantee availability:

if an enclaved module goes into an infinite loop, the system

cannot progress. All designs that do support interruptibility of

enclaves [18], [13] are vulnerable to these attacks.

263



Instr. i Meaning Cycles Size

RETI Returns from interrupt. 5 1
NOP No-operation. 1 1
HLT Halt. 1 1
NOT r r← ¬r. (Emulated in MSP430) 2 2
IN r Reads word from the device and puts it in r. 2 1
OUT r Writes word in register r to the device. 2 1
AND r1 r2 r2 ← r1 & r2. 1 1
JMP &r Sets pc to the value in r. 2 1
JZ &r Sets pc to the value in r if bit 0 in sr is set. 2 1
MOV r1 r2 r2 ← r1. 1 1
MOV @r1 r2 Loads in r2 the word in starting in location pointed by r1. 2 1
MOV r1 0(r2) Stores the value of r1 starting at location pointed by r2. 4 2
MOV #w r2 r2 ← w. 2 2
ADD r1 r2 r2 ← r1 + r2. 1 1
SUB r1 r2 r2 ← r1 − r2. 1 1
CMP r1 r2 Zero bit in sr set if r2 − r1 is zero. 1 1

Table I
SUMMARY OF THE ASSEMBLY LANGUAGE CONSIDERED.

III. OVERVIEW OF OUR APPROACH

We set out to design an interruptible enclaved execution sys-

tem that is provably resistant against interrupt-based attacks.

This section discusses our approach informally, later sections

discuss a formalization with security proofs, and report on

implementation and experimental evaluation.

We base our design on Sancus [12], an existing open-source

enclaved execution system. We first describe our Sancus

model, and discuss how extending Sancus with interrupts leads

to the attacks mentioned in Section II-b. In other words, we

show how extending Sancus with interrupts breaks some of

the isolation guarantees provided by Sancus.

Then, we propose a formal security criterion that defines

what it means for interruptibility to preserve the isolation
properties, and we illustrate that definition with examples.

Finally, we propose a design for an interrupt handling

mechanism that is resistant against the considered attacks and

that satisfies our security definition. Crucial to our design

is the assumption that the timing of individual instructions

is predictable, which is typical of “small” microprocessors,

like Sancus. Although tailored here on a specific architecture

and a specific class of attacks, we expect our approach of

ensuring that the same attacks are possible before and after an

architecture extension to be applicable in other settings too.

A. Sancus model

a) Processor: Sancus is based on the TI MSP430 16-bit

microprocessor [28], with a classic von Neumann architecture

where code and data share the same address space. We

formalize the subset of instructions summarized in Table I that

is rich enough to model all the attacks we care about. We have

a subset of memory-to-register and register-to-memory transfer

instructions; a comparison instruction; an unconditional and a

conditional jump; and basic arithmetic instructions.

b) Memory: Sancus has a byte addressable memory of at

most 64KB, where a finite number of enclaves can be defined.

The bound on the number of enclaves is a parameter set at

processor synthesis time. In our model, we assume that there is

only a single enclave, made of a code section, initialized with

the machine code of the module, and a data section. A data

section is securely provisioned with data by relying on remote

attestation and secure communication, not modeled here as

they play no role in the interrupt-based attacks we care about

in this paper. Instead, our model allows direct initialization of

the data section with confidential enclave data. All the other

memory is unprotected memory, and will be considered to be

under control of the attacker.

Enclaves have a single entry point; the enclave can only be

entered by jumping to the first address of the code section.

Multiple logical entry points can easily be implemented on

top of this single physical entry point. Control flow can leave

the enclave by jumping to any address in unprotected memory.

Obviously, a compiler can implement higher-level abstractions

such as enclave function calls and returns, or out-calls from

the enclave to functions in the untrusted code [12].

Sancus enforces program counter (pc) based memory access

control. If the pc is in unprotected memory, the processor can

not access any memory location within the enclave – the only

way to interact with the enclave is to jump to the entry point. If

the pc is within the code section of the enclave, the processor

can only access the enclave data section for reading/writing

and the enclave code section for execution. This access control

is faithfully rendered in our model, via the predicate MAC

in Table II.

c) I/O devices: Sancus uses memory-mapped I/O to in-

teract with peripherals. One important example of a peripheral

for the attacks we study is a cycle accurate timer, which allows

software to measure time in terms of the number of CPU

cycles. In our model, we include a single very general I/O

device that behaves as a state machine running synchronously

to CPU execution. In particular, it is trivial to instantiate this

general I/O device to a cycle-accurate timer.

Instead of modeling memory-mapped I/O, we introduce two

special instructions that allow writing/reading a word to/from

the device (see Table I). Actually these instructions are short-

hands, which are easy to macro-expand, at the price of dealing

with special cases in the execution semantics for any memory

operation. For instance, software could read the current cycle

timer value from a timer peripheral by using the IN instruction.

The I/O devices can request to interrupt the processor with

single-cycle accuracy. The original Sancus disables interrupts

during enclaved execution. One of the key objectives of this

paper is to propose a Sancus extension that does handle such

interrupts without weakening security. Hence, we will define

two models of Sancus, one that ignores interrupts, and one

that handles them even during enclaved execution.

B. Security definitions

a) Attacker model: An attacker controls the entire con-
text of an enclave, that is: he controls (1) all of unprotected

memory (including code interacting with the enclave, as well

as data in unprotected memory), and (2) the connected device.

This is the standard attacker model for enclaved execution. In

particular, it implies that the attacker has complete control over

the Interrupt Service Routines.

264



b) Contextual equivalence formalizes isolation: Infor-

mally, our security objective is extending the Sancus processor

without weakening the isolation it provides to enclaves. What

isolation achieves is that attackers can not see “inside” an

enclave, so making it possible to “hide” enclave data or

implementation details from the attacker. We formalize this

concept of isolation precisely by using the notion of con-
textual equivalence or contextual indistinguishability (as first

proposed by Abadi [20]). Two enclaved modules M1 and M2

are contextually equivalent, if the attacker can not distinguish

them, i.e., if there exists no context that tells them apart. We

discuss this on the following example.

Example 1 (Start-to-end timing). The following enclave com-
pares a user-provided password in R15 with a secret in-enclave
password at address pwd adrs , and stores the user-provided
value in R14 into the enclave location at store adrs if the user
password was correct.

1 enclave_entry:
2 /* Load addresses for comparison */
3 MOV #store_adrs, r10 ; 2 cycles
4 MOV #access_ok, r11 ; 2 cycles
5 MOV #endif, r12 ; 2 cycles
6 MOV #pwd_adrs, r13 ; 2 cycles
7 /* Compare user vs. enclave password */
8 MOV @r13, r13 ; 2 cycles
9 CMP r13, r15 ; 1 cycle

10 JZ &r11 ; 2 cycles
11 access_fail: /* Password fail: return */
12 JMP &r12 ; 2 cycles
13 access_ok: /* Password ok: store user val */
14 MOV r14, 0(r10) ; 4 cycles
15 endif: /* Clear secret enclave password */
16 SUB r13, r13 ; 1 cycle
17 enclave_exit:

In the absence of a timer device, this enclave successfully

hides the in-enclave password. If we take enclaves M1 and M2

to be two instances of Example 1, differing only in the value

for the secret password, then M1 and M2 are indistinguishable

for any context that does not have access to a cycle accurate

timer: all such a context can do is call the entry point, but the

context does not get any indication whether the user-provided

password was correct. This formalizes that enclave isolation

successfully “hides” the password.

However, with the help of a cycle accurate timer, the

attacker can distinguish M1 and M2 as follows. The attacker

can create a context that measures the start-to-end execution

time of an enclave call: the context reads the timer right before

jumping to the enclave. On enclave exit, the context reads the

timer again to compute the total time spent in the enclave.

In order to reason about execution timing, we repre-

sent enclaved executions as an ordered array of individ-

ual instruction timings. (Table I conveniently specifies how

many cycles it takes to execute each instruction.) Hence the

two possible control flow paths of the above program are:

ok=[2,2,2,2,2,1,2,4,1] for the “access ok” branch,

or fail=[2,2,2,2,2,1,2,2,1] for the “access fail”

branch. Since sum(ok) = 18 and sum(fail) = 16, the

context can distinguish the two control flow paths, and hence

can distinguish M1 and M2 (and by launching a brute-force

attack [29], can also extract the secret password).

This example illustrates how contextual equivalence formal-

izes isolation. It also shows that the original Sancus already has

some side-channel vulnerabilities under our attacker model.

Since we assume the attacker can use any I/O device, he can

choose to use a timer device and mount the start-to-end timing

attack we discussed.

It is important to note that it is not our objective in this paper

to close these existing side-channel vulnerabilities in Sancus.

Our objective is to make sure that extending Sancus with

interrupts does not introduce additional side-channels, i.e., that

this does not weaken the isolation properties of Sancus.

For existing side-channels, like the start-to-end timing side-

channel, countermeasures can be applied by the enclave pro-

grammer. For instance, the programmer can balance out the

various secret-dependent control-flow paths as in Example 2.

Example 2 (Interrupt latency). Consider the program of Ex-
ample 1, balanced in terms of overall execution time by adding
two NOP instructions at lines 13-14. The two possible control
flow paths are: ok=[2,2,2,2,2,1,2,4,1] vs. fail=
[2,2,2,2,2,1,2,1,1,2,1]. Since sum(ok) is equal
to sum(fail), the start-to-end timing attack is mitigated.

1 enclave_entry:
2 /* Load addresses for comparison */
3 MOV #store_adrs, r10 ; 2 cycles
4 MOV #access_ok, r11 ; 2 cycles
5 MOV #endif, r12 ; 2 cycles
6 MOV #pwd_adrs, r13 ; 2 cycles
7 /* Compare user vs. enclave password */
8 MOV @r13, r13 ; 2 cycles
9 CMP r13, r15 ; 1 cycle

10 JZ &r11 ; 2 cycles
11 access_fail:
12 /* Password fail: constant time return */
13 NOP ; 1 cycle
14 NOP ; 1 cycle
15 JMP &r12 ; 2 cycles
16 access_ok: /* Password ok: store user val */
17 MOV r14, 0(r10) ; 4 cycles
18 endif: /* Clear secret enclave password */
19 SUB r13, r13 ; 1 cycle
20 enclave_exit:

c) Interrupts can weaken isolation: We now show that

a straightforward implementation of interrupts in the Sancus

processor would significantly weaken isolation. Consider an

implementation of interrupts similar to the TI MSP430: on ar-

rival of an interrupt, the processor first completes the ongoing

instruction, and then jumps to an interrupt service routine.

The program in Example 2 is secure on Sancus without

interrupts. However, it is not secure against a malicious context

that can schedule interrupts to be handled while the enclave

executes. To see why, assume that an interrupt is scheduled

by the malicious context to arrive within the first cycle after

the conditional jump at line 10. If the jump was taken then

the instruction being executed is the 4-cycle MOV at line 18,

otherwise the current instruction is the 1-cycle NOP at line 13.

Now, since the attacker’s interrupt handler will only be called

after completion of the current instruction, the adversary ob-

serves an interrupt latency difference of 3 cycles, depending on

the secret branch condition inside the enclave. Researchers [9]

265



have shown how interrupt latency can be practically measured

to precisely reconstruct individual enclave instruction timings

on both high-end and low-end enclave processors.

Using this attack technique, a context can again distinguish

two instances of the module with a different password, and

hence the addition of interrupts has weakened isolation.

A strawman solution to fix the above timing leakage is

to modify the implementation of interrupt handling in the

processor to always dispatch interrupt service routines in

constant time T, i.e., regardless of the execution time of the

interrupted instruction. We show in the two examples below,

however, that this is a necessary but not sufficient condition.

Example 3 (Resume-to-end timing). Consider the program
from Example 2 executed on a processor which always dis-
patches interrupts in constant time T. The attacker schedules
an interrupt to arrive in the first cycle after the JZ instruction,
yielding constant interrupt latency T. Next, the context resumes
the enclave and measures the time it takes to let the enclave
run to completion without further interrupts. While interrupt
latency timing differences are properly masked, the time to
complete enclave execution after resume from the interrupt is
1 cycle for the ok path and 4 cycles for the fail path.

Example 4 (Interrupt-counting attack). An alternative way
to attack the program from Example 2 even when interrupt
latency is constant, is to count how often the enclave execution
can be interrupted, e.g., by scheduling a new interrupt 1 cycle
after resuming from the previous one. Since interrupts are
handled on instruction boundaries, this allows the attacker
to count the number of instructions executed in the enclave,
and hence to distinguish the two possible control flow paths.

d) Defining the security of an extension: The examples

above show how a new processor feature (like interrupts)

can weaken isolation of an existing isolation mechanism (like

enclaved execution), and this is exactly what we want to avoid.

Here we propose and implement a provably secure defense

against these attacks. With this background, our security

definition is now obvious. Given an original system (like

Sancus), and an extension of that system (like interruptible

Sancus), that extension is secure if and only if it does not

change the contextual equivalence of enclaves. Enclaves that

are contextually equivalent in the original system must be

contextually equivalent in the extended system and vice versa

(we shall formalize this as a full abstraction property later on).

C. Secure interruptible Sancus

Designing an interrupt handling mechanism that is secure

according to our definition above is quite subtle. We illustrate

some of the subtleties. In particular, we provide an intuition

on how an appropriate use of padding can handle the various

attacks discussed above. We also discuss how other design

aspects are crucial for achieving security. In this section, we

just provide intuition and examples. The ultimate argument

that our design is secure is our proof, discussed later.

I I’

Interrupt service 
routine runs here

Legend:
: enclave instruction

: padding

T
T

Figure 1. The secure padding scheme.

a) Padding: We already discussed that it is insufficient

for security to naively pad interrupt latency to make it constant.

We need a padding approach that handles all kinds of attacks,

including the example attacks discussed above.

The following padding scheme works (see Figure 1). Sup-

pose the attacker schedules the interrupt to arrive at ta, during

the execution of instruction I in the enclave. Let Δt1 be the

time needed to complete execution of I . To make sure the

attacker can not learn anything from the interrupt latency, we

introduce padding for Δtp1 cycles where Δtp1 is computed by

the interrupt handling logic such that Δt1+Δtp1
is a constant

value T . This value T should be chosen as small as possible

to avoid wasting unnecessary time, but must be larger than

or equal to the maximal instruction cycle time MAX_TIME (to

make sure that no negative padding is required, even when

an interrupt arrives right at the start of an instruction with

the maximal cycle time). This first padding ensures that an

attacker always measures a constant interrupt latency.

But this alone is not enough, as an attacker can now measure

resume-to-end time as in Example 3. Thus, we provide a sec-

ond kind of padding. On return from an interrupt, the interrupt

handling logic will pad again for Δtp2
cycles, ensuring that

Δtp1
+Δtp2

is again the constant value T (i.e., Δtp2
= Δt1).

This makes sure that the resume-to-end time measured by the

attacker does not depend on the instruction being interrupted.

This description of our padding scheme is still incomplete:

it is also important to specify what happens if a new interrupt

arrives while the interrupt handling logic is still performing

padding because of a previous interrupt. This is important to

counter attacks like that of Example 4. We refer to the formal

description for the complete definition.

Intuitively, the property we get is that (1) an attacker can

schedule an interrupt at any time ta during enclave execution,

(2) that interrupt will always be handled with a constant

latency T , (3) the resume-to-end time is always exactly the

time the enclave still would have needed to complete execution

from point ta if it had not been interrupted.

This double padding scheme is a main ingredient of our

secure interrupt handling mechanism, but many other aspects

of the design are important for security. We briefly discuss a

number of other issues that came up during the security proof.

b) Saving execution state on interrupt: When an en-

claved execution is interrupted, the processor state (contents

of the registers) is saved (to allow resuming the execution

266



once the interrupt is handled) and is cleared (to avoid leaking

confidential register contents to the context). A straightforward

implementation would be to store the processor state on the

enclave stack. However, the proof of our security theorem

showed that storing the processor state in enclave accessible

memory is not secure: consider two enclaved modules that

monitor the content of the memory area where processor state

is saved, and behave differently on observing a change in the

content of this memory area. These modules are contextually

equivalent in the absence of interrupts (as the contents of this

memory area will never change), but become distinguishable in

the presence of interrupts. Hence, our design saves processor

state in a storage area inaccessible to software.

c) No access to unprotected memory from within an
enclave: Most designs of enclaved execution allow an enclave

to access unprotected memory (even if this has already been

criticized for security reasons [30]). However, for a single

core processor, interruptibility significantly weakens contex-

tual equivalence for enclaves that can access unprotected mem-

ory. Consider an enclave M1 that always returns a constant 0,

and an enclave M2 that reads twice from the same unprotected

address and returns the difference of the values read. On a

single-core processor without interrupts, M2 will also always

return 0, and hence is indistinguishable from M1. But an

interrupt scheduled to occur between the two reads from M2

can change the value returned by the second read, and hence

M1 and M2 become distinguishable. Hence, our design forbids

enclaves to access unprotected memory.

For similar reasons, our design forbids an interrupt handler

to reenter the enclave while it has been interrupted, and forbids

the enclave to directly interact with I/O devices.

Finally, we prevent the interrupt enable bit (GIE) in the

status register from being changed by software in the enclave,

as such changes are unobservable in the original Sancus and

they would be observable once interruptibility is added.

While the security proof is a significant amount of effort,

an important benefit of this formalization is that it forced us

to consider all these cases and to think about secure ways of

handling them. We made our design choices to keep model

and proof simple, and these choices may seem restrictive.

Section VI discusses the practical impact of these choices.

IV. FORMALIZATION AND SECURITY PROOFS

We proceed to formally define two Sancus models, one de-

scribing the original, uninterruptible Sancus (SancusH, Sancus-

High) and one describing the secure interruptible Sancus

(SancusL, Sancus-Low).2 The two share most of their struc-

ture and just differ in the way they deal with interrupts.

Given the semantics of SancusH and SancusL, we formally

show that the two versions of Sancus actually provide the

same security guarantees, i.e., the isolation mechanism is not

broken by adding a carefully designed interruptible enclaved

2The high and low terminology is inherited from the field of secure
compilation of high source languages to low target ones. Also, for readability
we hereafter highlight in blue, sans-serif font elements of SancusH, in
red,bold font elements of SancusL and in black those that are in common.

execution. Technically, this is done through the full abstraction
theorem between SancusH and SancusL (Theorem IV.1).

Note that, our theorem guarantees that the same program has

the same security guarantees both in SancusH and SancusL.

Space limitations prevent us from discussing all the details

of our formalization and we refer the reader to the extended

version [21] for all the missing details.

A. Setting up our formal framework

a) Memory and memory layout: The memory is modeled

as a (finite) function mapping 216 locations to bytes b. Given

a memory M, we denote the operation of retrieving the byte

associated to the location l as M(l). On top of that, we define

read and write operations on words (i.e., pairs of bytes) and

we write w = b1b0 to denote that the most significant byte of

a word w is b1 and its least significant byte is b0.

The read operation is standard: it retrieves two consecutive

bytes from a given memory location l (in a little-endian

fashion, as in the MSP430):

M[l] � b1b0 if M(l) = b0 ∧M(l + 1) = b1

We define the write operation as follows

(M[l �→ b1b0])(l
′) �

⎧⎪⎨
⎪⎩

b0 if l′ = l

b1 if l′ = l + 1

M(l′) o.w.

Writing b0b1 in location l in M means to build an updated

memory mapping l to b0, l+1 to b1 and unchanged otherwise.

Note that reads and writes to l = 0xFFFF are undefined (l+1
would overflow hence it is undefined). The memory access

control explicitly forbids these accesses (see below). Also, the

write operation deals with unaligned memory accesses (cfr.

case l′ = l + 1). We faithfully model these aspects to prove

that they do not lead to potential attacks.

A memory layout L � 〈ts, te, ds, de, isr〉 describes how

the enclave and the interrupt service routine (ISR) are placed

in memory and is used to check memory accesses during

the execution of each instruction (see below). The protected

code section is denoted by [ts, te), [ds, de) is the protected

data section, and isr is the address of the ISR. The protected

code and data sections do not overlap and the first address

of the protected code section is the single entry point of the

enclave. Finally, we reserve the location 0xFFFE to store the
address of the first instruction to be executed when the CPU

starts or when an exception happens, reflecting the behavior of

MSP430. Thus, 0xFFFE must be outside the enclave sections

and different from isr .

b) Registers: There are sixteen 16-bit registers, three of

which R0, R1, R2 have dedicated functions, whereas the others

are for general use. (R3 is a constant generator in the MSP430,

but we ignore that use in our formalization.) More precisely,

R0 (hereafter denoted as pc) is the program counter and points

to the next instruction to be executed. Instruction accesses are

performed by word and the pc is aligned to even addresses.

The register R1 (sp hereafter) is the stack pointer and is aligned

267



to even addresses. Since for the time being we do not model

instructions for procedure calls, the only special use of the

stack pointer in our model is to store the state while handling

an interrupt (see below). The register R2 (sr hereafter) is the

status register and contains different pieces of information

encoded as flags. The most important for us is the fourth bit,

called GIE, set to 1 when interrupts are enabled. Other bits

signal, e.g., when an operation produces a carry or when an

operation returns zero.

Formally, our register file R is a function that maps each

register r to a word. While read operation is standard, the write

operation models some invariants enforced by the hardware:

R[r] � w if R(r) = w

R[r �→ w] � λ[r′].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

w&0xFFFE

if r′ = r ∧ (r = pc ∨ r = sp)

(w&0xFFF7) | (R[sr]&0x8)

if r′ = r = sr ∧R[pc] �mode PM

w if r′ = r ∧ (r 	= pc ∧ r 	= sp)

R[r′] o.w.

More specifically, the least-significant bit of the program

counter and of the stack pointer are always masked to 0
(as is also the case in the MSP430), and the GIE bit of the

status register is always masked to its previous value when in

protected mode (i.e., it cannot be changed when the CPU is

running protected code, cf. the discussion in Section III). Note

that in the definition above we use the relation R[pc] �mode m,

for m ∈ {PM, UM} made precise below: roughly it denotes

that the execution is in protected or in unprotected mode (i.e,

execution is within, respectively outside the enclave).
c) I/O Devices: I/O devices are (simplified) deterministic

I/O automata D � 〈Δ, δinit,
a�D〉 over a common signature A

containing the following actions a (below, w is a word): (i) ε,
a silent, internal action; (ii) rd(w), an output action (i.e., read

request from the CPU); (iii) wr(w), an input action (i.e., write

request from the CPU); (iv) int?, an output action indicating

an interrupt is raised. The transition function δ
a�D δ′ models

the device in state δ performing action a ∈ A and moving to

state δ′, and δinit is the initial state.
d) Contexts, software modules and whole programs:

We call software module a memory MM containing both

protected data and code sections. A context C is a pair

〈MC ,D〉, where D is a device and MC defines the contents

of all memory locations outside the protected sections of the

layout, thus disjoint from MM . Intuitively, the context is the

part of the whole program that can be manipulated by an

attacker. Given a context C and a software module MM , we

define a whole program as C[MM ] = 〈MC �MM ,D〉.
e) Instruction set: We consider a subset of the MSP430

instructions plus our I/O instructions; they are in Table I. For

each instruction the table includes its operands, an informal

description of its semantics, its duration and the number of

words it occupies in memory. The durations are used to define

the function cycles(i). In our model, we let MAX_TIME = 6,

because the longest MSP430 instructions take 6 cycles (typ-

ically those for moving words within memory [28], none

of which are displayed in Table I). Instructions are stored

in the memory M. We use the meta-function decode(M, l)
that decodes the contents of the cell(s) starting at location l,
returning an instruction in the table if any and ⊥ otherwise.

f) Configurations: Given an I/O device D, the state of

the Sancus system is described by configurations of the form:

c � 〈δ, t, ta,M,R, pcold ,B〉 ∈ C, where

(i) δ is the current state of the I/O device; (ii) t is the

current time of the CPU; (iii) ta is either the arrival time

of the last pending interrupt, or ⊥ if there are none (this

value may persist across multiple instructions); (iv) M is the

current memory; (v) R is the current content of the registers;

(vi) pcold is the value of the program counter before executing

the current instruction; (vii) B is called the backup, is software

inaccessible storage space to save enclave state (registers, the

old program counter and the remaining padding time) while

handling an interrupt raised in protected mode.

The initial configuration for a whole program C[MM ] =
〈M,D〉 is:

INITC[MM ] � 〈δinit, 0,⊥,M,Rinit
MC

, 0xFFFE,⊥〉 where

(i) the state of the I/O device D is δinit; (ii) the initial value of

the clock is 0 and no interrupt has arrived yet; (iii) the memory

is initialized to the whole program memory MC � MM ;

(iv) all the registers are set to 0 except that pc is set to 0xFFFE

(the address from which the CPU gets the initial program

counter), and that sr is set to 0x8 (the register is clear except

for the GIE flag); (v) the previous program counter is also

initialized to 0xFFFE; (vi) the backup is set to ⊥ to indicate

absence of any backup.

Dually, HALT is the only configuration denoting termi-

nation, more specifically it is an opaque and distinguished

configuration that indicates graceful termination.

Also, we define exception handling configurations, that

model what happens on soft reset of the machine (e.g. on

a memory access violation, or a halt in protected mode). On

such a soft reset, control returns to the attacker by jumping to

the address stored in location 0xFFFE:

EXC〈δ,t,ta,M,R,pcold ,B〉 �
〈δ, t,⊥,M,R0[pc �→ M[0xFFFE]], 0xFFFE,⊥〉.

g) I/O device wrapper: Since the class of interrupt-based

attacks requires a cycle-accurate timer, it is convenient to

synchronize the CPU and the device time by forcing the device

to take as many steps as the number of cycles consumed for

each instruction by the CPU. The following “wrapper” around

the device D models this synchronization:

D � δ, t, ta �
k
D δ′, t′, t′a

Assuming that the device was in state δ, at time t, and the

last pending interrupt was raised at time ta, then this wrapper

defines for k cycles later: the new time t′ = t+k, the new last

268



t

Entry Point Prot. code Prot. Data Other

f
Entry Point/Prot. code r-x r-x rw- –x
Other –x — — rwx

Table II
DEFINITION OF MACL(f , rght, t), WHERE f AND t ARE LOCATIONS.

pending interrupt time t′a, and the new device state δ′. When

no interrupt has to be handled, ta and t′a are ⊥.

h) CPU mode and memory access control: The last two

relations used by the main transition systems are the CPU
mode and the memory access control, MAC. The first tells

when a given program counter value, pc, is an address in the

protected code memory (PM) or in the unprotected one (UM):

pc �mode m, with m ∈ {PM, UM}
(Also, for simplicity, the relation is lifted to configurations.)

The second one

i,R, pcold ,B �mac OK

holds whenever the instruction i can be executed in a CPU

configuration in which the previous program counter is pcold ,

the registers are R and the backup is B. More precisely, it

uses the predicate MACL(f , rght, t) (see Table II) that holds

whenever from the location f we have the rights rght on

location t. The predicate checks that (1) the code we came

from (i.e., that in location pcold ) can actually execute the

instruction i located at R[pc]; (2) i can be executed in current

CPU mode; and (3) we have the rights to perform i from

R[pc], when i is a memory operation.

B. SancusH: a model of the original Sancus

Our models of Sancus are defined by means of two transi-

tion systems: a main one and an auxiliary one. The first system

defines the operational semantics of instructions, and relies on

the auxiliary system to specify the behavior upon interrupts.

a) Main transition system: The main transition system

describes how the SancusH configurations evolve during the

execution, whose steps are represented by transitions of the

following form, where D is an I/O device and c, c′ ∈ C:

D � c→ c′

Figure 2 reports some selected rules among those defining

the main transition system. The first shows how the model

deals with violations in protected mode: if an instruction can

not be executed according to the memory-access control rela-

tion then a transition to the exception handling configuration

happens. Rule (CPU-MOVL) is for when the current instruction

i loads in r2 the word in memory at the position pointed by

r1. Its first premise checks if the instruction can be executed;

the second one increments the program counter by 2 and

loads in r2 the value M[r1]; the third premise registers in

the device that i requires cycles(i) cycles to complete; and

the last one executes the interrupt logic to check whether an

interrupt needs to be handled or not (see comment below).

Another interesting rule is (CPU-IN) that deals with the case

in which the instruction reads a word from the device and

puts the result in r. Its second premise holds when the device

sends the word w to the CPU; the others are similar to those

of (CPU-MOVL).
b) Interrupt logic: The auxiliary transition system for

SancusH specifies the interrupt logic, and has the form:

D � 〈δ, t, ta,M,R, pcold ,B〉 ↪→I 〈δ′, t′, t′a,M′,R′, pcold ,B′〉.
Since SancusH ignores all interrupts, even in unprotected

mode, the transition system always leaves the configuration

unchanged.

Actually, one could remove the premise with the auxiliary

transition system from all the rules defining the semantics of

SancusH, as it always holds. However, it is convenient keeping

them both to ease the presentation of the transition system of

SancusL, and for technical reasons, as well.

C. SancusL: secure interruptible Sancus

We now define the semantics of SancusL, the secure
interruptible Sancus, formalizing the mitigation outlined in

Section III. We start by describing the main difference with

that of SancusH, i.e., the way interrupts are handled.

a) Interrupt logic: Figure 3 shows the relevant rules of

the auxiliary transition system describing the interrupt logic

of SancusL. Now interrupts are handled both in unpro-

tected and protected mode, modeled by the rules (INT-UM-P)
and (INT-PM-P), resp. For the first case there is the premise

pcold �mode UM, for the second pcold �mode PM (i.e., the mode

in which the last instruction was executed). Both rules have a

premise requiring that the GIE bit of the status register is set to

1 and that an interrupt is on (ta 	= ⊥). (If this is not the case,

two further rules, not displayed, just leave the configuration

untouched, and keep the value of ta unchanged.) A premise

of (INT-UM-P) concerns registers: the program counter gets the

entry point of the handler; the status register gets 0; and the

top of the stack is moved 4 positions ahead. Accordingly, the

new memory M′ updates the locations pointed by the relevant

elements of the stack with the current program counter and the

contents of the status register. The last premise specifies that

this interrupt handling takes 6 cycles.

The rule (INT-PM-P) is more interesting. Besides assigning

the entry point of the handler to the program counter, it

computes the padding time for mitigation of interrupt-based

timing attacks and saves the backup in B′. The padding k
is then used, causing interrupt handling to take 6 + k steps.

Such a padding is needed to implement the first part of

the mitigation (see Section III-C) and is computed so as to

make the dispatching time of interrupts constant. Note that

the padding never gets negative. When an interrupt arrives in

protected mode two cases may arise. Either GIE = 1, and the

padding is non-negative because the interrupt is handled at

the end of the current instruction; or GIE = 0, and no padding

is needed because the interrupt is handled as soon as GIE

becomes 1, which is only possible in unprotected mode. The

269



(CPU-VIOLATION-PM)
B �= 〈⊥,⊥, tpad 〉 i,R, pcold ,B ��mac OK

D � 〈δ, t, ta,M,R, pcold ,B〉 → EXC〈δ,t+cycles(i),ta,M,R,pcold ,B〉
i = decode(M,R[pc])) �= ⊥

(CPU-MOVL)
B �= 〈⊥,⊥, tpad 〉 i,R, pcold ,B �mac OK R′ = R[pc 
→ R[pc] + 2][r2 
→ M[R[r1]]]

D � δ, t, ta �
cycles(i)
D δ′, t′, t′a D � 〈δ′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

D � 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′′,R[pc],B′〉 i = decode(M,R[pc])) = MOV @r1 r2

(CPU-IN)

B �= 〈⊥,⊥, tpad 〉 i,R, pcold ,B �mac OK δ
rd(w)� D δ′ R′ = R[pc 
→ R[pc] + 2][r 
→ w]

D � δ′, t, ta �
cycles(i)
D δ′′, t′, t′a D � 〈δ′′, t′, t′a,M,R′,R[pc],B〉 ↪→I 〈δ′′′, t′′, t′′a ,M′,R′′,R[pc],B′〉

D � 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′′, t′′, t′′a ,M′,R′′,R[pc],B′〉 i = decode(M,R[pc]) = IN r

Figure 2. Selected rules from the main transition system.

(INT-UM-P)
pcold �mode UM R[sr].GIE = 1

ta �= ⊥ R′ = R[pc 
→ isr , sr 
→ 0, sp 
→ R[sp]− 4] M′ =M[R[sp]− 2 
→ R[pc],R[sp]− 4 
→ R[sr]] D � δ, t,⊥�
6
D δ′, t′, t′a

D � 〈δ, t, ta,M,R, pcold ,B〉 ↪→I 〈δ′, t′, t′a,M′,R′, pcold ,B〉

(INT-PM-P)
k = MAX_TIME− (t− ta)

pcold �mode PM R[sr].GIE = 1 ta �= ⊥ R′ = R0[pc 
→ isr ] D � δ, t,⊥�
6+k
D δ′, t′, t′a B′ = 〈R, pcold , t− ta〉

D � 〈δ, t, ta,M,R, pcold ,B〉 ↪→I 〈δ′, t′,⊥,M,R′, pcold ,B′〉

Figure 3. Selected rules for the interrupt logic in SancusL.

backup stores part of the CPU configuration (R and pcold )

and tpad = t − ta. The value of tpad will then be used

as further padding before returning, so fully implementing

the mitigation (cf. Section III-C). The register file R0 is

{pc �→ 0, sp �→ 0, sr �→ 0, R3 �→ 0, . . . , R15 �→ 0}.
b) The main transition system: The rules defining the

main transition system of SancusL are those of SancusH, with

a non-trivial transition system for interrupt logic and mitigation

— this explains why also SancusH rules have the premise

D � · ↪→I · for interrupts.

There are new rules for the new RETI instruction, shown

in Figure 4. Rule (CPU-RETI) deals with a return from an

interrupt that was handled in unprotected mode, i.e., when

i = decode(M,R[pc]) = RETI and there is no backup. Its

first premise checks that the RETI instruction is indeed per-

mitted. The second one requires that the program counter is set

to the contents of the memory location pointed by the second

element from the top of the stack (that grows downwards); that

the status register is set to the contents of the memory location

pointed by the top of the stack; and that two words are popped

from the stack. Finally, the third one registers that cycles(i)
steps are needed to complete this task. Rule (CPU-RETI-CHAIN)
executes the interrupt handler in unprotected mode when the

CPU discovers that another interrupt arrived, while returning

from a handler whose interrupt was raised in protected mode

(via the interrupt logic). The most interesting rules are the

last two. They deal with the case in which the CPU is

returning from the handling of an interrupt raised in protected

mode, but no new interrupt arrived afterwards (or the GIE

bit is off, cf. fourth premise of rule (CPU-RETI-PREPAD)).
First, rule (CPU-RETI-PREPAD) restores registers and pcold from

the backup B, then rule (CPU-RETI-PAD) (which is the only

one applicable after (CPU-RETI-PREPAD)) applies the remaining

padding (recorded in the backup) to rule out resume-to-end

timing attacks (note that this last padding is interruptible, as

witnessed by the last premise). We model the mechanism

of restoring registers, pcold and of applying the remaining

padding with two rules instead of just one for technical

reasons (see the extended version [21] for details). Note that

this last padding is applied even if the configuration reached

through rule (CPU-RETI-PREPAD) is in unprotected mode (i.e.,

the interrupted instruction was a jump out of protected mode).

Indeed, if it was not the case, the attacker would be able to

discover the value of the padding applied before the interrupt

service routine.

D. Security theorem

Our security theorem states that what an attacker can learn

from an enclave is exactly the same before and after adding the

support for interrupts. Technically, we show that the semantics

of SancusL is fully abstract w.r.t. the semantics of SancusH,

i.e., all the attacks that can be carried out in SancusL can

also be carried out in SancusH, and viceversa. Even though

the technical details are specific to our case study, the security

definition applies also to other architectures. Before stating the

full abstraction theorem and giving the sketch of its proof, we

introduce some further notations.

270



(CPU-RETI)
B �= 〈⊥,⊥, tpad 〉 i,R, pcold ,⊥ �mac OK

R′ = R[pc 
→ M[R[sp] + 2], sr 
→ M[R[sp]], sp 
→ R[sp] + 4] D � δ, t, ta �
cycles(i)
D δ′, t′, t′a

D � 〈δ, t, ta,M,R, pcold ,⊥〉 → 〈δ′, t′, t′a,M,R′,R[pc],⊥〉 i = decode(M,R[pc]) = RETI

(CPU-RETI-CHAIN)
B �= 〈⊥,⊥, tpad 〉 B �= ⊥ D � δ, t, ta �

cycles(i)
D δ′, t′, t′a

R[sr.GIE] = 1 t′a �= ⊥ D � 〈δ′, t′, t′a,M,R,R[pc],B〉 ↪→I 〈δ′′, t′′, t′′a ,M′,R′,R[pc],B〉
D � 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M′,R′,R[pc],B〉 i = decode(M,R[pc]) = RETI

(CPU-RETI-PREPAD)
B �= 〈⊥,⊥, tpad 〉

i,R, pcold ,B �mac OK B �= ⊥ D � δ, t, ta �
cycles(i)
D δ′, t′, t′a (R[sr.GIE] = 0 ∨ t′a = ⊥)

D � 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′, t′, t′a,M,B.R,B.pcold , 〈⊥,⊥,B.tpad 〉〉
i = decode(M,R[pc]) = RETI

(CPU-RETI-PAD)
B = 〈⊥,⊥, tpad 〉 D � δ, t, ta �

tpad
D δ′, t′, t′a D � 〈δ′, t′, t′a,M,R, pcold ,⊥〉 ↪→I 〈δ′′, t′′, t′′a ,M,R′, pcold ,B′〉

D � 〈δ, t, ta,M,R, pcold ,B〉 → 〈δ′′, t′′, t′′a ,M,R′, pcold ,B′〉

Figure 4. Some rules from the operational semantics of SancusL.

Recall that a whole program C[MM ] consists of a module

MM and a context C = 〈MC ,D〉, where MC contains the

unprotected program and data and D is the I/O device.

Let C[MM ]⇓H denote a converging computation in
SancusH, i.e., a sequence of transitions of the whole program

that reaches the halting configuration from the initial one.

Also, let two software modules MM and MM ′ be contex-
tually equivalent in SancusH, written MM �H MM ′ , if and

only if for all contexts C, C[MM ]⇓H ⇐⇒ C[MM ′ ]⇓H.

Similarly, we define C[MM ]⇓L and MM �L MM ′ for

SancusL. Roughly, the notion of contextual equivalence

formalizes the intuitive notion of indistinguishability: two

modules are contextually equivalent if they behave in the same

way under any attacker (i.e., context). Due to the quantification

over all contexts, it suffices to consider just terminating and

non-terminating executions as distinguishable, since any other

distinction can be reduced to it. We can state the theorem that

guarantees the absence of interrupt-based attacks:

Theorem IV.1 (Full abstraction).
∀MM ,MM ′ . (MM �H MM ′ ⇐⇒ MM �L MM ′).

First we prove MM �L MM ′ ⇒ MM �H MM ′ and then

MM �H MM ′ ⇒MM �L MM ′ . Below we only intuitively

describe the proof steps (all the details are in the extended

version [21]).

a) Proof sketch for MM �L MM ′ ⇒MM �H MM ′ :
Since programs in SancusH behave like those in SancusL

with no interrupts, proving this implication is not too hard. It

suffices to introduce the notion of interrupt-less context C� I for

SancusL that behaves as C, but never raises interrupts. The

thesis follows because an enclave hosted in a interrupt-less

context terminates in SancusL whenever it does in SancusH,

as interrupt-less contexts are a strict subset of all the contexts.

b) Proof sketch for MM �H MM ′ ⇒MM �L MM ′ :
We first introduce the notion of observable behavior, in terms

of the traces that C[MM ] can perform according to the

MM �H MM ′

MM �L MM ′ MM
T
=MM ′

(i)

(ii)
(iii)

Figure 5. The steps for proving preservation of behavior.

SancusL semantics. Traces are built using three observables:

(i) • denotes that the computation halts; (ii) jmpIn?(R)
denotes that the CPU enters the protected mode, where R are

the observed registers and (iii) jmpOut!(Δt;R) denotes the

exit from protected mode with observed registers R and with

Δt representing the end-to-end time measured by an attacker

for code running in protected mode.

The proof then follows the steps in Figure 5, where MM
T
=

MM ′ means that MM and MM ′ have the same traces.

Implication (i) shows that the attacker in SancusL at most

observes as much as traces say; implication (ii) shows that

the attacker in SancusH is at least as powerful as described

by traces; finally implication (iii) is our thesis that follows by

transitivity. The proof of (i)MM
T
=MM ′ ⇒MM �L MM ′

roughly goes as follows. First the mitigation is shown to

guarantee that the behavior of the context (in unprotected

mode) does not depend on the behavior of the enclave (in

protected mode) and vice versa (Lemmata III.4 and III.5

of [21]). The thesis follows because if MM
T
= MM ′ and

C[MM ] has a trace β, then also C[M′
M ] has the same trace

β.

The proof of (ii) MM �H MM ′ ⇒ MM
T
= MM ′ is

by contraposition: if two modules have different traces, there

exists a context that distinguishes them, and we build such

a context through a backtranslation. Because of the strong

limitations – for instance because only 64KB of memory is

271



available – building such a context in unprotected memory

only is infeasible and the strong attacker model that enclaved

execution is built for is actually helpful here. The backtransla-

tion defines and uses both the unprotected memory (Algorithm

1 of [21]), and the I/O device, which has unrestricted memory

(Algorithm 2 of [21]). Very roughly, the idea is to take a trace

of MM and one of MM ′ that differ for one observable, and

build a context C such that MM converges and MM ′ does

not, so contradicting the hypothesis MM �H MM ′ .

V. IMPLEMENTATION AND EVALUATION

We provide a full implementation of our approach based

on the Sancus [12] architecture which, in turn, is based on

the openMSP430, an open source implementation of the TI

MSP430 ISA. Our implementation can be divided in two parts.

First, we adapted the execution unit’s state machine to add

padding cycles whenever an interrupt happens in protected

mode and when we return from such interrupts. Second, we

added a protected storage area corresponding to B.

a) Cycle padding: To implement cycle padding, we

added three counters to the processor’s frontend. The first,

Creti nxt, tracks the number of cycles to be padded on the

next RETI. Whenever an interrupt request (IRQ) occurs, this

counter is initialized to zero and is subsequently incremented

every cycle until the current instruction completes. Thus, at

the end of an instruction, this counter holds t − ta, which

corresponds to tpad in B (cf. the (INT-PM-P) rule in Figure 3).

The second counter, Cirq, holds the number of cycles that

needs to be padded when an IRQ occurs. It is initialized to

MAX_TIME − Creti next (MAX_TIME is 6 in our case) when the

instruction during which an IRQ occurred finishes execution.

That is, it holds the value k from rule (INT-PM-P) in Figure 3

after the instruction finishes. From this point on, the counter is

decremented every cycle and the execution unit’s state machine

is kept in a wait state until the counter reaches zero. Only then

is it allowed to progress and start handling the IRQ.

Lastly, a third counter, Creti, is added that holds the number

of cycles that needs to be padded for the current RETI

instruction. Whenever a RETI is executed while handling an

IRQ from protected mode, this counter is initialized with the

value of Creti nxt. Then, after restoring the processor state

from B (see Section V-b), this counter is decremented every

cycle until it reaches zero. After these padding cycles, the

next instruction is fetched, from R[pc] restored from B, and

executed. Note that these padding cycles behave as any tpad -

cycle instruction from the perspective of the padding logic.

That is, they can be interrupted and, hence, padded as well.

This is the reason why we need two counters to hold padding

information for RETI: Creti is used to pad the current RETI

instruction and Creti nxt is used – concurrently, if an IRQ

occurs – to count tpad for the next RETI.

b) Saving and restoring processor state: Whenever an

IRQ in protected mode occurs, the processor’s register state

needs to be saved in a location inaccessible from software.

Our current implementation uses a shadow register file to this

end. We duplicate all registers R0, . . . , R15 (except R3, the

constant generator, which does not store state). On an IRQ,

all registers are first copied to the shadow register file and

then cleared. When a subsequent RETI is executed, registers

are restored from their copies. For the other values in B,

pcold is handled the same as registers, and tpad is saved from

Creti nxt and restored to Creti, as explained in Section V-a.

Besides the values in B, we add a single bit to indicate

if we are currently handling an IRQ from protected mode,

allowing us to test if B 	= ⊥.

The current implementation allows to save or restore the

processor state in a single cycle at the cost of approximately

doubling the size of the register file. If this increase in area is

unacceptable, the state could be stored in a protected memory

area. Implementing this directly in hardware would increase

the number of cycles needed to save and restore a state to one

cycle per register. Of course, one should make sure that this

memory area is inaccessible from software by adapting the

memory access control logic of the processor accordingly.

c) Evaluation: To evaluate the performance impact of

our implementation, we only need to quantify the overhead

on handling interrupts and returning from them, as an unin-

terrupted flow of instructions is not impacted by our design.

When an IRQ occurs, as well as when the subsequent RETI

is executed, there is a maximum of MAX_TIME padding cycles

executed. This variable part of the overhead is thus bounded

by MAX_TIME cycles for both cases. The fixed part – saving and

restoring the processor’s state – turns out to be 0 in our current

implementation: since the fetch unit’s state machine needs at

least one extra cycle to do a jump in both cases, copying the

state is done during this cycle and causes no extra overhead. Of

course, if the register state is stored in memory, as described

in Section V-b, the fixed overhead grows accordingly.

To evaluate the impact on area, we synthesized our imple-

mentation on a Xilinx XC6SLX25 Spartan-6 FPGA with a

speed grade of −2 using Xilinx ISE Design Suite optimiz-

ing for area. The baseline is an unaltered Sancus 2.0 core

configured with support for a single protected module and 64-

bit keys for remote attestation. The unaltered core could be

synthesized using 1239 slice registers and 2712 slice LUTs.

Adding support for saving and restoring the processor state

increases the area to 1488 slice registers and 2849 slice LUTs

and the implementation of cycle padding further increases it

to 1499 slice registers and 2854 slice LUTs. It is clear that the

largest part of the overhead comes from saving the processor

state which is necessary for any implementation of secure

interrupts and can be optimized as discussed in Section V-b.

The implementation of cycle padding, on the other hand, does

not have a significant impact on the processor’s area.

VI. DISCUSSION

A. On the use of full abstraction a security objective

The security guarantee that our approach offers is quite

strong: an attack is possible in SancusH if and only if it is

possible at SancusL. Full abstraction fits naturally with our

goal, because isolation is defined in terms of contextual equiva-

272



lence, and full abstraction specifies that contextual equivalence

is preserved and reflected.

The if -part, namely preservation, guarantees that extend-

ing SancusH with interrupts opens no new vulnerabilities.

Reflection, i.e., the only if -part is needed because otherwise

two enclaves that are distinguishable in SancusH become
indistinguishable in SancusL. Although this mainly concerns

functionality and not security, a problem emerges: adding in-

terrupts is not fully “backwards compatible.” Indeed, reflection

rules out mechanisms that while closing the interrupt side-

channels also close other channels. We believe the situation

is very similar for other extensions: adding caches, pipelining,

etc. should not strengthen existing isolation mechanisms either.

Actually, full abstraction enables us to take the security

guarantees of SancusH as the specification of the isolation

required after an extension is added.

An alternative approach to full abstraction would be to

require (a non interactive version of) robust preservation of

timing-sensitive non-interference [31]. This can also guarantee

resistance against the example attacks in Section III. However,

this approach offers a strictly weaker guarantee: our full ab-

straction result implies that timing-sensitive non-interference

properties of SancusH programs are preserved in SancusL,

as far as non-interference takes as secret the whole enclave,

i.e., its memory and code, and the initial state, as well. In

addition, full abstraction implies that isolation properties that

rely on code confidentiality are preserved, and this matters

for enclave systems that guarantee code confidentiality, like

the Soteria system [32]. An advantage however might be that

robust preservation of timing-sensitive non-interference might

be easier to prove.

In case full abstraction is considered too strong as a security

criterion, it is possible to selectively weaken it by modifying

SancusH. For instance, to specify that code confidentiality is

not important, one can modify SancusH to allow contexts to

read the code of an enclave.

B. The impact of our simplifcations

The model and implementation we discussed in this paper

make several simplifying assumptions. A first important obser-

vation that we want to make is that some simplifications of our

model with respect to our implementation are straightforward

to remove. For instance, supporting more MSP430 instructions

in our model would not affect the strong security guarantees

offered by our approach, and only requires straightforward,

yet tedious technical work.

However, there are also other assumptions that are more

essential, and removing these would require additional re-

search. Here, we discuss the impact of these assumptions on

the applicability of our results to real systems.

First, we scoped our work to only consider “small” micro-

processors. The essential assumption our work relies on is that

the timing of individual instructions is predictable (as shown,

e.g., in Table I for the MSP430). This is typically only true

of small microprocessors. As soon as a processor implements

performance enhancing features like caching or speculation,

the timing of an individual instruction will be variable, e.g., a

load will be faster if can be served from the cache. Our model

and proof do not apply to such more advanced processors.

However, we do believe that the padding countermeasure that

we proved to be secure on simple processors is a very good

heuristic countermeasure, also for more advanced processors.

It has been shown that for instance interrupt-latency attacks

are relevant for modern Intel Core processors supporting SGX

enclaves [9]. Interrupt latency is not deterministic on these

processors, but is instead a complex function of the micro-

architectural state at the point of interruption, and it is hard

to determine an upper bound on the maximal latency that

could be observed. Still, padding to a fixed length on interrupt

and complementary padding on resume will significantly raise

the bar for interrupt latency attacks. We are aware that it

would be very hard, if not impossible at all, to carry over

to these settings the strong security guarantees offered by

full abstraction for “small” microprocessors. Consider for

instance the leaks made possible by the persistent micro-

architectural state that we do not model in this paper. However,

implementing our countermeasure will likely make attacks

harder also in high-end microprocessors.

Second, our model made some simplifying assumptions

about the enclave-based isolation mechanism. We did not

model support for cryptographic operations and for attestation.

This means that we assume that the loading and initialization

of an enclave can be done as securely in SancusL as it can

be done in SancusH. Our choice separates concerns, and it is

independent of the security criterion adopted. Modelling both

memory access control and cryptography would only increase

the complexity of the model, as two security mechanisms

rather than one would be in order. Also their interactions

should be considered to prevent, e.g., leaks of cryptographic

keys unveiling secrets protected by memory access control,

and viceversa. Also, we assumed the simple setting where only

a single enclave is supported. We believe these simplifications

are acceptable, as they reduce the complexity of the model

significantly, and as none of the known interrupt-driven attacks

relies on these features. It is also important to emphasize that

these are model-limitations, and that an implementation can

easily support attestation and multiple enclaves. However, for

implementations that do this, our current proof does not rule

out the presence of attacks that rely on these features.

A more fundamental limitation of the model is that it forbids

reentering an enclave that has been interrupted, via �mac .

Allowing reentrancy essentially causes the same complications

as allowing multi-threaded enclaves, and these are substantial

complications that also lead to new kinds of attacks [33]. We

leave investigation of these issues to future work.

Third, our model and implementation make other simplifi-

cations that we believe to be non-essential and that could be

removed with additional work but without providing important

new insights. For instance, we assumed that enclaves have

no read/write access to untrusted memory. A straightforward

alternative is to allow these accesses, but to also make them

observable to the untrusted context in SancusH. Essentially,

273



this alternative forces the enclave developer to be aware of

the fact that accessing untrusted memory is an interaction

with the attacker. A better alternative (putting less security

responsibility with the enclave developer) is to rely on a trusted

run-time that can access unprotected memory to copy in/out

parameters and results, and then turn off access to unprotected

memory before calling enclaved code. This is very similar to

how Supervisor Mode Access Prevention prevents the kernel

from the security risks of accessing user memory. Our model

could easily be extended to model such a trusted run-time by

considering memory copied in/out as a large CPU register. It

is important to emphasize however that the implementation of

such trusted enclave runtime environments has been shown to

be error-prone [34].

Another such non-essential limitation is the fact that we

do not support nested interrupts, or interrupt priority. It is

straightforward to extend our model with the possibility of

multiple pending interrupts and a policy to select which of

these pending interrupts to handle. One only has to take care

that the interrupt arrival time used to compute padding is the

arrival time of the interrupt that will be handled first.

In summary, to provide hard mathematical security guar-

antees, one often abstracts from some details and provable

security only provides assurance to the extent that the assump-

tions made are valid and the simplifications non-essential. The

discussion above shows that this is the case for a relevant class

of attacks and systems, and hence that our countermeasure

for these attacks is well-designed. Since there is no 100%

security, attacks remain possible for more complex systems

(e.g. including caches and speculation), or for more powerful

attackers (e.g. with physical access to the system).

VII. RELATED WORK

Our work is motivated by the recent wave of software-based

side-channel attacks and controlled-channel attacks that rely

on architectural or micro-architectural processor features. The

area is too large to survey here, but good recent surveys include

Ge et al. [5] for timing attacks, Gruss’ PhD thesis [35] for

software-based microarchitectural attacks before Spectre/Melt-

down, and [10] for transient execution based attacks. The

attacks most relevant to this paper are the pure interrupt-based

attacks. Van Bulck et al. [9] were the first to show how just

measuring interrupt latency can be a powerful attack vector

against both high-end enclaved execution systems like Intel

SGX, and against low-end systems like the Sancus system that

we based our work on. Independently, He et al. [14] developed

a similar attack for Intel SGX.

There is an extensive body of work on defenses against

software-based side-channel attacks. The three surveys men-

tioned above ([5], [35], [10]) also survey defenses, including

both software-based defenses like the constant-time program-

ming model and hardware-based defenses such as cache-

partitioning. To the best of our knowledge, our work proposes

the first defense specifically designed and proved to protect

against pure interrupt-based side-channel attacks. De Clerck

et al. [18] have proposed a design for secure interruptibility

of enclaved execution, but they have not considered side-

channels – their main concern is to make sure that there are

no direct leaks of, e.g., register contents on interrupts. Most

closely related to ours is the work on SecVerilog [36] that also

aims for formal assurances. To guarantee timing-sensitive non-

interference properties, SecVerilog uses a security-typed hard-

ware description language. However, this approach has not yet

been applied to the issue of interrupt-based attacks. Similarly,

Zagieboylo et al. [37] describe an ISA with information-flow

labels and use it to guarantee timing-insensitive information

flow at the architectural level.

An alternative approach to interruptible secure remote com-

putation is pursued by VRASED [25]. In contrast to enclaved

execution, their design only relies on memory access control

for the attestation key, not for the software modules being at-

tested. They prove that a carefully designed hardware/software

co-design can securely do remote attestation.

Our security criterion is directly influenced by a long line of

work that considers full abstraction as a criterion for secure

compilation. The idea was first coined by Abadi [20], and

has been applied in many settings, including compilation to

JavaScript [38], various intermediate compiler passes [39],

[40], and compilation to platforms that support enclaved

execution [41], [42], [43]. But none of these works consider

timing-sensitivity or interrupts: they study compilations higher

up the software stack than what we consider in this paper.

Patrignani et al. [44] have provided a good survey of this

entire line of work on secure compilation.

VIII. CONCLUSIONS AND FUTURE WORK

We have proposed an approach to formally assure that

extending a microprocessor with a new feature does not

weaken the isolation mechanisms that the processor offers.

We have shown that the approach is applicable to an IoT-

scale microprocessor, by showing how to design interruptible

enclaved execution that is as secure as uninterruptible enclaved

execution. Despite this successful case study, some limitations

of the approach remain, and we plan to address them in future.

First, as discussed in Section VI, our approach currently ap-

plies only to “small” micro-processors for which we can define

a cycle-accurate operational semantics. While this obviously

makes it possible to rigorously reason about timing-based side-

channels, it is also difficult to scale to larger processors. To

handle larger processors, we need models that can abstract

away many details of the processor implementation, yet keep-

ing enough detail to model relevant micro-architectural attacks.

A very recent and promising example of such a model was

proposed by Disselkoen et al. [45]. An interesting avenue

for future work is to consider such models for our approach

instead of the cycle-accurate models.

Second, the security criterion we proposed is binary: an

extension is either secure, or it is not. The criterion does not

distinguish low bandwidth side-channels from high-bandwidth
side-channels. An important challenge for future work is to

introduce some kind of quantification of the weakening of

274



security, so that it becomes feasible to allow the introduction

of some bounded amount of leakage.

ACKNOWLEDGEMENTS

We would like to thank the anonymous referees and the

paper shepherd for their insightful comments and detailed

suggestions that helped to greatly improve our presenta-

tion. Matteo Busi and Pierpaolo Degano have been partially

supported by the University of Pisa project PRA 2018 66

DECLware: Declarative methodologies for designing and de-
ploying applications. This research is partially funded by the

Research Fund KU Leuven, by the Agency for Innovation

and Entrepreneurship (Flanders), and by a gift from Intel

Corporation. Jo Van Bulck is supported by a grant of the

Research Foundation – Flanders (FWO). Letterio Galletta has

been partially supported by EU Horizon 2020 project No

830892 SPARTA and by MIUR project PRIN 2017FTXR7S

IT MATTERS (Methods and Tools for Trustworthy Smart

Systems).

REFERENCES

[1] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution,” in HASP 2013, The Second
Workshop on Hardware and Architectural Support for Security and
Privacy, Tel-Aviv, Israel, June 23-24, 2013, R. B. Lee and W. Shi, Eds.
ACM, 2013, p. 10.

[2] Y. Kim, R. Daly, J. Kim, C. Fallin, J. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,” in ACM/IEEE
41st International Symposium on Computer Architecture, ISCA 2014,
Minneapolis, MN, USA, June 14-18, 2014. IEEE Computer Society,
2014, pp. 361–372.

[3] A. Tang, S. Sethumadhavan, and S. J. Stolfo, “CLKSCREW:
exposing the perils of security-oblivious energy management,”
in 26th USENIX Security Symposium, USENIX Security 2017,
Vancouver, BC, Canada, August 16-18, 2017., E. Kirda
and T. Ristenpart, Eds. USENIX Association, 2017, pp.
1057–1074. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/tang

[4] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and
F. Piessens, “Plundervolt: Software-based fault injection attacks against
intel sgx,” in Proceedings of the 41st IEEE Symposium on Security and
Privacy (S&P’20), 2020.

[5] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitec-
tural timing attacks and countermeasures on contemporary hardware,”
J. Cryptographic Engineering, vol. 8, no. 1, pp. 1–27, 2018.

[6] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and
M. Hamburg, “Meltdown: Reading kernel memory from user space,”
in 27th USENIX Security Symposium, USENIX Security 2018,
Baltimore, MD, USA, August 15-17, 2018., W. Enck and A. P. Felt,
Eds. USENIX Association, 2018, pp. 973–990. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp

[7] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in 40th
IEEE Symposium on Security and Privacy (S&P’19), 2019.

[8] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel SGX kingdom with transient out-of-order
execution,” in 27th USENIX Security Symposium, USENIX Security
2018, Baltimore, MD, USA, August 15-17, 2018., W. Enck and A. P. Felt,
Eds. USENIX Association, 2018, pp. 991–1008. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck

[9] J. Van Bulck, F. Piessens, and R. Strackx, “Nemesis: Studying
microarchitectural timing leaks in rudimentary CPU interrupt logic,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’18. New York, NY, USA:
ACM, 2018, pp. 178–195. [Online]. Available: http://doi.acm.org/10.
1145/3243734.3243822

[10] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation
of transient execution attacks and defenses,” in 28th USENIX Security
Symposium, USENIX Security 2019, 2019.

[11] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deter-
ministic side channels for untrusted operating systems,” in 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May
17-21, 2015. IEEE Computer Society, 2015, pp. 640–656.

[12] J. Noorman, J. V. Bulck, J. T. Mühlberg, F. Piessens, P. Maene,
B. Preneel, I. Verbauwhede, J. Götzfried, T. Müller, and F. Freiling,
“Sancus 2.0: A low-cost security architecture for iot devices,” ACM
Trans. Priv. Secur., vol. 20, no. 3, pp. 7:1–7:33, Jul. 2017. [Online].
Available: http://doi.acm.org/10.1145/3079763

[13] P. Koeberl, S. Schulz, A. Sadeghi, and V. Varadharajan, “Trustlite:
a security architecture for tiny embedded devices,” in Ninth Eurosys
Conference 2014, EuroSys 2014, Amsterdam, The Netherlands, April
13-16, 2014, D. C. A. Bulterman, H. Bos, A. I. T. Rowstron, and
P. Druschel, Eds. ACM, 2014, pp. 10:1–10:14.

[14] W. He, W. Zhang, S. Das, and Y. Liu, “SGXlinger: A new side-channel
attack vector based on interrupt latency against enclave execution,” in
36th IEEE International Conference on Computer Design, ICCD 2018,
Orlando, FL, USA, October 7-10, 2018. IEEE Computer Society, 2018,
pp. 108–114.

[15] J. V. Bulck, F. Piessens, and R. Strackx, “Sgx-step: A practical attack
framework for precise enclave execution control,” in Proceedings of
the 2nd Workshop on System Software for Trusted Execution, Sys-
TEX@SOSP 2017, Shanghai, China, October 28, 2017. ACM, 2017,
pp. 4:1–4:6.

[16] S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado,
“Inferring fine-grained control flow inside SGX enclaves with
branch shadowing,” in 26th USENIX Security Symposium, USENIX
Security 2017, Vancouver, BC, Canada, August 16-18, 2017.,
E. Kirda and T. Ristenpart, Eds. USENIX Association, 2017,
pp. 557–574. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/lee-sangho

[17] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgx-
pectre attacks: Stealing intel secrets from sgx enclaves via speculative
execution.”

[18] R. de Clercq, F. Piessens, D. Schellekens, and I. Verbauwhede, “Secure
interrupts on low-end microcontrollers,” in IEEE 25th International Con-
ference on Application-Specific Systems, Architectures and Processors,
ASAP 2014, Zurich, Switzerland, June 18-20, 2014. IEEE Computer
Society, 2014, pp. 147–152.

[19] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. V. Herrewege,
C. Huygens, B. Preneel, I. Verbauwhede, and F. Piessens, “Sancus:
Low-cost trustworthy extensible networked devices with a zero-
software trusted computing base,” in Proceedings of the 22th
USENIX Security Symposium, Washington, DC, USA, August
14-16, 2013, S. T. King, Ed. USENIX Association, 2013,
pp. 479–494. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity13/technical-sessions/presentation/noorman

[20] M. Abadi, “Protection in programming-language translations,” in Secure
Internet Programming, Security Issues for Mobile and Distributed Ob-
jects, ser. Lecture Notes in Computer Science, J. Vitek and C. D. Jensen,
Eds., vol. 1603. Springer, 1999, pp. 19–34.

[21] M. Busi, J. Noorman, J. V. Bulck, L. Galletta, P. Degano,
J. T. Mühlberg, and F. Piessens, “Provably secure isolation for
interruptible enclaved execution on small microprocessors: Extended
version,” CoRR, vol. abs/2001.10881, 2020. [Online]. Available:
http://arxiv.org/abs/2001.10881

[22] V. Costan and S. Devadas, “Intel SGX explained,” IACR Cryptology
ePrint Archive, vol. 2016, p. 86, 2016. [Online]. Available: http:
//eprint.iacr.org/2016/086

[23] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. D. Gligor, and
A. Perrig, “Trustvisor: Efficient TCB reduction and attestation,” in 31st
IEEE Symposium on Security and Privacy, S&P 2010, 16-19 May 2010,
Berleley/Oakland, California, USA. IEEE Computer Society, 2010, pp.
143–158.

275



[24] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno, “Komodo: Us-
ing verification to disentangle secure-enclave hardware from software,”
in Proceedings of the 26th Symposium on Operating Systems Principles,
Shanghai, China, October 28-31, 2017. ACM, 2017, pp. 287–305.

[25] I. O. Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner, and
G. Tsudik, “Vrased: A verified hardware/software co-design for remote
attestation,” in 28th USENIX Security Symposium, USENIX Security
2019, 2019.

[26] J. V. Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx,
“Telling your secrets without page faults: Stealthy page table-based
attacks on enclaved execution,” in 26th USENIX Security Symposium,
USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017.,
E. Kirda and T. Ristenpart, Eds. USENIX Association, 2017,
pp. 1041–1056. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/van-bulck

[27] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware guard extension: Using sgx to conceal cache attacks,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2017, pp. 3–24.

[28] T. Instruments, “MSP430x1xx Family: User Guide,” http://www.ti.com/
lit/ug/slau049f/slau049f.pdf.

[29] T. Goodspeed, “Practical attacks against the MSP430 BSL,” in Twenty-
Fifth Chaos Communications Congress., 2008.

[30] M. Schwarz, S. Weiser, and D. Gruss, “Practical enclave malware with
intel SGX,” CoRR, vol. abs/1902.03256, 2019. [Online]. Available:
http://arxiv.org/abs/1902.03256

[31] C. Abate, R. Blanco, D. Garg, C. Hritcu, M. Patrignani, and J. Thibault,
“Journey beyond full abstraction: Exploring robust property preservation
for secure compilation,” in 32nd IEEE Computer Security Foundations
Symposium, CSF 2019, Hoboken, NJ, USA, June 25-28, 2019, 2019, pp.
256–271.

[32] J. Götzfried, T. Müller, R. de Clercq, P. Maene, F. Freiling,
and I. Verbauwhede, “Soteria: Offline software protection within
low-cost embedded devices,” in Proceedings of the 31st Annual
Computer Security Applications Conference, ser. ACSAC 2015. New
York, NY, USA: ACM, 2015, pp. 241–250. [Online]. Available:
http://doi.acm.org/10.1145/2818000.2856129

[33] N. Weichbrodt, A. Kurmus, P. R. Pietzuch, and R. Kapitza, “Asyncshock:
Exploiting synchronisation bugs in intel SGX enclaves,” in Computer
Security - ESORICS 2016 - 21st European Symposium on Research in
Computer Security, Heraklion, Greece, September 26-30, 2016, Proceed-
ings, Part I, 2016, pp. 440–457.

[34] J. V. Bulck, D. Oswald, E. Marin, A. Aldoseri, F. D. Garcia, and
F. Piessens, “A tale of two worlds: Assessing the vulnerability of
enclave shielding runtimes,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2019,
London, UK, November 11-15, 2019, 2019, pp. 1741–1758.

[35] D. Gruss, “Software-based microarchitectural attacks,” Ph.D. disserta-
tion, Graz University of Technology.

[36] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware design
language for timing-sensitive information-flow security,” in Proceedings
of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’15, Istanbul,
Turkey, March 14-18, 2015, Ö. Özturk, K. Ebcioglu, and S. Dwarkadas,
Eds. ACM, 2015, pp. 503–516.

[37] D. Zagieboylo, G. E. Suh, and A. C. Myers, “Using information
flow to design an ISA that controls timing channels,” in 32nd IEEE
Computer Security Foundations Symposium, CSF 2019, Hoboken, NJ,
USA, June 25-28, 2019, 2019, pp. 272–287. [Online]. Available:
https://doi.org/10.1109/CSF.2019.00026

[38] C. Fournet, N. Swamy, J. Chen, P. Dagand, P. Strub, and B. Livshits,
“Fully abstract compilation to javascript,” in The 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’13, Rome, Italy - January 23 - 25, 2013, R. Giacobazzi
and R. Cousot, Eds. ACM, 2013, pp. 371–384.

[39] A. Ahmed and M. Blume, “Typed closure conversion preserves obser-
vational equivalence,” in Proceeding of the 13th ACM SIGPLAN inter-
national conference on Functional programming, ICFP 2008, Victoria,
BC, Canada, September 20-28, 2008, 2008, pp. 157–168.

[40] ——, “An equivalence-preserving CPS translation via multi-language
semantics,” in Proceeding of the 16th ACM SIGPLAN international
conference on Functional Programming, ICFP 2011, Tokyo, Japan,
September 19-21, 2011, 2011, pp. 431–444.

[41] P. Agten, R. Strackx, B. Jacobs, and F. Piessens, “Secure compilation to
modern processors,” in 25th IEEE Computer Security Foundations Sym-
posium, CSF 2012, Cambridge, MA, USA, June 25-27, 2012, S. Chong,
Ed. IEEE Computer Society, 2012, pp. 171–185.

[42] M. Patrignani and D. Clarke, “Fully abstract trace semantics for pro-
tected module architectures,” Computer Languages, Systems & Struc-
tures, vol. 42, pp. 22–45, 2015.

[43] M. Patrignani, P. Agten, R. Strackx, B. Jacobs, D. Clarke, and
F. Piessens, “Secure compilation to protected module architectures,”
ACM Trans. Program. Lang. Syst., vol. 37, no. 2, pp. 6:1–6:50, 2015.

[44] M. Patrignani, A. Ahmed, and D. Clarke, “Formal approaches to
secure compilation: A survey of fully abstract compilation and related
work,” ACM Comput. Surv., vol. 51, no. 6, 2019. [Online]. Available:
https://doi.org/10.1145/3280984

[45] C. Disselkoen, R. Jagadeesan, A. S. A. Jeffrey, and J. Riely, “The code
that never ran: Modeling attacks on speculative evaluation,” in Proc.
IEEE Symp. Security and Privacy, 2019.

276


