
Securing Asynchronous Exceptions

Carlos Tomé Cortiñas
Chalmers University of Technology

carlos.tome@chalmers.se

Marco Vassena
CISPA Helmholtz Center for Information Security

marco.vassena@cispa.saarland

Alejandro Russo
Chalmers University of Technology

russo@chalmers.se

Abstract—Language-based information-flow control (IFC)
techniques often rely on special purpose, ad-hoc primitives to
address different covert channels that originate in the runtime
system, beyond the scope of language constructs. Since these
piecemeal solutions may not compose securely, there is a need
for a unified mechanism to control covert channels. As a first
step towards this goal, we argue for the design of a general
interface that allows programs to safely interact with the runtime
system and the available computing resources. To coordinate the
communication between programs and the runtime system, we
propose the use of asynchronous exceptions (interrupts), which, to
the best of our knowledge, have not been considered before in the
context of IFC languages. Since asynchronous exceptions can be
raised at any point during execution—often due to the occurrence
of an external event—threads must temporarily mask them out
when manipulating locks and shared data structures to avoid
deadlocks and, therefore, breaking program invariants. Crucially,
the naive combination of asynchronous exceptions with existing
features of IFC languages (e.g., concurrency and synchronization
variables) may open up new possibilities of information leakage.
In this paper, we present MACasync, a concurrent, statically
enforced IFC language that, as a novelty, features asynchronous
exceptions. We show how asynchronous exceptions easily enable
(out of the box) useful programming patterns like speculative ex-
ecution and some degree of resource management. We prove that
programs in MACasync satisfy progress-sensitive non-interference
and mechanize our formal claims in the Agda proof assistant.

I. INTRODUCTION

Information-Flow Control [1] (IFC) is a promising approach

for preserving confidentiality of data. It tracks how data of

different sensitivity levels (e.g., public or sensitive) flows within

a program, and raises alarms when confidentiality might be

at stake. This technology has been previously used to secure

operating systems (e.g., [2, 3]), web browsers (e.g., [4, 5]),

and several programming languages (e.g., [6, 7, 8]).

Most language-based approaches for IFC reason about

constructions found in programs (e.g., variables, branches,

and data structures), while often ignoring aspects of runtime

systems which might create covert channels (e.g., [9, 10, 11])

capable of producing leaks, e.g., through caches, parallelism,

resource usage, etc. To deal with this problem, researchers

have proposed security-aware runtime system designs [11, 12].

However, building runtime systems is a major endeavour and

these proposals have yet to be implemented. A more lightweight

approach to securing runtime systems relies on special-purpose
language constructs that coordinate the execution of programs

with different components of the runtime—e.g., the garbage-

collector [10], the scheduler [13], timeouts [14], lazy evaluation

[15] and caches [16].1 While a step in the right direction,

designing ad-hoc constructs every time that some coordination

with the runtime system is needed feels rather unsatisfactory—

an observation that has also been made outside the security

arena [17, 18, 19]. In fact, implementing hooks in an existing

runtime system requires specific knowledge of its internals

and considerable expertise. Even worse, the composition of

piecemeal security solutions may weaken or even break the

security guarantees of the runtime system as a whole. These

issues suggest the need for a unified mechanism to close covert

channels in the runtime system. As a first step towards this

goal, we believe that runtime systems should expose a general

IFC-aware interface that allow IFC languages to systematically

control and secure components of the runtime system. How

should programs coordinate with the runtime system through

this interface?

In the 70s, Unix-like operating systems conceived signals as

a limited form of inter process communication (IPC).2 Signals

are no more than asynchronous notifications sent to processes

in order to notify them of the occurrence of events, where

the origin of signals is either the kernel or other processes.

Furthermore, when receiving a signal, process execution can

be interrupted during any non-atomic instruction—and if the

process has previously registered a signal handler, then that

routine gets executed. If we think of the kernel as “the runtime”

and of processes as our “programs”, signals are exactly the

mechanism needed to implement the interface that we need!

In fact, and generally speaking, the idea of OS-signals have

been already internalized by programming languages in the

form of asynchronous exceptions.
Asynchronous exceptions are raised as a result of external

events and can occur at any point of the program. As a result,

they are considered so difficult to master that many languages

(e.g., Python [20] and Java [21]) either restrict or completely

forbid programmers from using them. The main reason is that

interrupting a program at any point might break, for instance, a

data-structure invariant or result in holding a lock indefinitely—

and it is not that clear how to get out of such situation.

Despite not being widely adopted in its full expressive power,

asynchronous exceptions enable very useful programming

patterns: speculative execution (i.e., a thread can spawn a

child thread and later decide that it does not need the result

1In this last case, we are abusing the term runtime to denote “the rest of
the system.”

2https://standards.ieee.org/content/ieee-standards/en/standard/1003_1-
2017.html

214

2020 IEEE 33rd Computer Security Foundations Symposium (CSF)

© 2020, Carlos Tomé Cortiñas. Under license to IEEE.
DOI 10.1109/CSF49147.2020.00023

and kill it), timeouts, and resource management. We argue that

such patterns are desirable to have in any modern IFC system.

Our contributions

In this work, we present MACasync, a Haskell IFC library

that extends the concurrent version of MAC [22, 23] with

asynchronous exception. We formally prove progress-sensitive

non-interference (PSNI) [24] for MACasync and provide mech-

anized proofs in Agda [25] of all our claims as supplementary

material to this work. We believe that the extension presented

in this paper and its formal security guarantees extend to other

Haskell IFC libraries (e.g., LIO [26]).

The semantics for asynchronous exceptions in MACasync is

inspired by how asynchronous exception are modeled in Haskell

[27]—where a mechanism of masking/unmasking marks regions

of code where asynchronous exceptions can be safely raised.

However, allowing untrusted code to mask exceptions arbi-
trarily poses other security risks. For example, a rouge thread

could abuse the masking mechanism to exhaust all available

computing resources and starve other threads in the system

without the risk of being terminated. To avoid that, we propose a

fine-grained (selective) masking/unmasking mechanism instead

of the traditional all-or-nothing approaches, which disable all

asynchronous exceptions inside handlers [28, 29]. Furthermore,

in contrast with [27], our design forbids raising multiple

exceptions at the same time, which, we believe, can too easily

disrupt programs in unpredictable ways. While an exception

is raised, our language does not raise incoming exceptions,

which are, instead, stored in a queue of pending exceptions

and raised only when the current one has been handled.

From the security perspective, asynchronous exceptions

follow the no write-down security check for IFC: when

throwing an asynchronous exception, the security level of

the source thread should flow to the security level of the

recipient. The caveats are, however, in the formalization of

masking/unmasking mechanisms and the (progress-sensitive)

non-interference proof. For example, it is important for security

that asynchronous exception are deterministically inserted into

the queue of pending exceptions. We utilize term erasure
as the proof technique and leverage double-step erasure to

deal with the complexity of our semantics (i.e., concurrency,

synchronization variables and asynchronous exceptions), like

in previous existing work (e.g., [23, 30, 31]).

In summary, our list of contributions includes:

� An extension to MAC, called MACasync, to handle IFC-

aware asynchronous exceptions in the presence of concurrency.

� Formal semantics, enforcement, and progress-sensitive non-

interference guarantees for MACasync.

� Mechanized proofs of all our claims in approximately 3,000

lines of Agda3.

� We showcase MACasync and the new programming patterns

enabled by asynchronous exceptions with two examples, in

which we implement secure versions of (i) a speculative

3Available at https://bitbucket.org/carlostome/mac-async.

-- Abstract types

data Labeled � τ
data MAC � τ

-- Monadic structure for computations

instance Monad (MAC �)

-- Core operations

label :: �L � �H ⇒ τ → MAC �L (Labeled �H τ)
unlabel :: �L � �H ⇒ Labeled �L τ → MAC �H τ

Fig. 1: Core API for MAC.

execution combinator, and (ii) a load-balancing controller for

sensitive worker threads, respectively.

To the best of our knowledge, this work is the first account

for asynchronous exceptions in concurrent IFC-systems. The

rest of the paper is organized as follows. In Section II, we revisit

MAC’s API. Section III presents MACasync by example. In

Section IV, we extend MAC’s semantics to track asynchronous

exceptions. In Section V, we introduce asynchronous exceptions

and the masking/unmasking mechanisms. Section VI presents

our security guarantees. Section VII describes related work

and Section VIII concludes.

II. THE MAC IFC LIBRARY

To help readers get familiar with the MAC IFC library [22],

we give a brief overview of its API and programming model.

a) Security Lattice: The information flow policies en-

forced by MAC are specified by a security lattice [32], which

defines a partial order between security levels (labels). These
labels represent the sensitivity of program inputs and outputs

and the order between them dictates which flows of information

are allowed in a program. For example, the classic two-point

lattice L = ({L,H },�) classifies data as either public (L) or
secret (H) and only prohibits sending secret inputs into public

outputs, i.e., H �� L. In MAC, the security lattice is embedded

in Haskell using standard features of the type-system [22]. In

particular, each security label is represented by an abstract data-

type and valid flows of information (the �-relation between

labels) are encoded using type-class constructs.

b) Security Types: MAC enforces security statically by

means of special types annotated with security labels. The

abstract type Labeled � τ associates label � with data of type

τ . For example, pwd :: Labeled H String is a secret string

and score :: Labeled L Int is a public integer. The abstract

type MAC � τ represents a side-effecful computation that

manipulates data labeled with � and whose result has type

τ . MAC provides a monadic interface to help programmers

write secure code. The basic primitives of the interface are

return and bind (written as the infix operator >>=). Primitive

return :: τ → MAC � τ creates a computation that simply

returns a value of type τ without causing side-effects. Primitive

(>>=) ::MAC � τ1 → (τ1 → MAC � τ2)→ MAC � τ2 chains

two computations (at the same security level �) together, in

a sequence. Specifically, program m >>= f takes the result

obtained by executing m and binds it to function f , which

215

fork :: �L � �H ⇒ MAC �H ()→ MAC �L ()

data MVar � τ
newMVar :: �L � �H ⇒ τ → MAC �L (MVar �H τ)
putMVar ::MVar � τ → τ → MAC � ()
takeMVar ::MVar � τ → MAC � τ

Fig. 2: Concurrent API for MAC.

produces the rest of the computation. Our examples use do-
notation, Haskell syntactic sugar for monadic computations.

For instance, we write do x ← m; return (x + 1) for the

program m >>= λx → return (x + 1), which increments by

one the result returned by m .

c) Flows of information: In order to enforce information

flow policies, MAC regulates the interaction between MAC
computations and Labeled data. Computations cannot write and

read labeled data directly, but must use special functions label
and unlabel (Fig. 1). These functions create and read labeled

data as long as these operations comply with specific security

rules, known as no write-down and no read-up [33]. Intuitively,

function label writes some data into a fresh, �H-labeled value

as long as the decision to do so depends on less sensitive data,

i.e., the computation is labeled with �L such that �L � �H.
(To help readers, we use subscripts in metavariables �L and �H
to indicate that �L � �H). Dually, function unlabel allows �H-
labeled computations to read data from lower security levels,

i.e., data labeled with �L such that �L � �H. In the type-

signatures of these functions, the precondition �L � �H is a

type(-class) constraint, which must be statically satisfied when

type-checking programs. As a result, programs that attempt

to leak secret data, e.g., via implicit flows, are ill-typed and

rejected by the compiler. In particular, programs cannot branch

on secret H -labeled data directly, but must use unlabel first

to extract its content. Once unlabeled, secret data can only

be manipulated within a computation labeled with H thanks

to the type of unlabel and bind. Then, trying to use function

label to create public L-labeled data triggers a type error that

represents a violation of the no write-down rule. Specifically,

an attempt to create public data from within a secret context

generates an unsatisfiable type constraint H � L, arising
from the use of label .

MAC incorporates other kinds of resources (e.g., references

and network sockets) in a similar way. Resources are encap-

sulated in labeled resources handlers and the API exposed to

labeled computations is designed so that the read and write

side-effects of each operation respect the no read-up and no
write-down rules.

d) Concurrency: Extending IFC languages with concur-

rency is a delicate task because threads provide attackers with

new means to leak data. For example, the possibility of execut-

ing computations concurrently magnifies the bandwidth of the

termination covert channel [34]. This channel enables brute

force attacks in which threads try to guess the secret and enter

into a loop to suppress public outputs if they succeed. Even

worse, the combination of concurrency and shared resources

can introduce subtle internal-timing channels [35]. This covert

channel is exploited by attacks that influence the (public)

outcome of data races with secret data [9, 34]. To support

concurrency securely, MAC: (i) decouples computations that

manipulate secret data from computations that can generate

public outputs, and (ii) prevents threads (labeled computations)

from affecting data races between threads at lower security

levels. Primitive fork (Fig. 2) allows a �L-labeled computation

to fork a thread at a higher security level, i.e., labeled with

�H such that �L � �H. Intuitively, forking constitutes a write
operation and thus the type of fork enforces the no write-

down rule. MAC does not implements threads directly, but

relies on Haskell green (lightweight user-level) threads. These

threads are managed by the GHC runtime system running a

round-robin scheduler, which is compatible with the security

guarantees of MAC [23, 30].

e) Synchronization Variables: MAC supports shared

mutable state in the form of synchronization variables, fol-

lowing the style of Concurrent Haskell [36]. The abstract

type MVar � τ (Fig. 2) represents a synchronization variable

that can be either empty or full with a value of type τ at

security level �. Threads can create and atomically access

synchronization variables with functions newMVar , putMVar
and takeMVar . Function newMVar creates a synchronization

variable initially full with the given value. (Like label and

fork, function newMVar performs a write side-effect, thus

its type signature has a similar security check). Functions

putMVar and takeMVar allow threads to write and read

shared variables synchronously. In particular, these functions

block threads trying to read or write variables in the wrong

“state”. For example, function putMVar writes a value into

an empty variable and blocks the thread if the variable is

full. Dually, function takeMVar empties a full variable and

returns its content and blocks the caller otherwise. Notice

that putMVar and takeMVar perform both read and write
side-effects: they must always read the variable to determine

whether the caller should be blocked. Then, the no read-up
and no write-down security rules imply that these functions

are secure only when they operate within the same security

level, i.e., both the variable and the computation are labeled

with � [22].

III. MACasync BY EXAMPLE

Asynchronous exceptions enable useful programming pat-

terns that, to our knowledge, cannot be coded securely in any

existing IFC language. We illustrate some of these idioms

in MACasync, which extends MAC with three new primitives

throwTo, mask (unmask), and catch . These primitives allow

threads to (1) send signals to threads at higher security

levels by throwing exceptions asynchronously, (2) suppress
(enable) exceptions in specific regions of code, and (3) react
to exceptions by running their corresponding exception handler,

respectively.

Example 1 (Speculative execution). Imagine two implemen-

tations of the same algorithm whose performance depends

216

on the input. Instead of settling for one, we could run both

concurrently and just return the output of the first that finishes.

At that point the thread computing the other algorithm may be

killed since its result is no longer necessary. We can implement

such a combinator for speculative execution in MACasync using

asynchronous exceptions. First, we declare Kill :: Exception
as a new exception, and define kill t , a function that sends

exception Kill asynchronously to the thread identified by t .4

1 data Exception = Kill | ...
2 kill t = throwTo t Kill

Then, we define the combinator speculate , which receives two

computations c1 and c2 to run speculatively.

3 speculate ::MAC � a → MAC � a → MAC � a
4 speculate c1 c2 = do
5 m ← newEmptyMVar
6 t1 ← fork (c1 >>= putMVar m)
7 t2 ← fork (c2 >>= putMVar m)
8 r ← takeMVar m
9 kill t1; kill t2

10 return r

The combinator creates an empty synchronization variable m
(line 5) and forks two threads (6–7), which run computations c1
and c2 concurrently and then write the result to m . When the

combinator reads variable m (8), it blocks until either thread

terminates and fills it with the result. When this happens, the

combinator resumes, kills the children threads (one may still

be running) (9), and returns the result (10).

Example 2 (Thread pool). This example presents the code of

a controller thread that maintains a pool of worker threads

to perform computations on a stream of incoming (sensitive)

inputs. In this scheme, the controller thread manages the worker

threads in the pool by reacting to asynchronous exceptions sent

by other (public and secret) threads in the system. For example,

when some secret input becomes available, a thread can send

an exception InputH secret to the controller thread, which

extracts the secret data and forwards it to the first available

worker thread to process it. Similarly, when the thread pool

is no longer needed, it can be deallocated by sending the

exception Kill to the controller, which then kills each worker

thread in the pool. In the same way, the controller could be

programmed to react to specific exceptions and carry out even

more tasks (e.g., dynamically resizing the thread pool).

To set up this scheme, a thread calls function initTP (Fig. 3)

to initialize the thread pool and start the controller thread.

Function initTP n f allocates an empty synchronization

variable m (line 6), forks a pool of n worker threads executing

function f (line 7), collects their identifiers ts , and passes it to

the controller thread (line 8). As new input becomes available,

the controller writes it to the shared variable m , which is

then read by one of the workers and its content processed

4In MACasync, primitive fork returns the identifier of the child thread to
the parent.

1 type Data = ...

2 data Exception = Kill | Input� (Labeled � Data) | ...
3 type Size = Int

4 initTP :: Size → (Data → MAC H ())→ MAC L (TId H)
5 initTP n f = do
6 m ← newEmptyMVar
7 ts ← forM [1 . .n] (λ → fork (worker f m))
8 fork (controller ts m)

9 worker :: (Data → MAC H ())→ MVar H Data → MAC H ()
10 worker f m = do
11 mask [Kill] (takeMVar m >>= f)
12 worker f m

13 controller :: [TId H]→ MVar H Data → MAC H ()
14 controller ts m =
15 let wait = newEmptyMVar >>= takeMVar in
16 catch wait
17 [(InputH secret ,
18 mask [InputH ,Kill]
19 (do s← unlabel secret
20 putMVar m s
21 unmask [InputH ,Kill] (controller ts m)))
22 , (Kill ,
23 mask [InputH ,Kill] (forM ts kill))]

Fig. 3: Thread pool example.

via function f (line 11). To avoid getting killed in the middle

of a computation, worker threads mask exception Kill while

processing data, thus ensuring that they always complete on-

going computations without aborting prematurely. It may seem

erroneous to mask also instruction takeMVar : can this cause

a worker thread to block indefinitely waiting for new input?

No, in Concurrent Haskell, and MACasync, operations that can

block indefinitely (like takeMVar) are interruptible, i.e., they
can receive and raise asynchronous exceptions even in masked

blocks [27].

Function controller ts m implements a controller thread

for the thread pool ts sharing variable m . As long as it

receives no exception, the controller thread simply waits

on an always-empty synchronization variable via wait (line

15). When the thread receives an exception, it resumes and

executes the corresponding code in the list of exception

handlers. In particular, when new secret input becomes available

(InputH secret), it unlabels the secret (line 19) and writes it

to variable m (line 20), so that the worker threads can process

it. Notice that if variable m is full at this point, then some

previous input is still waiting to be processed (all workers

threads are busy) and the controller just waits on the variable.

As soon as a worker thread completes, it empties the variable

containing the pending input, and the controller resumes by

writing the variable; then it continues to wait for further

exceptions. To avoid dropping any input, the controller thread

masks exceptions Kill and InputH (line 18) while processing

requests. For example, if exceptions were not properly masked

217

in that block of code, the controller could receive an exception,

e.g., Kill , which would terminate the thread while trying to

feed the last input received to the workers. Once done, the

controller unmasks the exceptions again (line 21) and continues

to wait for new input. After receiving and eventually raising

the exception Kill , the controller thread propagates it to all the

workers in the pool (line 23) and then terminates. Also in this

case, the controller thread masks the other exceptions, which

could otherwise prematurely terminate the controller and leave

some of the worker threads alive.

The example, however, has a catch! Primitive putMVar may

also block the controller indefinitely like takeMVar , and thus

may likewise be interrupted and raise an exception, even if that

exception is masked. As a result, the controller thread could

also be interrupted on line 20 and drop the current input. To fix

the program, we introduce the combinator retry killed m ss ,
which repeatedly attempts to fill variable m with the inputs

pending in list ss while handling other exceptions.

24 retry :: Bool → [TId H]→ MVar H Data
25 → [Data]→ MAC H ()
26 retry killed ts m [] =
27 if killed then forM ts kill ; exit else return ()
28 retry killed m (s : ss) =
29 catch (putMVar m s)
30 [(InputH secret ,
31 do s ′ ← unlabel secret
32 if killed
33 then retry killed ts m (s : ss)
34 else retry killed ts m ((s : ss) ++ [s ′])
35 , (Kill , retry True ts m (s : ss))]

If further inputs are received while executing retry , the

function appends them to list ss to avoid dropping them, and

thus ensuring that they will eventually be delivered to the

workers. If the controller receives exception Kill while retrying,

the boolean flag killed is switched on and further inputs are

discarded. In this case, when all the inputs received before

Kill are dispatched, the controller kills the worker threads and

terminates with exit (line 27)—the function retry assumes

exceptions Input H and Kill are masked so this operation

will not be interrupted. In conclusion, to repair the code of

controller , we simply replace putMVar m s (line 20) with

retry False ts m [s].
Even though relatively simple, these examples cannot be

coded in IFC languages without support for asynchronous

communication like MAC. In these languages, synchronous

primitives (e.g., MVar) must be restricted to operate within

a single security level for security reasons, as explained

in Section II and [23]. For instance, if only synchronous

communication was available, then the controller thread from

our second example could not receive commands from public

(L-labeled) threads.5

5In MAC, a public thread could technically communicate asynchronously
with a secret thread by updating a secret, mutable reference. However, these
labeled references would inevitably introduce serious data races and thus do
not represent a viable alternative.

Types: τ ::= () | Bool | τ1 → τ2
Values: v ::= () | True | False | λx .t
Terms: t ::= t1 t2 | if t then t1 else t2 | v

Fig. 4: Core syntax.

Types: τ ::= · · · | MAC � τ | Labeled � τ
Values: v ::= · · · | Labeled t | return t
Terms: t ::= · · · | label t | unlabel t | t1 >>= t2

(UNLABEL1)

t1 � t2

unlabel t1 −−−→ unlabel t2

(UNLABEL2)

unlabel (Labeled t) −−−→ return t

Fig. 5: Syntax and semantics of MACasync (excerpts).

IV. FORMAL SEMANTICS

A. Core of MACasync

From a security perspective, the interaction between syn-

chronization variables, asynchronous exceptions, and exception

masking is a delicate matter. MACasync implements these

primitives on top of those provided by Concurrent Haskell,

whose runtime is not designed with security in mind. For

example, the fact that a thread may be able to resume another

by sending an asynchronous exception [27] (as explained in the

second example above) may introduce subtle internal timing

covert channels that weaken the security guarantees of MAC.

To rule that out, we extend the small-step semantics of MAC
from [23] with asynchronous exceptions and perform a rigorous,

comprehensive security analysis of the whole language.

The core of MACasync is the standard call-by-name λ-
calculus with boolean and unit type (Fig. 4). We specify the

side-effect free semantics of the core λ-calculus (e.g., function

abstraction, application) as a small-step reduction relation,

t1 � t2, which denotes that term t1 reduces in one step to t2.
These reduction rules are standard and we completely omit

them in this presentation.

The defining feature of MACasync is the security monad

MAC , which encapsulates computations that may produce side-

effects. Figure 5 specifies the syntax and part of the semantics

for the side-effectful constructs of the language. The small-step

relation t1 −→ t2 denotes a single sequential step that brings

term t1 of type MAC � τ to t2. Rule (UNLABEL1) reduces term

unlabel t1 to unlabel t2 by evaluating the argument through a

pure semantics step t1 � t2. When the argument is evaluated,

rule (UNLABEL2) extracts the content of the labeled value and

returns it in the security monad.

B. Synchronization Variables

Figure 6 extends MACasync with synchronization variables.

The store Σ is partitioned by label into separate memory

segments S , each consisting of a list of memory cells c, which

can be either full with a term (� t �) or empty (⊗). A value

218

Store: Σ ∈ Label → Memory
Memory: S ::= [] | c : S
Cell: c ::=⊗ | � t �
Addresses: n ∈ N

Types: τ ::= · · · | MVar � τ
Values: v ::= · · · | MVar � n
Terms: t ::= · · · | newMVar � t | takeMVar t

| putMVar t1 t2

(NEW)

n = |Σ(�)|
Σ, newMVar � t −−−→ Σ[(�,n) 	→ � t �], return (MVar � n)

(PUT1)

t1 � t ′1
Σ, putMVar t1 t2 −−−→ Σ, putMVar t ′1 t2

(PUT2)

(�,n) 	→ ⊗ ∈ Σ Σ′ = Σ[(�,n) 	→ � t �]

Σ, putMVar (MVar � n) t −−−→ Σ′, return ()

Fig. 6: Syntax and semantics for synchronization variables.

MVar � n denotes a synchronization variable that refers to the

n-th cell of the �-labeled memory segment in the store.6

In rule (NEW), primitive newMVar � t allocates a new

memory cell containing term t in the �-labeled segment of the

store, at fresh address n = |Σ(�)|, i.e., Σ[(�,n) 	→ � t �], and
returns the corresponding synchronization variable MVar � n .
Term putMVar � t1 t2 writes term t2 into the empty cell pointed

by the synchronization variable t1. To do that, rule (PUT1)

starts evaluating the variable t1 through a pure semantics step

t1 � t ′1. When the variable is fully evaluated, e.g., MVar � n ,
rule (PUT2) takes over and writes the given term t in the

cell identified by (�,n), i.e., Σ[(�,n) 	→ � t �]. Notice that the

term steps only if the cell in the store Σ is initially empty,
i.e., (�,n) 	→ ⊗ ∈ Σ. If the cell is full, the term cannot

be reduced by any other rule of the semantics and gets stuck,
capturing the intended blocking behavior of synchronization

variables. We omit the rules for takeMVar , which follow a

similar pattern [23].

C. Concurrency

Unlike previous concurrent incarnations of MAC, threads in

MACasync can communicate with each other by sending signals

in the form of asynchronous exceptions. To enable this form

of communication, the runtime system assigns a unique thread

identifier to each thread of the system. Thread identifiers are

opaque to avoid leaking secret data through the number of

threads in the system, and labeled to prevent sensitive threads

from sending exceptions to threads at lower security levels.

MACasync incorporates thread identifiers with values TId� n of

the new primitive type TId �, whose label � represents the static

security level of the thread identified by n . Thread identifiers

6Some terms in the calculus carry a label annotation that is inferred from its
type. For example, the label � in MVar� n comes from its type MVar � τ .

Events: e ::= step | fork�(t)
Thread Id: n ∈ N

Thread Id Map φ ∈ Label → Thread Id
Types: τ ::= · · · | TId �
Values: v ::= · · · | TId� n
Terms: t ::= · · · | fork� t

(FORK)

n = φ(�)

Σ, fork� t
fork�(t)−−−−−→φ Σ, return (TId� n)

Fig. 7: Syntax and semantics of fork.

are also unforgeable and only generated automatically by the

runtime system each time a new thread is forked.

fork :: �L � �H ⇒ MAC �H ()→ MAC �L (TId �H)

Figure 7 extends the sequential calculus of MACasync with

concurrency primitives. To simplify our security analysis, term

fork� t is annotated with the security label � of thread t of

type MAC � (). Similarly to [23], we decorate the sequential

reduction relation from above with events, which inform the

top-level scheduler of the execution of sequential commands

that have global effects. For example, event fork�(t) indicates

that thread t at security level � has been forked and event step
denotes an uninteresting (silent) sequential step. Later, we

extend the category of events to keep track of asynchronous

exceptions as well. Sequential steps are also parameterized

by a thread id map φ, which represents a source of fresh

thread identifiers for each security level. The use of this map is

exemplified by rule (FORK). Whenever a new thread is forked,

e.g., fork� t , we use the label annotation � to generate a

fresh identifier n = φ(�), which is then returned in the monad

wrapped in the constructor of thread identifiers, i.e., TId� n .
Figure 8 introduces the top-level semantics relation that

formalizes how concurrent configurations evolve. Concurrent

configurations are pairs 〈Σ,Θ〉 consisting of the concurrent

store Σ and a map of thread pools Θ. The thread pool map

Θ maps each label of the lattice to the list of threads Ts

at that security level, currently in the system. Each rule

of the concurrent semantics constructs the source of fresh

thread identifiers φ from the thread pool map Θ of the initial

configuration by means of the function nextId(Θ) = λ�.|Θ(�)|.
A concurrent step �,n � c1 ↪→ c2 indicates that

configuration c1 steps to c2, while running the thread identified

(�,n), i.e., the n-th thread of the �-labeled thread pool. The

particular scheduler used to determine which thread runs at

every step is not very relevant for our discussion, therefore

we omit it in our semantics. It suffices to say that the

security guarantees of MACasync carry over for a wide range of

deterministic schedulers [23] (as witnessed by our mechanized

proofs) and include the Round Robin scheduler adopted in

Concurrent Haskell. The concurrent rules rely on sequential

events to determine which step to take. For example, rule

(SEQ) extracts the running thread from the thread pool, i.e.,

Θ[(�,n) 	→ t1], which steps silently, i.e., generating event

219

Configuration: C ::= 〈Σ,Θ〉
Thread Pool Map: Θ ∈ Label → Thread Pool
Thread Pool: Ts ::= [] | (th, Ts)
Thread State: th ::= t

(SEQ)

φ = nextId(Θ) Σ1, t1
step−−−→φ Σ2, t2

�,n � 〈Σ1,Θ[(�,n) 	→ t1]〉 ↪→ 〈Σ2,Θ[(�,n) 	→ t2]〉
(FORK)

φ = nextId(Θ1) n ′ = φ(�′)

Θ2 = Θ1[(�,n) 	→ t2] Σ, t1
fork�′ (t)−−−−−−→φ Σ, t2

�,n � 〈Σ,Θ1[(�,n) 	→ t1]〉 ↪→ 〈Σ,Θ2[(�
′,n ′) 	→ t]〉

Fig. 8: Syntax and semantics of concurrent MACasync.

throwTo :: �L � �H ⇒ TId �H → χ→ MAC �L ()
catch ::MAC � τ → [(χ,MAC � τ)]→ MAC � τ

Fig. 9: MACasync API for asynchronous exceptions.

step, and thus the rule only reinserts the thread term in the

thread pool, i.e., Θ[(�,n) 	→ t2]. In contrast, event fork�′(t)
in rule (FORK) indicates that the running thread has forked,

therefore the rule reinserts the parent thread in the pool,

i.e., Θ2 = Θ1[(�,n) 	→ t2], and also adds its child at the

corresponding security level �′ and fresh index n ′ = φ(�′), i.e.,
Θ2[(�

′,n ′) 	→ t].

V. ASYNCHRONOUS EXCEPTIONS

MACasync supports sending and handling asynchronous

exceptions by means of two new primitives throwTo and catch ,
see Figure 9. Primitive throwTo t ξ raises the exception ξ of

abstract type χ asynchronously in the thread with identifier t .
Intuitively, this operation constitutes a write effect, therefore

MACasync restricts its API according to the no write-down
rule to enforce security. To this end, the API ensures that

the security label of the receiver thread (�H) is at least as

sensitive as the label of the sender (�L) through the type

constraint �L � �H. Once delivered and raised, asynchronous

exceptions behave like synchronous exceptions. They disrupt

the execution of the receiving thread in the usual way, with the

exception bubbling up in the code of the thread and, if uncaught,

eventually crashing it. Threads can recover from exceptions

by wrapping regions of code in a catch block. The same

mechanism, allows threads to react to asynchronous signals by

handling exceptions appropriately. Primitive catch t hs takes

as a parameter a computation t and a list containing pairs

of exceptions and handlers. Then, if an exception ξ is raised

during the execution of t , the handler corresponding to the

first exception matching ξ in the list hs , if there is one, gets

executed.

Figure 10 extends the calculus with value raise ξ, which

indicates that the computation is in an exceptional state, and
a new event throw�(ξ,n), which instructs the runtime to

deliver exception ξ to the thread identified by (�,n). To model

how asynchronous exceptions propagate precisely, we add

new rules both to the sequential and concurrent semantics.

Rule (THROWTO1) evaluates the thread identifier in term

throwTo t1 ξ, which reduces to throwTo t2 ξ through the

pure step t1 � t2. (For simplicity, our model assumes that

exceptions are already evaluated in terms, thus the rules do

not need to reduce them). When the thread identifier is fully

evaluated, i.e., it is of the form TId� n , rule (THROWTO2)

generates event throw�(ξ,n) and returns unit. The rule reflects

the non-blocking behavior of throwTo, which always succeeds

as soon as the thread identifier is evaluated and regardless

of the state of the receiving thread. This design decision

has important security implications that we discuss further

in Section V-C. Rule (CATCH1) executes the computation

t1 in term catch t1 hs . If during the execution of t1 the

computation receives some exception ξ, and the exception

propagates up to the exception handler, then the term reduces

to catch (raise ξ) hs and rules (CATCHξ1) and (CATCHξ2)

determine whether the exception gets handled or not. In these

rules, function first(hs , ξ) searches for a handler corresponding

to exception ξ in the list hs . To do so, the function traverses

the list of exception-handler pairs hs left-to-right until it finds

a pair whose left component is equal to exception ξ. If a

handler for that exception is in the list, i.e., h = first(hs , ξ),
then (CATCHξ1) passes control to it. If no handler matches the

exception, i.e., ∅ = first(hs , ξ), then rule (CATCHξ2) simply

propagates the exception.

A. Masking Exceptions

Asynchronous exceptions are typically sent in response to

external events such as user interrupts and exceeding resource

limits. These exceptions can disrupt threads unpredictably,

at any moment during their execution, and end up breaking

code invariants and leaving shared data structures in an

inconsistent state. For example, an incoming exception may

crash a thread inside a critical section and cause it to hold a lock

indefinitely, without the possibility of cleaning up. Therefore,

writing robust code in the presence of asynchronous exceptions

requires a mechanism to temporarily suppress exceptions in

critical sections that must not be interrupted. Inspired by [27],

MACasync sports two scoped combinators, mask and unamsk ,
to disable and enable specific exceptions in a given code region,

respectively.7

mask :: χ→ MAC � τ → MAC � τ
unmask :: χ→ MAC � τ → MAC � τ

Intuitively, primitive mask ξ t runs computation t with

exceptions ξ disabled. If such an exception is received during

the execution of t , the exception is not dropped, but stored

in a buffer of pending exceptions ξs and raised once the

execution goes past the mask instruction. Term unmask ξ t

7Even though these primitives take only a single exception as an argument,
they are equivalent to the multi-exception variants used in Section III, i.e.,
mask [ξ1, ξ2] t behaves exactly like mask ξ1 (mask ξ2 t).

220

Exceptions: ξ
Events: e ::= · · · | throw�(ξ,n)
Values: v ::= · · · | raise ξ
Handlers: hs ::= [] | (ξ, t) : hs
Terms: t ::= · · · | throwTo t ξ | catch t hs

(THROWTO1)

t1 � t2

Σ, throwTo t1 ξ
step−−−→φ Σ, throwTo t2 ξ

(THROWTO2)

Σ, throwTo (TId� n) ξ
throw�(ξ,n)−−−−−−−−→φ Σ, return ()

(CATCH1)

Σ1, t1
e−→φ Σ2, t2

Σ1, catch t1 hs
e−→φ Σ2, catch t2 hs

(CATCHξ1)

h = first(hs , ξ)

Σ, catch (raise ξ) hs
step−−−→φ Σ, h

(CATCHξ2)

∅ = first(hs , ξ)

Σ, catch (raise ξ) hs
step−−−→φ Σ, raise ξ

Fig. 10: Syntax and semantics for asynchronous exceptions.

works the other way around and enables exceptions ξ while

executing t . In general, whether an exception received by a

thread should be raised immediately or temporarily suppressed

depends on the masking context of the thread. Intuitively, the

masking context at each execution point depends on the (nested)

mask and unmask instructions crossed up to that point. For

instance, if program unmask ξ (mask ξ′ t) receives exception

ξ while executing t , and if ξ �≡ ξ′ and t does not contain

any mask ξ instruction, then the exception gets raised, i.e.,

unmask ξ (mask ξ′ (· · · raise ξ · · ·)).
Figure 11 presents the sequential semantics of mask and

unmask . The masking context M is a map from exceptions

to booleans, representing a bit vector that indicates which

exceptions can be raised in the reduction steps. To keep

track of exceptions, the sequential relation carries the list of

pending exceptions ξs, on the left, and the list of remaining

exceptions ξ′s on the right of the arrow. Further, the arrow

is annotated with the masking context of the thread (M).

Rules (MASK) and (UNMASK) modify the masking context

accordingly via functions mask(M , ξ) = λξ′.ξ ≡ ξ′ ∨ M (ξ′)
and unmask(M , ξ) (analogous). In particular, the rules reduce

term mask ξ t (respectively unmask ξ t) by executing term

t with modified mask M2 obtained from disabling (enabling)

exception ξ in the current mask M1, i.e., M2 = mask(M1, ξ)
(M2 = unmask(M1, ξ)). When a nested, masked computation

has completed, either successfully (return t) or not (raise ξ′),
rules (MASK1) and (MASKξ) simply propagate the result.

Mask: M ∈ χ→ Bool
Terms: t ::= · · · | mask ξ t | unmask ξ t
Exception list: ξs ::= [] | (ξ : ξs)

(MASK)

M2 = mask(M1, ξ) Σ1, t1, ξs
e−→(φ,M2) Σ2, t2 ξ′s

Σ1,mask ξ t1, ξs
e−→(φ,M1) Σ2,mask ξ t2, ξ

′
s

(UNMASK)

M2 = unmask(M1, ξ) Σ1, t1, ξs
e−→(φ,M2) Σ2, t2, ξ

′
s

Σ1, unmask ξ t1, ξs
e−→(φ,M1) Σ2, unmask ξ t2, ξ

′
s

(MASK1)

Σ,mask ξ (return t), ξs
step−−−→(φ,M) Σ, return t , ξs

(MASKξ)

Σ,mask ξ (raise ξ′), ξs
step−−−→(φ,M) Σ, raise ξ′, ξs

Fig. 11: Syntax and semantics of mask (unmask is similar).

(BIND-RAISE)

unmasked[](M , ξs) = (ξ, ξ′s)

Σ, return t1 >>= t2, ξs
step−−−→(φ,M) Σ, raise ξ, ξ′s

(BIND2)

unmasked[](M , ξs) = ∅
Σ, return t1 >>= t2, ξs

step−−−→(φ,M) Σ, t2 t1, ξs

(BINDξ)

Σ, raise ξ >>= t , ξs
step−−−→(φ,M) Σ, raise ξ, ξs

Fig. 12: Masking semantics of bind (>>=).

The masking context M and the list of pending exceptions

ξs determine whether any exception in the list should be

raised or not. To reflect that, we need to adapt the semantics

rules for most constructs of the calculus. Figure 12 shows the

modifications for the monadic bind (>>=). (The rules for the

other constructs are modified in a similar way, we refer the

reader to the Agda mechanization for details).

First, we define function unmaskedξ′s(M , ξs), which extracts

from the list of pending exceptions ξs the first exception ξ that

is unmasked in M , i.e., such that ¬ M (ξ), The function walks

down the list recursively and accumulates the exceptions ξ that

are masked in M , i.e., such that M (ξ), in the list ξ′s, which

is then returned together with the rest of the list ξs, when an

unmasked exception is found. If all the exceptions in the list

are masked, the function simply returns ∅.
unmaskedξ′s(M , ξs) =⎧⎪⎨

⎪⎩
∅ if ξs = []

(ξ, ξ′s ++ ξ′′s) if ξs = ξ : ξ′′s and ¬ M (ξ)

unmasked(ξ′s++[ξ])(M , ξ′′s) if ξs = ξ : ξ′′s and M (ξ)

221

(TAKE1)

(�,n) 	→ � t � ∈ Σ
unmasked[](M , ξs) = ∅ Σ′ = Σ[(�,n) 	→ ⊗]

Σ, takeMVar (MVar � n), ξs
step−−−→(φ,M) Σ

′, return t , ξs

(TAKE-RAISE-UNMASKED)

(�,n) 	→ c ∈ Σ unmasked[](M , ξs) = (ξ, ξ′s)

Σ, takeMVar (MVar � n), ξs
step−−−→(φ,M) Σ, raise ξ, ξ′s

(TAKE-RAISE-MASKED)

(�,n) 	→ ⊗ ∈ Σ
unmasked[](M , ξs) = ∅ ξs = ξ : ξ′s

Σ, takeMVar (MVar � n), ξs
step−−−→(φ,M) Σ, raise ξ, ξ′s

Fig. 13: Synchronization variables and exceptions.

In the elimination rules of the semantics, we apply function

unmasked[](M , ξs) to determine whether a pending exception

should be raised. For example, if all exceptions are masked,

i.e., unmasked[](M , ξs) = ∅, then rule (BIND2) steps as

usual. In contrast, if an unmasked exception is pending, i.e.,

unmasked[](M , ξs) = (ξ, ξ′s), rule (BIND-RAISE) raises it, i.e.,

raise ξ, and the thread steps with buffer ξ′s where exception ξ
has been removed.

Once raised, exceptions propagate unconditionally via rule

(BINDξ), i.e., no further exceptions are raised until the current

one is handled.

B. Concurrency and Synchronization Variables

The modifications needed for supporting asynchronous

exceptions in the concurrent semantics are minimal. Figure 14

extends the thread state th with the list of pending exceptions

ξs and the initial masking context M . When a thread forks,

the child thread inherits the masking context of the parent

thread and runs with an initially empty list of exceptions. New

rule (THROW) processes event throw�′(ξ,n
′) by delivering

exception ξ to the thread (t , ξ′s,M
′) identified by (�′,n ′). Since

exceptions are processed in the same order as they are delivered,

the rule inserts ξ at the end of the buffer ξ′s, i.e., ξ
′
s ++ [ξ].

Next, we introduce new rules that capture precisely the

interaction between synchronization variables and asynchronous

exceptions. As we explained before, Concurrent Haskell by

design allows specific blocking operations to be interrupted
by asynchronous exceptions, even if they are masked [27].

Therefore, our semantics resumes threads stuck on synchro-

nization variables if any exception is pending. The rules in

Figure 13 formalize this requirement for primitive takeMVar ,
the rules for putMVar are symmetric. Rule (TAKE1) covers

the case where no unmasked exception is pending, i.e.,

unmasked[](M , ξs) = ∅, and the thread can step because

the variable is full, i.e., (�,n) 	→ � t � ∈ Σ, and

thus the rule returns its content t and empties the variable,

i.e., Σ[(�,n) 	→ ⊗]. On the other hand, in rule (TAKE-

RAISE-UNMASKED), an unmasked exception is pending, i.e.,

unmasked[](M , ξs) = (ξ, ξ′s), thus, regardless of the variable

being full or empty, i.e., (�,n) 	→ c ∈ Σ, the rule aborts the

computation and raises the exception ξ without modifying the

store. Lastly, in rule (TAKE-RAISE-MASKED), the variable is

empty, i.e., (�,n) 	→ ⊗ ∈ Σ, and the thread should block

and get stuck. However, an exception ξ is pending in the

buffer ξs, i.e., ξs = ξ :ξ′s, therefore—regardless of the masking

context M—the thread is resumed by raising exception ξ. In
the rule, the condition unmasked[](M , ξs) = ∅ reveals that the

pending exception that gets raised is masked and ensures that

the semantics is deterministic. Without this premise, a thread

with both unmasked and masked exceptions pending in its

buffer could either step via rule (TAKE-RAISE-UNMASKED)

and raise the first unmasked exception, or via rule (TAKE-

RAISE-MASKED) and raise the first masked exception. The

condition above removes the non-determinism: if both masked

and unmasked exceptions are pending, the first unmasked
exception is raised via rule (TAKE-RAISE-UNMASKED).

C. Design Choices and Security

In this part we motivate some of the design choices that

are key to the security guarantees of MACasync and that, we

believe, can help programmers to write code that is more robust

to asynchronous exceptions.

a) API of throwTo: The type of throwTo (Fig. 9)

restricts how threads are permitted to communicate asyn-

chronously with each other to enforce security. Imagine an

unrestricted version of throwTo called throwToleaky, which—

in clear violation of the no write-down security rule—allows

secret threads to send exceptions to public threads. If MACasync

exposed this leaky primitive, then an attacker could exploit it

to leak secret data to a public thread through classic implicit
flows attacks:

do tidL ← forkL (do catch loop [(ξ, printL 1)])
← forkH (do s← unlabel secret

if s then throwToleaky tidL ξ
else return ())

The code above forks two threads, a public thread that waits

for an asynchronous exception in a loop, and a secret thread

that branches on secret data and sends an exception to the

public thread in one branch. Since the secret thread sends an

exception to the public thread only when the secret is true,

the attacker can easily learn its value by simply monitoring

the public output of the public thread, which prints 1 only

when an exception is raised. MACasync rejects such attacks

by statically enforcing the no write-down rule in the API of

throwTo, which would make the code above ill-typed.

b) Asynchronous throwTo: In MACasync, primitive

throwTo is itself an asynchronous operation. As rule

(THROWTO2) in Figure 10 shows, primitive throwTo always

returns immediately, without waiting for the receiver thread

to raise the exception. This design choice follows a previous

line of work on asynchronous exceptions for Haskell [27],

where the authors argue that the asynchronous semantics is

easier to implement. Maybe surprisingly, the current imple-

mentation of Concurrent Haskell with asynchronous exception

222

Thread: th ::= (t , ξs,M)

(THROW)

φ = nextId(Θ1)

Σ, t1, ξs
throw�′ (ξ,n

′)−−−−−−−−−→(φ,M) Σ, t2, ξs Θ2 = Θ1[(�,n) 	→ (t2, ξs,M)] (�′,n ′) 	→ (t , ξ′s,M
′) ∈ Θ2

�,n � 〈Σ,Θ1[(�,n) 	→ (t1, ξs,M)]〉 ↪→ 〈Σ,Θ2[(�
′,n ′) 	→ (t , ξ′s ++ [ξ],M ′)]〉

Fig. 14: Extended concurrent semantics for asynchronous exceptions.

in the GHC runtime provides only a synchronous version

of throwTo.8 Would MACasyncbe secure with a synchronous

primitive throwTosync? No, unfortunately the possibility of

two threads synchronizing by throwing exceptions opens a

new covert channel. Consider the following example, where

throwTosync has synchronous semantics, i.e., throwTosync

blocks the sender thread until the exception is raised in the

receiver thread.

do tidH ← forkH (do s← unlabel secret
if s then mask ξ loop else loop)

no_ops
throwTosync tidH ξ
printL 0

In the code above, the main public thread forks a secret thread,

which branches on secret data and in one branch enters the

masked block mask ξ loop. After waiting for a sufficient

amount of time through no_ops , the public thread sends

exception ξ synchronously to the secret thread. If the secret

thread is looping in the masked block, the exception ξ will

never be raised, causing the public thread to block forever

on throwTosync and thus suppressing the final public output

printL 0. Then, the attacker can learn the value of the secret

by simply observing (the lack of) the output 0 on the public

channel.

As discussed in Section II for MVar , synchronous com-

munication primitives perform both read and write side-

effects, therefore throwTosync cannot operate securely between

threads at different security levels. Even though Concurrent

Haskell provides only the equivalent of throwTosync, we

can still derive a secure asynchronous implementation for

throwTo by internally forking an isolated thread that calls

the unsafe throwTosync, i.e., we define throwTo t ξ as

fork (throwTosync t ξ � return ()).
c) Reliable exception delivery: In MACasync, threads store

the received exceptions in the buffer where they remain until

raised. Importantly, the exceptions are raised following the

order in which they have been delivered, thus enabling threads

to react to signals in the same order as they arise. Even though

multiple exceptions can be pending in the buffer, our semantics

ensures that new exceptions are not raised while the thread

is in an exceptional state. This choice eliminates, by design,

the risk of multiple simultaneous exceptions disrupting critical

code in unpredictable ways. Once handled via the matching

8https://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Exception.
html#v:throwTo

exception handler, the code resumes normal execution and any

other pending exception may be raised. This ensures that all

remaining exceptions, if not masked, will eventually be raised.

D. Relation to MAC
MACasync extends MAC with asynchronous exceptions [23].

MAC features exception-handling primitives and classic ex-

ceptions, but these operate within individual threads and are

intended to signal and recover from exceptional conditions aris-

ing only internally, due to the current state of the computation.

Asynchronous exceptions are more expressive than regular

exceptions. In addition to signaling (external) exceptional

conditions, they enable a flexible signal-based communication

mechanism. In MAC, threads can communicate with each other

only synchronously and indirectly, through synchronization

variables. Though possible, this communication mechanism is

too cumbersome to use as it would require programmers to

establish an appropriate communication protocol and change

their code heavily, for example to ensure that all threads that

need communicating share the same synchronization variable.

Even worse, communication in this style is limited between

threads at the same security level. In contrast, threads in

MACasync can communicate directly, by sending exceptions

to the identifier of the intended receiver thread, and also to

threads at a different, more sensitive security level. MACasync

leverages the mechanization of MAC in its security proofs.

Modeling the semantics of asynchronous exceptions presented

in this paper required substantial changes to the existing artifact.

These changes include extending the syntax and semantics of

the previous model with our new primitives, as well as carefully

adapting the existing semantics rules to capture the semantics

of interruptible exceptions.

VI. SECURITY GUARANTEES

This section shows that MACasync satisfies progress-sensitive
non-interference (PSNI). We begin by describing our proof

technique based on term erasure. Then, we present two lemmas

that are key to the progress-sensitive guarantees of the calculus

and sketch the non-interference proof. We refer the interested

reader to the Agda mechanization for detailed proofs.

A. Term Erasure

Term erasure is a widely used technique to prove non-

interference properties of IFC languages (e.g. [23, 26, 30,

34, 37, 38, 39]). The technique takes its name from the

erasure function, which removes secret data syntactically from

program terms. To this end, the erasure function, written ε�A(t),

223

t t ′

ε�A(t) ε�A(t
′)

ε�A ε�A

Fig. 15: Single-step simulation.

rewrites the sub-terms of t above the attacker’s security level

�A to special term •, which only reduces to itself. Once this

function is defined, the technique relies on establishing a core

property, a simulation between the execution of terms (and

later configurations as well) and their erased counterpart. The

simulation diagram in Figure 15 illustrates this property for

pure terms. The diagram shows that erasing the confidential

parts of term t and then reducing the erased term ε�A(t) along

the orange path leads to the same term ε�A(t
′) obtained along

the cyan path by first stepping from term t to term t ′ and

then applying erasure, i.e., the diagram commutes. Intuitively,
if term t leaked while stepping to t ′, then some data above

security level �A would remain in the erased term ε�A(t
′), but it

would be erased along the other path, in which t is first erased

and then reduced, and thus the diagram would not commute.

B. Erasure Function

We define the erasure function for terms in Figure 16. Since

the sensitivity of many terms is determined by their type, the

definition of the erasure function is type driven, i.e., we write

ε�A(t :: τ) for the erasure of term t of type τ . (We omit the

type of the term when it is irrelevant). Ground values are

unaffected by the erasure function, e.g., ε�A(()) = (), and

most terms are erased homomorphically, e.g., ε�A(t1 t2) =
ε�A(t1) ε�A(t2). The content of secret labeled values is removed,

i.e., ε�A(Labeled t :: Labeled � t) = Labeled • if � �� �A,

or erased homomorphically otherwise, i.e., ε�A(Labeled t ::
Labeled � t) = Labeled ε�A(t : τ) if � � �A. Notice that

terms of type MAC � τ (e.g., mask , unmask) are also erased

homomorphically, despite the fact that the computation may

be sensitive, i.e., even if � �� �A. (The special erasure for

primitive throwTo is explained below). Should not erasure

rewrite these constructs to • ? Intuitively, these terms represent

a description of a sensitive computation, which cannot leak data

until it is inserted in a sequential configuration and executed.

Since these terms can only execute when fetched from a thread

pool, it is then sufficient to erase thread pools appropriately.

We define the erasure function for configurations, stores,

thread pools, and thread states in Figure 17. Configurations are

erased component-wise, i.e., ε�A(〈Σ,Θ〉) = 〈ε�A(Σ), ε�A(Θ)〉.
Thread pools Θ containing secret threads are entirely removed

by the erasure function, i.e., ε�A(Θ)(�) = • if � �� �A, while

those containing thread pools are erased homomorphically,

i.e., ε�A(Θ)(�) = ε�A(Θ(�)) if � � �A, where ε�A([]) = []
and ε�A(th, Ts) = (ε�A(th), ε�A(Ts)). (The erasure function

for memory stores and segments is similar). When some

secret thread gets scheduled from an erased thread pool •,
a dummy thread (•, [], λ .False) runs instead and simply

ε�A(()) = ()

ε�A(t1 t2) = ε�A(t1) ε�A(t2)

ε�A(Labeled t :: Labeled � t)

=

{
Labeled ε�A(t) if �H � �A

Labeled • otherwise

ε�A(mask ξ t) = mask ξ ε�A(t)

ε�A(unmask ξ t) = unmask ξ ε�A(t)

ε�A(throwTo (t :: TId �H) ξ ::MAC �L ())

=

{
throwTo ε�A(t) ξ if �H � �A

throwTo• ε�A(t) ξ otherwise

Fig. 16: Erasure of terms (excerpts).

ε�A(〈Σ,Θ〉) = 〈ε�A(Σ), ε�A(Θ)〉

ε�A(Σ)(�) =

{
ε�A(S) if � � �A and S = Σ(�)

• otherwise

ε�A(Θ)(�) =

{
ε�A(Ts) if � � �A and Ts = Θ(�)

• otherwise

ε�A((t , ξs,M)) = (ε�A(t), ξs,M)

Fig. 17: Erasure of configurations (excerpts)

loops. However, rewriting secret thread pools to • can disrupt

operations involving thread identifiers. For example, an erased

public thread using primitive throwTo to communicate with

a secret thread gets stuck, since rule (THROW) would try to

deliver an exception into thread pool •. To recover from this

situation, we apply the two-step erasure technique [30]. This

technique rewrites problematic terms, e.g., throwTo, to special,

•-annotated erased terms added to the calculus, i.e., throwTo•.
The semantics of these new terms is then defined precisely

to re-establish the core simulation property fundamental for

security (Fig. 15). For example, term throwTo• t ξ reduces just

like thorwTo in rules (THROWTO1) and (THROWTO2), thus

respecting the simulation property of the sequential semantics.

However, instead of generating a regular event throw�H(ξ,n),
which would get the concurrent configuration stuck in rule

(THROW), it generates a new event throw•�H(ξ). Similarly,

this event is handled by a new rule of the concurrent semantics,

which simply drops the exception (no thread labeled �H �� �A
can receive it), thus completing the simulation diagram of the

concurrent step (THROW).

C. Progress-Sensitive Non-Interference

The proof of progress-sensitive non-interference builds on

two key properties of the concurrent relation: deterministic
reduction and erased simulation.

224

Lemma 1 (Deterministic Reduction). If c1 ↪→ c2 and c1 ↪→ c3,
then c2 ≡ c3.

The symbol ≡ above denotes syntactic equality up to α-
renaming, in our mechanized proofs we use De Bruijn indexes

and syntactic equality. Determinism of the concurrent semantics

is important for security, because it eliminates scheduler

refinement attacks [13].

The second lemma that we prove relates the reduction step

of a thread in the concurrent semantics with the corresponding

erased thread. If the security level � of the thread is below the

level of the attacker, i.e. � � �A, then we construct a simulation

diagram similar to that of Figure 15, but for concurrent steps.

Instead, if the security level of the thread is not observable

by the attacker, i.e., � �� �A, then the configurations before

and after the step are indistinguishable to the attacker. This

indistinguishability relation is called �A-equivalence, written

c1 ≈�A c2, and defined as the kernel of the erasure function

(Fig. 17), i.e., ε�A(c1) ≡ ε�A(c2).

Lemma 2 (Erased Simulation). Given a concurrent reduction
step �,n � c1 ↪→ c′1 then

• �,n � ε�A(c1) ↪→ ε�A(c
′
1), if � � �A, or

• c1 ≈�A c
′
1, if � �� �A

Using Lemmas 1 and 2, we prove progress-sensitive non-

interference (PSNI), where symbol ↪→∗ denotes the transitive

reflexive closure of ↪→ as usual.

Theorem 1 (Progress-Sensitive Non-Interference). Given two
well-typed concurrent configurations c1 and c2, such that
c1 ≈�A c2, and a reduction step �,n � c1 ↪→ c′1, then there
exists a configuration c′2 such that c′1 ≈�A c

′
2 and c2 ↪→∗ c′2.

Proof. By cases on � � �A.

If � � �A then in the configuration c2 there is an �A-

equivalent thread identified by (�,n). Before that thread runs,

however, there can be a finite number of high threads in

c2 scheduled before (�,n). After the high threads run, i.e.

c2 ↪→∗ c′′2 , for some configuration c′′2 , the low thread is

scheduled again, i.e. �,n � c′′2 ↪→ c′2, for some other

configuration c′2. From Lemma 2 (erased simulation) applied to

the first set of steps, we obtain c2 ≈�A c
′′
2 (all these steps involve

threads above the attacker’s level) and then c1 ≈�A c
′′
2 follows

by transitivity of the �A-equivalence relation. Then, we apply

Lemma 2 again and conclude that �,n � ε�A(c
′′
2) ↪→ ε�A(c

′
2),

since � � �A as well as �,n � ε�A(c1) ↪→ ε�A(c
′
1). By

definition of �A-equivalence, we derive ε�A(c1) ≡ ε�A(c
′′
2) from

c1 ≈�A c
′′
2 and from Lemma 1 (determinancy) we conclude that

ε�A(c
′
1) ≡ ε�A(c

′
2), i.e., c

′
1 ≈�A c

′
2.

If � �� �A, then we apply Lemma 2 and obtain c1 ≈�A c
′
1,

thus c′1 ≈�A c
′
2 for c′2 = c2 by reflexivity and transitivity of

�A-equivalence.

VII. RELATED WORK

Asynchronous Exceptions Mechanisms. Asynchronous excep-

tions and signals allow developers to implement key function-

alities of real-world systems (e.g., speculative computation,

timeouts, user interrupts, and enforcing resources bounds)

robustly [27, 40]. Surprisingly, support for asynchronous excep-

tions in concurrent programming languages differ considerably.

For example, Java has deprecated fully asynchronous methods

to stop, suspend, and resume threads because they can too

easily break programs invariants without hope of recovery [21].

Similarly, the interaction between synchronous exceptions

and signals makes it hard to write robust signal handlers

in Python [20]. Lacking robust asynchronous primitives,

several programming languages and operating systems (e.g.,

Java, Modula-3, and POSIX-compliant OS’es) rely on semi-
asynchronous communication as a workaround. With this

approach, a thread sends a signal to another by setting special

flags that must be polled periodically by the receiver. Even

though programming in this model is less convenient, we

believe that the principles proposed in this paper could be

adapted for semi-asynchronous communication. The Standard

ML of New Jersey (SML/NJ) features asynchronous signaling

mechanisms based on first-class continuations [28]. When a

thread receives a signal, control is passed to the corresponding

handler together with the interrupted state of the thread as

a continuation. Then, the handler may decide to resume the

execution of the interrupted thread or pass control to another

thread. Erlang implements a special kind of asynchronous

signaling. Threads can monitor each other through bidirectional
links, which propagate the exit code of a thread to the

other [41]. Multicore OCaml support asynchronous exceptions

through algebraic effects and effects handlers [42]. Syme et al.

[43] extend F# with an asynchronous modality that changes

the semantics of control-flow operators to use continuations,

thus sparing programmers from writing asynchronous code

in continuation-passing style. Bierman et al. [44] port this

approach to C# and additionally formalize it with a direct

operational semantics and prove type-safety. Inoue et al. [45]

provide interruptible executions in Scala for context-aware

(reactive) programming via an embedded domain specific

language based on workflows. Concurrent Haskell supports

asynchronous exceptions with scoped (un)masking combinators

[27] and MACasync relies on them to provide secure API to

untrusted code.

Semantics of Asynchronous Exceptions. Peyton Jones et al.

[46] present a semantics framework for reasoning about

the correctness of compiler optimizations in the presence

of (imprecise) exceptions for Haskell. Their framework can

capture asynchronous exceptions as well, but it is based on

denotational semantics and thus not suitable for reasoning

about covert channels. Marlow et al. [27] were the first to

develop an operational semantics for asynchronous exceptions,

which inspired ours and which we have extended to model

fine-grained exception handlers. Their semantics is based on

evaluation contexts [47], while ours is small-step to leverage the

existing formalization and mechanization of MAC [15, 23, 30].

Hutton and Wright [48] study an operational semantics for

interrupts in the context of a basic terminating language without

concurrency and I/O. Their goal is exploratory: they want to

225

formally justify the source level semantics with respect to

its compilation to a low-level language. Harrison et al. [49]

identify asynchronous exceptions as a computational effect and

formalize them in a modular monadic model.

Covert Channels and Countermeasures. Several runtime

system features create subtle covert channels that weaken and

sometimes completely break the security guarantees of IFC

languages. When memory is shared between computations

at different security levels, garbage collection cycles leak

information via timing, even across network connections [10].

To close this channel, memory should be partitioned by

security level and each memory partition should be managed

by an independent timing-sensitive garbage collector (see

the garbage collector implemented in Zee for an example

[12]). Lazy evaluation introduces a software level cache in

the runtime system which creates an internal timing channel

in concurrent Haskell IFC libraries [9]. To close this channel,

Vassena et al. [15] design a runtime system primitive that

restricts sharing between threads at different security levels.

The same primitive can close the lazy covert channel in

MACasync. General purpose runtime system automatically

balance computing resources (CPU time, memory and cores)

between running threads to achieve fairness, but, by doing so on

multi-core systems, they also internalize many external timing

covert channels [11]. LIOPAR is a runtime system design that

recovers security in multi-core systems by making resource

management hierarchical and explicit at the programming

language level. Even though in LIOPAR parent threads send

asynchronous signals to kill children and reclaim computing

resources, LIOPAR does not support fine-grained exception

handlers and masking primitives. Language-based predictive

mitigation is a general technique to bound the leakage of

timing-channels (e.g., arising due to hardware caches) in

programs [50]. Jérémy and Aslan [51] optimize this technique

for a sequential programming language with asynchronous

I/O, but their approach does not consider concurrency and

asynchronous exceptions. Interruptible enclaves have been the

target of several attacks interrupt-based attacks [52, 53, 54] and

Busi et al. [55] propose full abstraction [56] as the desirable

security criterion for extending processor with interruptible

enclaves securely. Our security criterion (progress-sensitive non-

interference) is simpler to prove and aligns with the expected

security guarantees of MACasync. Intuitively, Busi et al. [55]

prove a more complex criterion because it ensures that the

extended processor has no more vulnerabilities than the original,

but that does not imply that neither processor satisfies some

specific security property.

Secure Runtime Systems and Abstractions. Systems that by

design run untrusted programs (e.g., mobile code and plug-ins)

must place adequate security mechanisms to impede buggy

or malicious code from exhausting all available computing

resources. KaffeOS is an extension of the Java runtime system

that isolates processes and manage their computing resources

(memory and CPU time) to prevent abuse [57]. When a

process exceeds its resource budget, KaffeOS kills it and

reclaims its resources without affecting the integrity of the

system. Cinder is an operating system for mobile devices

that provides reserves and taps abstractions for storing and

distributing energy [58]. Using these abstractions, applications

can delegate and subdivide their energy quota while maintaining

energy isolation. Yang and Mazières [59] extend GHC runtime

systems with resource containers, an abstraction that enforce

dynamic space limits according to an allocator-pays semantics.

None of these systems enforce information flow policies except

for Cinder, but we believe that secure API for asynchronous

exceptions like those of MACasync could represent a basic

building block to enforce them reliably.

Zee is an IFC language for implementing secure (timing-

sensitive) runtime systems [12]. The lack of asynchronous

exceptions in Zee complicates the implementation of certain

runtime system components, but we believe that Zee could

support them by applying the insights from this work. An

interesting line of work aims at exposing safe high-level API

to allow users to reprogram features of the runtime systems,

e.g., concurrency primitives [17], multi-core schedulers [18],

and kill-safe abstractions [19]. We believe that the primitives

designed to remove covert channels in GHC and other runtime

systems discussed above could be implemented following this

approach.

VIII. CONCLUSIONS AND FUTURE WORK

This work presents the first IFC language that support

asynchronous exceptions securely. Embedded in Haskell, the

IFC library MACasync provides primitives for fine-grained

masking and unmasking of asynchronous exceptions, which

enable useful programming patterns, that we showcased with

two examples. We have formalized MACasync in 3,000 lines

of Agda and proved progress-sensitive non-interference.

As future work, we plan to use MACasync to reason about

the delivery of OS signals to threads. Specially, we will explore

OS signals dedicated to alert about exhaustion of resources that

cannot be easily partitioned (e.g., the battery in an IoT board).

This scenario will demand the OS—which can be thought as

just another thread—to send signals from higher to lower levels

in the security lattice, thus opening up an information leakage

channel which, we believe, needs to be mitigated.

Another direction for future work consists on using

MACasync to build realistic systems. For instance, we expect

MACasync to be able to provide an IFC-aware interface for

GHC to control CPU usage by leveraging on previous work

[17, 18]. Moreover, building realistic systems often involves

mutually distrusts principals, where we expect privileges
[60, 61] to restrict untrusted code from abusing our selective

mask mechanism.

ACKNOWLEDGMENTS

This work was funded by the Swedish Foundation for Strate-

gic Research (SSF) under the project WebSec (Ref. RIT17-

0011) and Octopi (Ref. RIT17-0023) as well as the Swedish

research agency Vetenskapsrådet. This work was partially

supported by the German Federal Ministry of Education and

226

Research (BMBF) through funding for the CISPA-Stanford

Center for Cybersecurity.

REFERENCES

[1] A. Sabelfeld and A. C. Myers, “Language-Based

Information-Flow Security,” IEEE J. Selected Areas in
Communications, vol. 21, no. 1, pp. 5–19, 2003.

[2] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Maz-

ières, “Making information flow explicit in HiStar,”

in USENIX Symp. on Operating Systems Design and
Implementation. USENIX, 2006.

[3] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,

D. Ziegler, E. Kohler, D. Mazières, F. Kaashoek, and

R. Morris, “Labels and event processes in the Asbestos

operating system,” in ACM Symposium on Operating
Systems Principles, ser. SOSP. ACM, 2005.

[4] D. Stefan, E. Z. Yang, P. Marchenko, A. Russo, D. Her-

man, B. Karp, and D. Mazières, “Protecting users by

confining JavaScript with COWL,” in USENIX Sympo-
sium on Operating Systems Design and Implementation.
USENIX Association, 2014.

[5] A. Yip, N. Narula, M. Krohn, and R. Morris, “Privacy-

preserving browser-side scripting with BFlow,” in Eu-
roSys, 2009.

[6] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld,

“JSFlow: Tracking information flow in JavaScript and

its APIs,” in ACM Symposium on Applied Computing.
ACM, 2014.

[7] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and

N. Nystrom, “Jif: Java Information Flow,” 2001, http:

//www.cs.cornell.edu/jif.

[8] A. Russo, K. Claessen, and J. Hughes, “A library for light-

weight information-flow security in Haskell,” in ACM
SIGPLAN symposium on Haskell. ACM, 2008.

[9] P. Buiras and A. Russo, “Lazy programs leak secrets,” in

Nordic Conference in Secure IT Systems. Springer-Verlag,

2013.

[10] M. V. Pedersen and A. Askarov, “From trash to trea-

sure: Timing-sensitive garbage collection,” in 2017 IEEE
Symposium on Security and Privacy, 2017.

[11] M. Vassena, G. Soeller, P. Amidon, M. Chan, J. Renner,

and D. Stefan, “Foundations for parallel information flow

control runtime systems,” in Principles of Security and
Trust, F. Nielson and D. Sands, Eds. Cham: Springer

International Publishing, 2019, pp. 1–28.

[12] M. Vorreiter Pedersen and A. Askarov, “Static enforce-

ment of security in runtime systems,” in 2019 IEEE 32nd
Computer Security Foundations Symposium (CSF), June
2019, pp. 335–33 515.

[13] A. Russo and A. Sabelfeld, “Securing Interaction between

Threads and the Scheduler,” in IEEE Computer Sec.
Foundations Workshop, 2006, pp. 177–189.

[14] ——, “Securing timeout instructions in web applications,”

in 2009 22nd IEEE Computer Security Foundations
Symposium. IEEE, 2009, pp. 92–106.

[15] M. Vassena, J. Breitner, and A. Russo, “Securing concur-

rent lazy programs against information leakage,” in 2017
IEEE 30th Computer Security Foundations Symposium
(CSF), Aug 2017, pp. 37–52.

[16] A. Ferraiuolo, M. Zhao, A. C. Myers, and G. E. Suh,

“Hyperflow: A processor architecture for nonmalleable,

timing-safe information flow security,” in Proc. of ACM
SIGSAC Conference on Computer and Communications
Security, CCS, 2018.

[17] P. Li, S. Marlow, S. Peyton Jones, and A. Tolmach,

“Lightweight concurrency primitives for GHC,” in Proc.
of the ACM SIGPLAN Workshop on Haskell Workshop,
ser. Haskell ’07. ACM, 2007.

[18] K. C. Sivaramakrishnan, T. Harris, S. Marlow, and

S. Petyon Jones, “Composable scheduler activations for

Haskell,” Journal of Functional Programming, vol. 26,
2016.

[19] M. Flatt and R. B. Findler, “Kill-safe synchronization

abstractions,” SIGPLAN Not., vol. 39, no. 6, p. 47–58,
Jun. 2004.

[20] F. N. Stephen and M. P. Mark, “Safe Asynchronous

Exceptions For Python,” Williams College, Tech. Rep.,

12 2002.

[21] Oracle, “Java Thread Primitive Deprecation,”

https://docs.oracle.com/javase/8/docs/technotes/guides/

concurrency/threadPrimitiveDeprecation.html, accessed

on 05.02.2020.

[22] A. Russo, “Functional Pearl: Two Can Keep a Secret,

if One of Them Uses Haskell,” in ACM SIGPLAN
International Conference on Functional Programming,
ser. ICFP. ACM, 2015.

[23] M. Vassena, A. Russo, P. Buiras, and L. Waye, “MAC a

verified static information-flow control library,” Journal of
Logical and Algebraic Methods in Programming, vol. 95,
pp. 148–180, 2018.

[24] D. Hedin and A. Sabelfeld, “A Perspective on Information-

Flow Control,” in 2011 Marktoberdorf Summer School.
IOS Press, 2011.

[25] Agda development team, “Agda 2.6.0.1 documentation,”

https://agda.readthedocs.io/en/v2.6.0.1/, 2019.

[26] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières,

“Flexible dynamic information flow control in Haskell,”

in ACM SIGPLAN Haskell symposium, 2011.

[27] S. Marlow, S. P. Jones, A. Moran, and J. Reppy,

“Asynchronous exceptions in Haskell,” in Proceedings
of the ACM SIGPLAN 2001 conference on Programming
language design and implementation, 2001, pp. 274–285.

[28] J. H. Reppy, “Asynchronous Signals in Standard ML,”

Tech. Rep., 1990.

[29] R. P. Gabriel and J. McCarthy, “Queue-based multi-

processing LISP,” in Proc. of ACM Symposium on LISP
and Functional Programming, ser. LFP ’84. ACM, 1984,

p. 25–44.

[30] M. Vassena and A. Russo, “On formalizing information-

flow control libraries,” in Proc. of ACM Workshop on
Programming Languages and Analysis for Security, ser.

227

PLAS ’16. ACM, 2016.

[31] M. Vassena, P. Buiras, L. Waye, and A. Russo, “Flexible

manipulation of labeled values for information-flow

control libraries,” in Proceedings of the 12th European
Symposium On Research In Computer Security. Springer,

Sep. 2016.

[32] D. E. Denning and P. J. Denning, “Certification of

programs for secure information flow,” Communications
of the ACM, vol. 20, no. 7, pp. 504–513, 1977.

[33] D. E. Bell and L. La Padula, “Secure computer system:

Unified exposition and multics interpretation,” MITRE

Corporation, Bedford, MA, Tech. Rep. MTR-2997, Rev. 1,

1976.

[34] D. Stefan, A. Russo, P. Buiras, A. Levy, J. C. Mitchell, and

D. Maziéres, “Addressing covert termination and timing

channels in concurrent information flow systems,” in

ACM SIGPLAN International Conference on Functional
Programming. ACM, 2012.

[35] G. Smith and D. Volpano, “Secure information flow in a

multi-threaded imperative language,” in ACM symposium
on Principles of Programming Languages, 1998.

[36] S. Peyton Jones, A. Gordon, and S. Finne, “Concurrent

Haskell,” in ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. ACM, 1996.

[37] P. Li and S. Zdancewic, “Arrows for secure information

flow,” Theoretical Computer Science, vol. 411, no. 19,
pp. 1974–1994, 2010.

[38] S. Heule, D. Stefan, E. Z. Yang, J. C. Mitchell, and

A. Russo, IFC Inside: Retrofitting Languages with Dy-
namic Information Flow Control. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2015.

[39] P. Buiras, D. Vytiniotis, and A. Russo, “HLIO: Mixing

static and dynamic typing for information-flow control in

Haskell,” in ACM SIGPLAN International Conference on
Functional Programming. ACM, 2015.

[40] M. Simon, “Asynchronous Exceptions in

Practice,” https://simonmar.github.io/posts/

2017-01-24-asynchronous-exceptions.html, 2017.

[41] J. Armstrong, Programming Erlang: Software for a
Concurrent World. Pragmatic Bookshelf, 2007.

[42] S. Dolan, S. Eliopoulos, D. Hillerström, A. Mad-

havapeddy, K. C. Sivaramakrishnan, and L. White,

“Concurrent system programming with effect handlers,”

in Trends in Functional Programming, M. Wang and

S. Owens, Eds. Cham: Springer International Publishing,

2018, pp. 98–117.

[43] D. Syme, T. Petricek, and D. Lomov, “The F# Asyn-

chronous Programming Model,” in Proceedings of Prac-
tical Aspects of Declarative Languages, ser. PADL 2011,

2011.

[44] G. M. Bierman, C. V. Russo, G. Mainland, E. Meijer, and

M. Torgersen, “Pause ’n’ play: Formalizing asynchronous

c#,” in ECOOP 2012 - Object-Oriented Programming
Conference, 2012, pp. 233–257.

[45] H. Inoue, T. Aotani, and A. Igarashi, “ContextWorkflow:

A Monadic DSL for Compensable and Interruptible Execu-

tions,” in 32nd European Conference on Object-Oriented
Programming (ECOOP 2018), ser. Leibniz International

Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, 2018.

[46] S. Peyton Jones, A. Reid, F. Henderson, T. Hoare, and

S. Marlow, “A semantics for imprecise exceptions,” in

Proc. of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’99.

ACM, 1999.

[47] M. Felleisen and R. Hieb, “The revised report on the

syntactic theories of sequential control and state,” Theor.
Comput. Sci., vol. 103, no. 2, p. 235–271, Sep. 1992.

[48] G. Hutton and J. Wright, “What is the meaning of

these constant interruptions?” Journal of Functional
Programming, vol. 17, no. 6, p. 777–792, 2007.

[49] W. L. Harrison, G. Allwein, A. Gill, and A. Procter,

“Asynchronous exceptions as an effect,” in Mathematics
of Program Construction, P. Audebaud and C. Paulin-

Mohring, Eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2008, pp. 153–176.

[50] D. Zhang, A. Askarov, and A. C. Myers, “Language-

based Control and Mitigation of Timing Channels,” in

ACM Conference on Programming Language Design and
Implementation. ACM, 2012.

[51] T. Jérémy and A. Aslan, “Language-based predictive

mitigation for systems with asynchronous I/O,” Tech.

Rep., 2017.

[52] J. Van Bulck, F. Piessens, and R. Strackx, “SGX-step: A

practical attack framework for precise enclave execution

control,” in Proc. of the 2nd Workshop on System Software
for Trusted Execution, ser. SysTEX’17. ACM, 2017.

[53] W. He, W. Zhang, S. Das, and Y. Liu, “Sgxlinger:

A new side-channel attack vector based on interrupt

latency against enclave execution,” in 2018 IEEE 36th
International Conference on Computer Design (ICCD),
Oct 2018, pp. 108–114.

[54] J. Van Bulck, F. Piessens, and R. Strackx, “Nemesis:

Studying microarchitectural timing leaks in rudimentary

cpu interrupt logic,” in Proc. of ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’18.

ACM, 2018.

[55] M. Busi, J. Noorman, J. V. Bulck, L. Galletta, P. Degano,

J. T. Mühlberg, and F. Piessens, “Provably secure isolation

for interruptible enclaved execution on small microproces-

sors,” in IEEE Computer Security Foundations Symposium,

ser. CSF. IEEE Computer Society, 2020.

[56] M. Abadi, Protection in Programming-Language Trans-
lations. Berlin, Heidelberg: Springer Berlin Heidelberg,

1999, pp. 19–34.

[57] G. Back and W. C. Hsieh, “The KaffeOS Java runtime

system,” ACM Trans. Program. Lang. Syst., vol. 27, no. 4,
p. 583–630, 2005.

[58] A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Mazières,

and N. Zeldovich, “Energy management in mobile devices

with the cinder operating system,” in Proc. of the Sixth
Conference on Computer Systems, ser. EuroSys ’11.

228

ACM, 2011, p. 139–152.

[59] E. Z. Yang and D. Mazières, “Dynamic space limits

for Haskell,” in Proc. of ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser.
PLDI ’14. ACM, 2014.

[60] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell,

“Disjunction category labels,” in Nordic Conference on
Information Security Technology for Applications (NORD-
SEC ’11). Springer-Verlag, 2011.

[61] L. Waye, P. Buiras, D. King, S. Chong, and A. Russo,

“It’s my privilege: Controlling downgrading in DC-labels,”

in International Workshop on Security and Trust Manage-
ment, 2015.

229

