
Transparent IFC Enforcement:
Possibility and (In)Efficiency Results

Maximilian Algehed
Computer Science and Engineering

Chalmers
Göteborg, Sweden

algehed@chalmers.se

Cormac Flanagan
Computer Science and Engineering
University of California Santa Cruz

Santa Cruz, USA
cormac@ucsc.edu

Abstract—Information Flow Control (IFC) is a collection of
techniques for ensuring a no-write-down no-read-up style security
policy known as noninterference. Traditional methods for both
static (e.g. type systems) and dynamic (e.g. runtime monitors) IFC
suffer from untenable numbers of false alarms on real-world
programs. Secure Multi-Execution (SME) promises to provide
secure information flow control without modifying the behaviour
of already secure programs, a property commonly referred to
as transparency. Implementations of SME exist for the web in
the form of the FlowFox browser and as plug-ins to several
programming languages. Furthermore, SME can in theory work
in a black-box manner, meaning that it can be programming
language agnostic, making it perfect for securing legacy or third-
party systems. As such SME, and its variants like Multiple Facets
(MF) and Faceted Secure Multi-Execution (FSME), appear to be
a family of panaceas for the security engineer. The question is,
how come, given all these advantages, that these techniques are
not ubiquitous in practice?

The answer lies, partially, in the issue of runtime and memory
overhead. SME and its variants are prohibitively expensive to
deploy in many non-trivial situations. The natural question is
why is this the case? On the surface, the reason is simple. The
techniques in the SME family all rely on the idea of multi-
execution, running all or parts of a program multiple times to
achieve noninterference. Naturally, this causes some overhead.
However, the predominant thinking in the IFC community has
been that these overheads can be overcome. In this paper we
argue that there are fundamental reasons to expect this not to
be the case and prove two key theorems:

• All transparent enforcement is polynomial time equivalent
to multi-execution.

• All black-box enforcement takes time exponential in the
number of principals in the security lattice.

Our methods also allow us to answer, in the affirmative, an
open question about the possibility of secure and transparent
enforcement of a security condition known as Termination
Insensitive Noninterference.

Index Terms—Secure Multi-Execution, Information Flow Con-
trol, Noninterference, Transparency, Black-Box, White-Box, Ef-
ficiency

I. INTRODUCTION

Language-Based Information Flow Control (IFC) [1–4] is a
promising technology for securing systems against malicious

The first author was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation and The Osher Endowment’s through project Ghost:
Exploring the Limits of Invisible Security. The second author was partially
supported by NSF grant CCF-1813133

third-party code. Approaches to IFC typically appear in the
form of either a type system [3–5] or a custom programming
language semantics [6, 7]. Traditionally, these approaches ei-
ther statically or dynamically detect behaviour that violates the
security criteria of Noninterference [1, 8–10] (secrets cannot
influence attacker-observable behaviour) and either raise a type
or runtime error. However, in order to be sound, even in the
state-of-the-art implementations, these techniques need to be
conservative and therefore suffer from unmanageable numbers
of false alarms [11, 12].

To remedy this issue, techniques have recently been devel-
oped for ensuring so called transparent IFC [7, 13–17]. This
line of work promises to provide security without raising false
alarms. Because precisely detecting violations of noninterfer-
ence is impossible [2] to do both statically and dynamically,
methods for transparent IFC instead silently modify programs
to ensure noninterference by construction.

All known techniques for providing transparent IFC share
one feature, they are all based on multi-execution. This tech-
nique was pioneered by Devriese and Piessens [13] in their
seminal paper on Secure Multi-Execution (SME). Under SME,
the program being made secure is run once for each security
level with carefully adapted inputs to ensure noninterference
while removing false alarms.

To see an example of how this works, consider the two
security levels L (for Low or Public) and H (for High or
Secret). Noninterference stipulates that low input is allowed
to influence high output, but not the other way around. Under
SME, a program p that takes both high and low inputs and
produces both high and low output is run twice; one run of
p is given only the low input and produces the low part of
the output, and the other run of p is given both low and high
input and contributes only the high output: see Figure 1.

SME is a black-box enforcement mechanism, it does not
need access to the source code of p to work. The ability to
secure any program in a black-box manner is powerful and
has potential applications in many areas, including databases
[18], legacy code [19], and browsers [20].

The black-box property of SME is shared by some [17, 21],
but not all [7, 14, 15] transparent enforcement mechanisms in
the literature. However, the idea of multi-execution, running
the same code multiple times with slightly different inputs, is

H H

L L

p

p

Fig. 1: Multi-Execution of the program p for the two-point
lattice.

shared among all known mechanisms in one form or another.
Consequently, these mechanisms, no matter where they lie
on the scale from black-box to white-box, suffer severe per-
formance penalties as the number of multi-executions grows
[7, 14, 16].

In this paper, we provide a unifying formal, extensional,
framework for studying multi-execution that is sufficiently
expressive to formulate and prove a number of theorems that
explain:

1) Why all transparent enforcement mechanisms rely on
multi-execution,

2) Why all transparent black-box enforcement mechanisms
are inefficient (as seen empirically in previous work, e.g.
[7, 14, 16, 22])

Along the way, we use our framework to answer the open
question of whether or not Termination Insensitive Noninter-
ference can be transparently enforced. It turns out that it is
possible, but inefficient.

Concretely, we provide the following contributions:
• A novel yet simple framework for reasoning about secure

programs and enforcement mechanisms (Section II).
• A precise characterisation of the transparency guarantees

provided by multi-execution (Section III).
• A black-box version of secure multi-execution for infin-

inte lattices (Section III).
• A novel enforcement mechanism that is sound and

transparent for Termination Insensitive Noninterference
(Section IV).

• A general framework for optimising multi-execution
(Section V) in which we prove a number of results in-
cluding conditions for safe and transparent optimisation.

• A proof that any secure and transparent enforcement is
poly-time equivalent to a multi-execution based enforce-
ment mechanism (Section V).

• A proof that all secure and transparent black-box enforce-
ment mechanisms are inefficient (Section VI).

II. AN EXTENSIONAL FRAMEWORK FOR SECURE
INFORMATION FLOW

In this section we develop an extensional framework for
reasoning about secure information flow. The goal is to create

a simple, yet flexible, context in which we can reason both
about possibility of secure and transparent enforcement as well
as efficiency.

Programs with Labeled Inputs and Outputs

As is usual in IFC research, we assume a join semi-lattice
〈L,�,⊥,�〉 that encodes security labels in L (we use the
words label and level interchangeably), the permitted flows
between them by the order � ⊆ L×L, the least privileged
label with ⊥ ∈ L, and a least-upper-bound operation � :
L × L → L. We let the variables �, �i, �′, j, ji, j′ etc. range
over elements of L and we write a� for the pair (a, �).

We work in a non-interactive setting, so a program takes
input and eventually produces output (or diverges). The input
(and output) is typically a compound data-structure consisting
of various “pieces”, where each piece can be annotated with
its own security label. For example, the input could be a set of
files, where each file has a name, contents, and a security label.
To model this kind of setting in a general way we assume that
both the input and the output is a set of labeled data, and so
we formalise the semantics of programs as partial recursive
functions p : P(A× L) →p P(B × L).

Here, P(•) denotes the power-set constructor and X →p

Y denotes partial functions from X to Y , while X → Y
denotes total functions. One benefit of working with this “sets
of labeled data” formalism is that it is simple to remove high-
security information from an input or output x ∈ P(A × L)
via the following so-called �-projection operation:

x ↓ � = { aj | aj ∈ x, j � �}

Similarly, we can collect the labels of x as:

L(x) = { � | a� ∈ x}

And finally, we define the �-selection of x, i.e. all the elements
of x at level �, as:

x@� = { a� | aj ∈ x, j = �}

We refer to the syntax of p simply as p and the semantics
of p as p(x) for some input x. Because the choice of
programming language is orthogonal to our purposes, we keep
it abstract. We write p(x)� when p(x) is defined and write
p(x)× to mean that p(x) is undefined (i.e. that p diverges on
input x).

Next we formalise what we mean by noninterfering pro-
grams. Intuitively, a program p is noninterfering if, given
inputs x and y that the attacker considers observably equiva-
lent, p produces outputs p(x) and p(y) that the attacker also
considers observably equivalent.

Definition 1. We call x, y ∈ P(A × L) �-equivalent, written
x ∼� y, if and only if the �-projection of x and y are the same.

x ∼� y � x ↓ � = y ↓ �

A program p is noninterfering if, given any � and two x and y
that are �-equivalent such that both p(x) and p(y) are defined,
we have that p(x) is �-equivalent to p(y).

p is noninterfering �

∀�.∀x, y. x ∼� y ∧ p(x)� ∧ p(y)� ⇒ p(x) ∼� p(y)

�

Example 1. We present a number of example programs that
serve as running examples throughout the paper. First is the
program id, the identity function, which is noninterfering.

id(x) � x

The next program combines information from multiple secu-
rity labels, but is still noninterfering since the label on the
output appropriately reflects the dependencies on the labeled
input. We use |x| to denote the size of the set x.

combine(x) � {(|x@Alice|+ |x@Bob|)Alice�Bob�Charlie}

Labels Alice, Bob, and Charlie are notational
shorthand for labels {Alice}, {Bob} and {Charlie}
in the power-set lattice P(P) for some set of
principals P which contains Alice, Bob, and Charlie.

The program combineAll below is similar to combine, but
is interfering because it combines everything, rather than a
specific subset of the inputs.

combineAll(x) � {|x|
⊔L(x)}

To see that combineAll is interfering, consider that ∅ ∼L {0H}
but:

combineAll(∅) = {0L} �∼L {1H} = combineAll({0H})

Another example of an interfering program is leakBit, which
leaks one bit in the H input to L.

leakBit(x) � if 1H ∈ x then {1L} else {0L}

The program leakAll below takes x and re-labels everything
in the input to ⊥; it is also interfering.

leakAll(x) � { a⊥ | a� ∈ x }

Finally, the program termLeak below leaks information via
termination, but is still noninterfering because our definition
of noninterference does not consider the termination channel.

termLeak(x) � if 1H ∈ x then ∅ else diverge

To summarise, programs id, combine and termLeak are non-
interfering, while combineAll, leakBit and leakAll are not. �

Secure Programs and Termination Criteria
The notion of noninterference introduced above does not

prevent leaks through the termination channel, as illustrated
by the termLeak example, and so captures what is normally
called “Termination Insensitive” noninterference [23]. The
prevention of termination leaks is a challenging topic for IFC
enforcement, so to study it we introduce the following four
termination criteria.

Definition 2 (Termination Criteria).
• All programs are Termination Insensitive (TI).
• Program p is Monotonically Terminating (MT) if and only

if whenever p(x) is defined, so is p(x ↓ �) for all �.

p is MT � ∀x. p(x)� ⇒ ∀�.p(x ↓ �)�

• Program p is Termination Sensitive (TS) if and only if
for all � and �-equivalent x and y, p(x) is defined if and
only if p(y) is.

p is TS � ∀�.∀x, y.x ∼� y ⇒ (p(x)� ⇔ p(y)�)

• p is Total if it always terminates.

p is Total � ∀x.p(x)�

�
We let the meta-variable τ range over termination criteria.

τ ::= TI | MT | TS | Total

The termination criteria TS and TI are standard from the IFC
literature [23–25], and the notion of total programs is also a
natural termination criteria. Our new criteria, MT, is motivated
by the termination requirements of SME, as we discuss below.
MT is a weaker requirement than TS, but stronger than TI,
which results in the following ordering of termination criteria.

Proposition 1. The following chain of implications is strict.

p is Total

⇒ p is TS

⇒ p is MT

⇒ p is TI

Recall that an implication P ⇒ Q is strict if it is not the
case that P ⇔ Q. Using the termination criteria, we define a
family of notions of secure program in a way that separates
termination and noninterference.

Definition 3 (τ -secure). A program is τ -secure if and only if
it is τ and noninterfering. �

The τ -secure criteria are naturally ordered the same way as
the termination criteria.

Proposition 2. The following chain of implications is strict.

p is Total-secure

⇒ p is TS-secure

⇒ p is MT-secure

⇒ p is TI-secure

Program NI Termination Security
id yes Total Total-secure
combine yes Total Total-secure
combineAll no Total ×
leakBit no Total ×
leakAll no Total ×
termLeak yes TI TI-secure
divergeIfLPresent yes TS TS-secure
divergeIfHPresent yes MT MT-secure
divergeIfHAbsent yes TI TI-secure

TABLE I: Noninterference (NI), termination, and security of
example programs

We re-visit some programs from Example 1 to illustrate the
various termination criteria.

Example 2. The programs id and combine from Example 1
are noninterfering and Total; hence they are both Total-secure.
The program termLeak is noninterfering, but its termination
is influenced by H information, and so it is only TI-secure.
Program leakBit, combineAll, and leakAll meanwhile are in-
terfering and hence are not τ -secure for any τ . �

Next we present three noninterfering programs that illustrate
different termination criteria.

Example 3. First, the following program is not Total, as it
sometimes diverges, but divergence only depends on public
(L-labeled) information, so it is TS.

divergeIfLPresent(x) � if 1L ∈ x then x else diverge

In the next program, divergence depends on H information,
so it is not TS. It is MT as removing H information only
improves termination.

divergeIfHPresent(x) � if 1H ∈ x then diverge else ∅

In contrast, for the following program, removing H informa-
tion hurts termination, so this program is TI but not TS.

divergeIfHAbsent(x) � if 1H �∈ x then diverge else ∅
For a brief summary of this example and examples 1 and 2,
see Table I. �

A version of MT-security has been studied in the past
by Rafnsson and Sabelfeld [21] and Jaskelioff and Russo
[26]. These authors consider programs whose termination is
stable under “default” inputs in a statically labeled setting.
Specifically, they formulate definitions of security that require
that the program preserves �-equivalence and that replacing
inputs with default values does not cause non-termination.
This is analogous to MT-security, requiring that termination
is preserved when the high inputs have a default value, like 0,
is identical to saying that termination is preserved when the
H-selection of the input is the “default value” ∅.

Enforcement Mechanisms

Next we turn our attention to mechanisms for enforcing τ -
security.

Definition 4 (Enforcement Mechanism). An enforcement
mechanisms E is a polynomial-time total recursive function
that takes any program p : P(A × L) →p P(B × L) to a
program E[p] : P(A× L) →p P(B × L). �

Normally, we talk about two properties of enforcement
mechanisms: security and transparency [7, 13, 14, 17, 24, 27].
Security means that applying a secure enforcement mecha-
nism E to any program p always yields a secure program
E[p]. Transparency, on the other hand, means that given a
secure program p, applying E does not change the observable
behaviour of p.

Definition 5 (Security and Transparency). An enforcement
mechanism E is (1) τ -secure and (2) τ ′-transparent if:

1) For all p, E[p] is τ -secure
2) For all τ ′-secure p and inputs x, E[p](x) = p(x).

We say that E is τ -τ ′ if it is τ -secure and τ ′-transparent. �

The chains of implications from propositions 1 and 2 are
reflected in the definitions of security and transparency for
enforcement mechanisms.

Proposition 3. The following two chains of implications are
strict.

E is Total-secure E is TI-transparent
⇒ E is TS-secure ⇒ E is MT-transparent
⇒ E is MT-secure ⇒ E is TS-transparent
⇒ E is TI-secure ⇒ E is Total-transparent

Note that the transparency ordering is the converse of
the security ordering. This is because security requires the
mechanism to provide τ -security, while transparency allows
the mechanism to rely on τ -security. Bearing these orderings
in mind, if we write that E is not secure, we mean that it is
not TI-secure, and if we write that E is not transparent, we
mean that it is not Total-transparent.

Example 4. We give a number of examples of secure and
transparent enforcement mechanisms:

• E[p](x) � ∅ is Total-secure, but is not transparent.
• E[p](x) � p(x) is TI-transparent, but not secure.
• No Sensitive Upgrade (NSU) [28] is TI-secure but not

transparent.
• Permissive Upgrade (PU) [29] is TI-secure and trans-

parent for more programs than NSU [30], but still not
transparent.

• The Hybrid Monitoring (HM) technique is TI-secure [30].
• Zanarini et al. [17] give an enforcement mechanism that

is TI-secure and MT-transparent.
• SME [13] provides MT-security and MT-transparency

(see below).

�

Multi-Execution
Inspired by Secure Multi-Execution (SME) [13], we define

the enforcement mechanism ME (for “Multi-Execution”) in
our framework. ME[p](x) runs p multiple times, once for each
security label � in the lattice on appropriately censored input
x ↓ � that only contains information visible to �, and uses the
output of p(x ↓ �) to construct the �-labeled part of final output
of ME[p](x).

Definition 6. ME[p](x) �
⋃{ p(x ↓ �)@� | � ∈ L } �

This mathematical definition of ME can naturally be imple-
mented by iterating over all labels � in L, provided L is finite.
Section III deals with the implementation in the case where L
is non-finite.

Figure 1 shows a graphical rendition of ME[p] for the two-
point lattice {L,H}. The outer box represents ME[p](x), it
takes both H and L input from the arrows on the left, and
produces both H and L output in the arrows to the right. Both
the H and L parts of the input are used in the top-most run
of p, and only the L part of the input is used in the bottom-
most run. The top-most run, the one given both the H and L
input, then produces only the H output, whereas the bottom-
most run contributes only the final L output. Noninterference
for this construction is easy to show, the L output can only
be influenced by the L input, as that run of p never sees the
actual H input.

For example, consider how ME works with the program
leakBit from Example 1 on inputs ∅ and {1H}.

leakBit(x) � if 1H ∈ x then {1L} else {0L}
Note that ∅ ∼L {1H} and so we expect that
ME[leakBit](∅) ∼L ME[leakBit]({1H}). As leakBit is
Total we can simply compute to see that this does indeed
hold.

ME[leakBit](∅) ↓L
= leakBit(∅ ↓L) ↓L
= leakBit(∅) ↓L
= {0L} ↓L
= {0L}

ME[leakBit]({1H}) ↓L
= leakBit({1H} ↓L) ↓L
= leakBit(∅) ↓L
= {0L} ↓L
= {0L}

Furthermore, when p is TI-secure and both ME[p](x) and
p(x) terminate, the output of ME[p](x) has to equal that of
p(x). The H part of ME[p](x) is clearly the same as the H
part of p(x), and because p is noninterfering it follows that the
L output of p(x) doesn’t depend on the H input, and so the
L output of p(x) must be the same as the L part of p(x ↓L).
Putting these two facts together allows us to conclude that
ME[p](x) is the same as p(x) when both terminate.

To see how ME deals with termination, consider program
divergeIfHAbsent from Example 3:

divergeIfHAbsent(x) � if 1H �∈ x then diverge else ∅
It diverges if 1H �∈ x and terminates with re-
sult ∅ otherwise. ME[divergeIfHAbsent] meanwhile runs

both divergeIfHAbsent(x) and divergeIfHAbsent(x ↓L), which
means that ME[divergeIfHAbsent] always diverges, as 1H �∈
x ↓L for all x.

However, if we consider ME[divergeIfHPresent] we
get a more interesting result. Unlike divergeIfHAbsent,
divergeIfHPresent diverges when 1H ∈ x and so if 1H �∈ x,
then we have ME[divergeIfHPresent](x)� with output ∅. As
termination of ME[divergeIfHPresent](x) increases as we re-
move H elements from x and the output is constant, and
ME[divergeIfHAbsent](x) always diverges, we see that ME
behaves in an MT-secure manner for both programs.

Monotonic Termination of ME[p] follows from the fact that
ME[p](x) diverges whenever p(x ↓ �) diverges for any �, and
so if ME[p](x) is defined, then so is ME[p](x ↓ �).
Theorem 1. ME is MT-secure.

Proof. To show noninterference, pick any two x, y, and label �
such that x ∼� y and assume that ME[p](x)� and ME[p](y)�.
For all j � � we have that x ∼j y and so:

ME[p](x) @j

=
⋃

{ p(x ↓ �′)@�′ | �′ ∈ L}@j

= p(x ↓ j) @j

= p(y ↓ j) @j

=
⋃

{ p(y ↓ �′)@�′ | �′ ∈ L}@j

= ME[p](y) @j

Because x ↓ � =
⋃{x@j | j � �} we now have that

ME[p](x) ∼� ME[p](y).
For MT-termination, if ME[p](x)� then p(x ↓ �)� for all

� and so ME[p](x ↓ �)� for all �. Consequently, ME is MT-
secure.

Naturally, a corollary of this theorem is that ME is also
TI-secure.

Corollary 1. ME is TI-secure.

Next we address MT-transparency. Preservation of termina-
tion follows immediately from the definition of the MT termi-
nation criteria. This is a feature of the definition of MT ter-
mination, it is precisely the definition we need in order to
prove MT-transparency. While the observation that conditions
such as MT are natural pre-requisites for transparency (see
e.g. [21, 26]), we believe that this framework provides a clean
explanation for why MT exists. Because ME runs a number of
p(x ↓ �) for different �, it is natural to require that these runs
terminate if p(x) terminates in order to preserve termination.
We note that MT-security is more useful as a correctness
criteria for ME than as a notion of security. In other words,
being MT-transparent is more useful than being MT-secure.

Theorem 2. ME is MT-transparent.

Proof. Pick any MT-secure program p and input x. We first
prove that ME[p](x)� ⇔ p(x)�. If p(x)× then because x =

Transparency

Security

Total TS MT TI
TI � �[16] �[17] MEST

MT � � ME
TS × ([25]) × [25]

Total ×

TABLE II: Possible and impossible combinations of security
and transparency.

x ↓⊔L(x) we have that p(x ↓⊔L(x))× and so ME[p](x)×.
If p(x)� then p(x ↓ �)� for all �, and so clearly ME[p](x)�.

Next we show that when ME[p](x)� and p(x)� we have
that ME[p](x) = p(x). For all a� ∈ p(x) is equivalent
to a� ∈ p(x ↓ �)@� (by p MT-secure), which in turn is
equivalent to a� ∈ ME[p](x) (by definition). Consequently,
p(x) = ME[p](x).

Again, a simple corollary follows from the hierarchy of
notions of security.

Corollary 2. ME is TS- and Total-transparent.

Note that MT-secure and MT-transparent is the strongest
classification of the security and transparency of the ME
enforcement mechanism. For example, ME could not be MT-
secure and TI-transparent, as this would require preserving TI-
termination, which would in turn prohibit ME from being MT-
secure. Likewise, ME could not be TS-secure, as this would
prohibit it from preserving the semantics of merely MT-secure
programs. In general, ME could not be τ -τ ′ for any τ stronger
than, or τ ′ weaker, than MT.

In the following few sections, we establish a number
of results about the possibility and impossibility of secure,
transparent, and efficient information flow control. Before
doing so, we review the state of transparent enforcement of
noninterference in the literature.

The State of Transparent Enforcement
Table II presents the combinations of secure and transparent

enforcement that are possible or impossible to enforce. The
table is upper-triangular as anything below the diagonal is
impossible. For example, it is impossible to simultaneously
enforce a strong property such as TS-security, while preserving
the semantics of all programs that obey a weaker property,
such as TI-security. Put differently, because some programs are
TI-secure but not TS-secure, these programs must have their
semantics altered by a TS-secure enforcement mechanism.

As shown above, it is possible to construct an MT-MT en-
forcement mechanism ME. Because possibility propagates
“up and to the left” in our table, any MT-MT enforcement
mechanism is also TI-MT and TI-TS, for example, we also
mark all boxes to the left and above of MT-MT as possible.

Ngo et al. [25] show that TS-TS enforcement is impos-
sible. Their proof also works to show that the weaker TS-
Total condition is impossible (we mark this by putting the

citation in brackets in Table II), and consequently Total-
Total enforcement is also impossible.

One open question in the literature is whether or not TI-
TI enforcement is possible. In Section IV we answer this ques-
tion by presenting MEST, a TI-TI enforcement mechanism.

One issue faced by ME is that a naive implementation fails
to converge when L is non-finite, and takes infeasibly long to
execute when L is very large. Running p once for each label
in an infinite lattice is, clearly, impossible. In Section III we
construct MEF, a version of ME which lifts these restrictions
and makes ME work for non-finite lattices.

III. MULTI-EXECUTION FOR DECENTRALISED LATTICES

In this section, we instantiate the framework of Section II
in the form of a novel formulation of the ME enforcement
mechanism. Our new enforcement mechanism is inspired by
MF [7], FSME [14], and OGMF [15]. Unlike SME, these
schemes do not run one parallel version of the program for
each level in the lattice, instead multi-execution under these
schemes is determined by the behaviour of the program and
the levels in the input. These methods are “adaptively” multi-
executing in a “white-box” manner. This allows them to avoid
running one copy of p for each security level and thereby also
allows them to work for infinite L, something which SME is
unable to do.

We develop an enforcement mechanism MEF to provide a
black-box account of these methods. MEF is, to the best of
our knowledge, the first black-box enforcement mechanism
that is MT-secure, MT-transparent, and works for non-finite
(so called “decentralised” [31]) lattices.

We start by observing that the definition of ME requires
running p on x ↓ � for each � ∈ L. Assuming x is finite, then
there is only a finite number of such downward projections of
x, even for non-finite L. Thus, regardless of the size of L we
only need to run p a finite number of times. The tricky part is
to appropriately compose the result of these runs to produce
the right output.

To accomplish this, we need to introduce some additional
machinery. If S is a finite subset of L we call

C(S) � {
⊔

S′ | S′ ⊆ S }
the closure-set of S. Note that C(S) simply encodes all the
ways of combining zero or more labels in S, including both the
lower bound of ⊥ and the upper bound of

⊔
S. For example,

if S = L(x) for some x, then C(S) is all the ways to label
data arising by combining zero or more a� ∈ x.

For any set S ⊆ L and label � ∈ S we define the upward
neighbourhood of � in S, written � ↑ S, as:

� ↑ S � { j ∈ L | � � j, ∀j′ ∈ S. j′ � j ⇒ j′ � � }
That is, � ↑ S is the set of all j ∈ L such that if � � j, then
there is no other label in S which can flow to j but can not flow
to �. Put differently, if j ∈ � ↑ S, then � is the greatest label in
S such that � � j. From the point of view of information flow,
this means that � captures all the labels in s whose information
may flow to j.

⊥

j⊥�0

j0

�1

j1

j2

Fig. 2: The upwards neighbourhoods of C({�0, �1})

For an illustration of how these upwards neighbourhoods
work, see Figure 2. Each area in the diagram corresponds to
the upwards neigbourhood of one of the levels in C({�0, �1}).
The level j⊥ in the middle square, for example, is in the
upward neighbourhood of level ⊥ in C({�0, �1}) while j0
is in the upward neighbourhood of �0. Likewise, j1 is in
�1 ↑ C({�0, �1}) and j2 is in �0 � �1 ↑ C({�0, �1}).

Note that in the case where S = {�0, �1} where �0 and �1
are incomparable, neither �0 ↑ S nor �1 ↑ S contain �0 � �1.
For this reason, it is important to always consider upwards
neighbourhoods in C(S) rather than S itself. The upward
neighbourhood of � in C(S) precisely characterises the levels
for which the computation p(x ↓ �) can produce output if there
is one p(x ↓ �) for each � ∈ C(S). This is captured by the
following proposition together with the fact that � can flow to
all levels in � ↑ C(S).

Proposition 4. Given any S ⊆ L, the family which maps each
� ∈ C(S) to � ↑ C(S) partitions L.

Proof. See Appendix A.

For the next definition we overload the @ operator to work
for sets S ⊆ L of labels as x@S = { a� | a� ∈ x, � ∈ S }.
Finally, we define a more sophisticated version of ME that we
call MEF (for ME-Fastish).

Definition 7.

MEF[p](x) �
⋃

{ p(x ↓ �)@(� ↑ C(L(x))) | � ∈ C(L(x)) }

�

Intuitively, this definition computes all the possible combi-
nations of levels which can arise from computing with data
in the input (i.e. C(L(x))) and performs multi-execution with
only these levels. However, this is not sufficient to capture all
the levels the data may be output at. In effect, this is because a
computation may combine data labeled �0 and �1, but write the
output at some level �2 � �0��1. To get around this issue and
ensure that we capture all outputs of a computation, we finally
do the selection p(x ↓ �)@(� ↑ C(L(x))). Because the upward
neighbourhoods of C(L(x)) are disjoint, the final output of
MEF[p](x) is a union of disjoint sets, so each element of the
output is added to the final set only once. To see this principle
in action, consider the following example.

Example 5. Recall the definition of combine from Example
1:

combine(x) � {(|x@Alice|+ |x@Bob|)Alice�Bob�Charlie}
MEF[combine]({1Alice}) runs one opy of combine for each
level in C({Alice}) = {⊥,Alice}. This means that MEF
runs combine({1Alice} ↓⊥) and combine({1Alice} ↓Alice). The
first run outputs {0Alice�Bob�Charlie} and the second one
{1Alice�Bob�Charlie}. Because Alice � Bob � Charlie is in the
upwards closed neighbourhood of Alice in {Alice,⊥} and
not in the upwards closed neighbourhood of ⊥, we have that
the output of MEF[combine]({1Alice}) is {1Alice�Bob�Charlie}.
Note that, had MEF been using the same rule for selecting
outputs as ME, i.e. had the definition used p(x ↓ �)@� rather
than p(x ↓ �)@(� ↑ C(L(x))), the output in our example would
be ∅, as Alice � Bob � Charlie is equal to neither Alice nor
⊥. �

While the formulation of MEF looks similar to that of ME,
it has the advantage of being implementable even for infinite,
“decentralised”, lattices like DC-labels [31]. It also has the
nice property of being equivalent to ME (provided that both
terminate).

Theorem 3. For all p, x, if L is finite we have that:

MEF[p]x = ME[p]x

Proof. See Appendix A.

The theorem above means that MEF inherits the MT-
MT property of ME in the case when L is finite. In the
case when L is non-finite, we still have that MEF is MT-MT.
MEF[p] is MT-terminating because C(L(x ↓ �)) ⊆ C(L(x))
and if p is MT-secure then termination and output behaviour
are preserved as well. The proof of MT-transparency works
by establishing that MEF[p](x) implements ME[p](x) when
read as a (non-runnable) specification for infinite lattices and
so we relegate the proof to Appendix A.

Proposition 5. MEF is MT-MT.

IV. TERMINATION INSENSITIVE NONINTERFERENCE IS
TRANSPARENTLY ENFORCEABLE

In this section we answer an open question in the literature
[30] by constructing a TI-TI enforcement mechanism. We
start by briefly exploring why ME and MEF are not TI-
transparent. The issue lies in preserving the termination of TI-
secure programs. Put simply, if p is a TI-secure program and
p(x) is defined, there is no guarantee that p(x ↓ �) is defined
and so there is no guarantee that ME[p](x) is defined.

Overcoming this limitation of ME boils down to two
observations. The first observation is that ME fails to be TI-
transparent only because of termination, which boils down to
the choice to use x ↓ � as the input to the run of p at level �.
Because there is no guarantee that p(x)� implies p(x ↓ �)�,
we can’t produce the output from the run at �, even though
p(x) is defined. If we can choose some other x′ ∼� x such that
p(x′)� instead, we may be able to get something done. The

second observation is that if p(x)�, then for each � there exists
at least one x′ such that x′ ∼� x ↓ � and p(x′)�, namely x.
We can unfortunately not simply run p(x) instead of p(x ↓ �)
however, as this may not be secure. Instead, we need to find
x′ such that x′ ∼� x and p(x′)� based only on x ↓ �, �, and
p.

The question now becomes, how do we pick such an x′?
One answer is to enumerate all x′ ∼� (x ↓ �) in a deterministic
order and dove-tail, that is run “in parallel”, all p(x′) and pick
the first x′ such that p(x′) terminates. Note that this does not
mean we pick the first x′ in the enumeration order, rather we
pick the x′ such that, during dove-tailing, p(x′) is the first
run to terminate. In the rest of this section we formalise this
simple idea and show that by using this one trick, we obtain
a TI-TI enforcement mechanism.

If p : P(A × L) →p P(B × L) is a program, � a level,
x an input to p, and f : N → P(A × L) an enumeration of
P(A× L) then the following function is partial recursive:

ψ�
p,x(i) �

{
f(i) if f(i) ∼� x and p(f(i))�

divergent otherwise

This means that, from Corollary 5.V(a) in [32], as long as
there exists an x′ ∼� x such that p(x′)�, then there exists
a total recursive function φ�

p,x with the same range as ψ�
p,x.

This is where the dove-tailing happens, φ�
p,x more or less

works by interleaving the executions of p(f(i)) for all i until
one terminates. There are two facts about φ we use when
constructing our TI-TI enforcement mechanism:

1) If x ∼� y then φ�
p,x ↓ �(i) = φ�

p,y ↓ �(i).
2) If p is TI-secure, then p(φ�

p,x ↓ �(i)) ∼� p(x) provided
both runs terminate.

From these two observations we define our TI-TI enforcement
mechanism MEST for “multi-execution search for termina-
tion”.

Definition 8. Define the enforcement mechanism MEST as:

MEST[p](x) �

⎧⎪⎨
⎪⎩

divergent if p(x)×

∪{ p(φ�
p,x ↓ �(0))@(� ↑ C(L(x)))

| � ∈ C(L(x))} otherwise

�
To see how MEST works, consider again the program

divergeIfHPresent from Example 3.

divergeIfHPresent(x) � if 1H ∈ x then diverge else ∅
This program is TI-secure, and so we expect that
MEST should preserve its semantics. Running
MEST[divergeIfHPresent]({1H}) diverges, as
divergeIfHPresent({1H})×, and assuming without loss
of generality that φ�

divergeIfHPresent,∅(0) = ∅ for all �, running
MEST[divergeIfHPresent](∅) yields the expected result of ∅.

The proof of security for MEST relies on the first observa-
tion above, and the proof of transparency relies on the second.

Theorem 4. MEST is TI-secure

Proof. To see that MEST is TI-secure, consider any level �,
program p, and inputs x ∼� y. It is the case that for all �′ � �
the greatest j in C(L(x)) and C(L(y)) such that j � �′ are
the same, as L(x ↓ �′) = L(y ↓ �′). If both MEST[p](x)� and
MEST[p](y)� then:

MEST[p](x) @�′

= p(φj
p,x ↓ j(0))@�′

= p(φj
p,y ↓ j(0))@�′

= MEST[p](y) @�′

From which we conclude that MEST[p](x) ∼� MEST[p](y),
in other words MEST is TI-secure.

Theorem 5. MEST is TI-transparent.

Proof. Note that p(x)� ⇔ MEST[p](x)�. If p is TI-secure
then it holds that for all � and x ∼� y, p(y)@� = p(x)@�.
Consider now the greatest j ∈ C(L(x)) such that j � �, if
y ∼j x then y ∼� x and so φj

p,x ↓ j(0) ∼� x and so, for all �:

MEST[p](x)@� = p(φj
p,x ↓ j(0))@� = p(x)@�

Which gives us that MEST[p](x) = p(x).

While MEST answers the question of whether or not TI-
TI enforcement is possible, it does so in a somewhat unsat-
isfactory manner. Computing MEST[p](x) is very slow, not
only because we are computing something once for each � in
C(L(x)) (which is an exponential number of levels!), but also
because the computation of φ�

p,x ↓ �(0) requires interleaving
several (possibly an exponential number!) of runs of p.

V. TRANSPARENT ENFORCEMENT IS MULTI-EXECUTION

Consider again the program combineAll from Example 1.

combineAll(x) � {|x|
⊔L(x)}

Running MEF[combineAll](x) results in one run of combineAll
for each level in C(L(x)) and thus, MEF[combineAll](x) pro-
duces one output for each level in C(L(x)). In the worst case,
the size of the output of MEF[combineAll](x) is exponential
in the size of x whereas the original output of p is polynomial
sized in the size of x.

This observation that ME and MEF cause exponential over-
head in the output of some programs causes severe issue for
multi-execution. Many applications “in the wild” have large
legacy code bases with vulnerabilities and would therefore
benefit from applying transparent IFC techniques. If these
techniques introduce extraneous overhead, applying them to
large legacy systems is out of the question.

As insecure programs cause ME and MEF to produce ex-
ponentially sized outputs, we know there can be no semantics
preserving optimisation of these methods that gets rid of this
overhead. This means that the work on OGMF [15] and some
of the “data-oriented” optimisations of Algehed et al. [16],
can not hope to make multi-execution practical on their own.
Such techniques may be integral to the eventual success of

multi-execution, but not without incorporating other measures
as well.

There is still hope that we may find some efficient enforce-
ment mechanism, but this mechanism may need to behave
differently to ME on programs such as combineAll above. Inse-
cure programs aside, we begin by defining the least restrictive
notion of an efficient enforcement mechanism, that it “only”
produce polynomial overhead on already secure programs.

Definition 9. An enforcement mechanism E is τ -efficient
if and only if E[p](x) runs in time polynomial in |p| + |x|
whenever p is τ -secure and runs in time polynomial in |x|. �

In this section we consider the connection between arbi-
trary enforcement mechanisms and multi-execution and show
that any enforcement mechanism for TI-security and MT-
transparency gives rise to an efficient strategy for multi-
execution. In spirit, it is similar to MEF, we do multi-execution
only for the levels that are necessary. We begin by generalising
the definition of ME to allow it to selectively multi-execute at
particular levels.

Definition 10. A partial function L is a Level Assignment if
given a program p : P(A × L) →p P(B × L) and an input
x ∈ P(A× L) we have L(p, x) ⊆ L. �

Given a level assignment L, we define the enforcement
mechanism MEL:

MEL[p](x) �
⋃

{ p(x ↓ �)@� | � ∈ L(p, x) }
Note that MEL is simply a generalisation of ME. Level
assignments naturally inherit definitions from enforcement
mechanisms.

Definition 11. We call a level assignment L τ -secure if
MEL is τ -secure, and τ -transparent if MEL is τ -transparent.
Furthermore, we call L τ -efficient if for all polynomial-time τ -
secure programs L(p, x) takes time polynomial in |p|+|x|. �

Note that, if L takes time polynomial in |p| + |x| and p
takes time polynomial in |x|, then MEL[p](x) also takes time
polynomial in |p| + |x|. This is because if L is polynomial
time, then it only produces a polynomially sized output and
so MEL only executes a polynomial number of runs of the
polynomial time program p.

Example 6. Deciding if a level assignment is secure and
transparent can be non-trivial. Consider the intuitive level
assignment L(p, x) = L(p(x)). It allows us to compute
levels without doing anything other than computing p(x).
Unfortunately, however, it is insecure in the H − L lattice,
as illustrated by the following program:

leakLevel(x) � if x@H = ∅ then {0L} else ∅
We have that ∅ ∼L {0H}, but the following holds:

leakLevel(∅) = {0L}
L(leakLevel, ∅) = {L}

MEL[leakLevel](∅) = {0L}

leakLevel({0H}) = ∅
L(leakLevel, {0H}) = ∅

MEL[leakLevel]({0H}) = ∅

Which gives us:

MEL[leakLevel](∅) = {0L} �∼H ∅ = MEL[leakLevel]({0H})
In conclusion, MEL[leakLevel] is not secure and so neither is
L. �

Clearly, there are some conditions which need to be met
in order to produce a secure level assignment. The following
lemma establishes one sufficient condition for TI-security, that
L(p,) is a secure program. To make this precise, we observe
that the notion of projection can be extended to sets of labels
by observing that P(L) is isomorphic to P(1×L) where 1 is
the single-element set. Consequently, we extend the definition
of projection (and thereby also �-equivalence) for subsets S ⊆
L as S ↓ � = { �′ ∈ L | �′ � � }.

Lemma 1. If the program λx. L(p, x) is TI-secure for all p,
then L is TI-secure.

Proof. See Appendix A.

This lemma raises two immediate questions:
1) Is the implication strict?
2) Why TI and not MT-secure?

The answer to the first question is that the implication is indeed
strict, as demonstrated by the following example.

Example 7. Provided that L has at least one level � such that
� �� ⊥, there exists an MT-secure L for which L(p,) is not
secure for all p. To see this, consider the program:

empty(x) � ∅
and define L to be:

L(q, x) �

⎧⎪⎨
⎪⎩
∅ if � ∈ L(x) and q = empty
{⊥} if � �∈ L(x) and q = empty
∅ otherwise

In the case where q = empty we have that:

MEL[q](x) = ∅ = MEL[q](y)

giving us that MEL[q] is noninterfering. Furthermore, in the
case where q �= empty, we have that MEL[q](x) = ∅, which
is also MT-secure. �

To see the answer to the second question, consider the next
example.

Example 8. Consider again the two-point lattice L � H . The
level assignment L(p, x) � { H | H �∈ L(x)} satisfies the
property that λx. L(p, x) is an MT-secure program for all p.
Recall the program divergeIfHAbsent:

divergeIfHAbsent(x) � if 1H �∈ x then diverge else ∅
Notice that divergeIfHAbsent(∅)× and therefore we have that:

L(divergeIfHAbsent, ∅) = {H}
MEL[divergeIfHAbsent](∅)×

Furthermore, as a general fact we have that if L(p, x) = ∅ then
MEL[p](x) = ∅ for all L, p, and x. Therefore, the following
holds:

L(divergeIfHAbsent, {1H}) = ∅
MEL[divergeIfHAbsent]({1H}) = ∅

However, because ∅ = {1H} ↓L, we see that
MEL[divergeIfHAbsent] is not an MT-secure program,
as it is not MT-terminating; MEL[divergeIfHAbsent]({1H}) is
defined while MEL[divergeIfHAbsent]({1H} ↓L) is not. �

Lemma 1 suggests the following class of level assignment
techniques that are secure by construction.

Proposition 6. If L(p, x) = C(L(x)) ∩ L
′(p) for some total

L
′, then L is an MT-secure level assignment.

Proof. See Appendix A.

For programs p that satisfy the property that for all x,
L(p(x)) ⊆ C(L(x)), such that L

′(p) ⊇ domain(L ◦ p) the
level assignment L above is MT-transparent (see Lemma 2
below). This explains the “computation-oriented” optimisa-
tions of Algehed et al. [16]. In their paper programs only
produce outputs at levels in C(L(x)) and they attach so
called “label-expressions”, booleans expressions over lattice
elements, to program points to restrict the levels for which
multi-execution is carried out. In one of their examples,
program p takes input from multiple different inputs, but only
ever writes to channels labeled with single principals like Alice
or Bob. The authors then attach label-expressions on the form
Alice∧¬Bob∨¬Alice∧Bob, which represents the set of labels
{{Alice}, {Bob}} to the program p during multi-execution.
Note that the sets of labels attached to a program in this
scheme is constant, it does not depend on the input x and
so L(p, x) is on the form required by Proposition 6.

With an appropriate sufficient condition for security es-
tablished, the natural next question is if a similar sufficient
condition exists for transparency.

Lemma 2. L is MT-transparent if for all MT-secure programs
p and inputs x, we have that p(x)� if and only if L(p, x)�

and L(p, x) = L(p(x)).
Proof. See Appendix A.

Next we develop one of the key contributions of this paper.
We use the theory of level assignments to show that any TI-
secure and MT-transparent enforcement mechanism E gives
rise to a TI-secure and MT-transparent level assignment LE .
Furthermore, it follows trivially that multi-executing a secure,
polynomial time, programs p using LE is only polynomially
slower than executing E[p]. Concretely, what this demonstrates
is that any efficient solution to the problem of MT-transparent
enforcement gives rise to an efficient solution to the problem
of computing level assignments.

Definition 12. Given an enforcement mechanism E, define
the level assignment LE(p, x) � L(E[p](x)). �

Theorem 6 (TI-Security). If E is TI-secure, then LE is a
TI-secure level assignment.

Proof. Immediate by Lemma 1.

Theorem 7 (MT-Transparency). If E is MT-transparent, then
so is LE .

Proof. Immediate by Lemma 2.

Proposition 7. If E[p](x) runs in time polynomial in |p|+ |x|
for all polynomial time MT-secure programs p and inputs x,
then LE is MT-efficient.

This polynomial-time correspondence between multi-
execution and any transparent enforcement mechanism means
that any limit on the efficiency of multi-execution is a limit on
the efficiency of transparent enforcement. This is a sobering
thought, to the best of our knowledge there is no efficient
way to do multi-execution. In fact, it is not clear that there
should be any efficient way to do it. In a sense, the level
assignment problem asks that we produce a program L that
is capable of efficiently answering arbitrarily tricky questions
about program executions.

VI. EFFICIENT BLACK-BOX ENFORCEMENT IS
IMPOSSIBLE FOR DECENTRALISED LATTICES

As seen empirically in previous work, transparent enforce-
ment suffers from exponential overheads [7, 14, 16, 22]. In this
section we argue that there may be fundamental reasons why
this is the case by showing that it is impossible to do efficient,
i.e. polynomial overhead, black-box enforcement. Intuitively,
an enforcement mechanism E is black-box if E[p](x) can only
do a series of tests of p : P(A×L) →p P(B×L), where each
test consists of a test-input xt ∈ P(A×L) and a “continuation”
which takes the result of p(xt) and either returns a final result
E[p](x) ∈ P(B×L) or continues testing. Thus, we define the
set of test sequences T from A to B inductively as:

T ::= P(B × L) | P(A× L)× (P(B × L) →p T)

A test sequence t ∈ T is either finished, t ∈ P(B × L),
or it is a test a ∈ P(A × L) together with a continuation
c ∈ P(B × L) →p T .

For example, MEF can be understood as producing a test
sequence where it tests all x ↓ � for � in C(L(x)), keeps the
relevant parts of the output around, and constructs the final
union when it produces its finished result.

We define the program Exec : Program×T →p P(B×L),
which takes a program p and a test sequence t and produces
the result of evaluating t with p.

Exec(p, (y, c)) � Exec(p, c(p(y)))

Exec(p, z) � z

If e : P(A × L) →p T takes an input and produces a test
sequence, then we can execute e by running the following
program Exec(p, e(x)): If Exec(p, e(x)) terminates, we can
obtain the trace of tested inputs and the corresponding output

of p (i.e. a list of P(A × L) × P(B × L)) by computing
Trace(p, e(x)):

Trace(p, (y, c)) � (y, p(y)) : Trace(p, c(p(y)))

Trace(p, z) � []

Because we are interested in entirely black-box methods, we
require that the enforcement mechanism E should work for
any choice of lattice. One consequence of this choice is that
E must discover elements of L. We can formalise the idea that
E must discover its labels by defining a trace to be consistent
with an initially known set of labels S inductively as:

Consistent(S, [])
L(y) ⊆ C(S) Consistent(S ∪ L(z), t)

Consistent(S, (y, z) : t)

With these definitions in place, we can define what it means
for an enforcement mechanism to be black-box:

Definition 13. E is a black-box enforcement mechanism if
and only if there exists a function e : P(A × L) →p T such
that:

E[p](x) = Exec(p, e(x))

We call Trace(p, e(x)) the trace of E at p, x and require that
Consistent(∅,Trace(p, e(x))) always holds. �

We refer to set of test inputs in the trace t produced by E
at p and x, i.e. the set of first elements of the tuples in t, as
the test-set of E. Note that our definition pre-supposes that E
initially does not know any of the labels in L. This restriction
can be lifted to allow E to have prior knowledge of a finite
proper subset of L and all the results in this section still hold.

The intuition for the proof that efficient black-box en-
forcement does not exist is that all an efficient black-box
enforcement mechanism E can do is run the program p a
polynomial number of times. This means that there is always
a large number of subsets of the input x which E has not
tried p on. We exploit this fact by constructing, from E, two
secure programs p and q and an insecure program w. We then
pick two �-equivalent inputs such that w behaves like p on one
input and q on the other. Because E is black-box, it can not
tell the two runs of w apart from the runs of p and q, and so
E is forced to preserve the semantics of w, which is insecure.

Theorem 8. There is no Total-efficient TI-Total black-box
enforcement mechanism.

Proof. Let L = P(N), the powerset lattice over the natural
numbers. We consider programs where the domain and co-
domain are both the singleton set {1}. In other words, we
consider programs p : P({1} × L) →p P({1} × L).

Assume E is a Total-efficient TI-Total black-box enforce-
ment mechanism. For any finite subset S of N define:

toInput(S) � {1{n} | n ∈ S}
Define the Total-secure program empty(x) � ∅. Let X(S)
be test-set of E for empty, toInput(S). Because E is Total-
efficient, we can fix a sufficiently large S such that there
exists an S′ ⊂ S such that there is no x ∈ X(S)

that satisfies both toInput(S′) ⊆ x and ∪L(x) = S′,
this is because the size of X(S) is polynomial in |S| but
the number of choices for S′ grows exponentially in |S|.
Note that toInput(S) ∼S′ toInput(S′), as toInput(S) ↓S′ =
toInput(S′) = toInput(S′) ↓S′.

Now define another Total-secure program:

greater(x) � if toInput(S′) ⊆ x then {1S′} else ∅
and the TI-insecure program:

equal(x) � if toInput(S′) ⊆ x ∧ ∪L(x) = S′ then {1S′} else ∅
Next consider two runs of E[equal]. The first is
E[equal](toInput(S)). Recall that our choice of S′ guarantees
that E never tests empty on any x such that toInput(S′) ⊆ x
and ∪L(x) = S′. Furthermore, equal behaves like empty on
all other inputs. Hence we know that:

E[equal](toInput(S)) = E[empty](toInput(S)) = ∅
The second run we consider is E[equal](toInput(S′)), for
which equal behaves as greater. To see why, consider that
equal(x) �= greater(x) implies that the two tests in equal and
greater evaluate to different things on x. Hence, toInput(S′) ⊆
x and ∪L(x) �= S′, and so x must contain labels not in S′.
However, consistency means that E can not construct any such
x when testing either equal or greater on toInput(S′). As a
consequence, when E tests greater it never does a test that
would reveal the difference between greater and equal. This
means that we can conclude that the following holds:

E[equal](toInput(S′)) = E[greater](toInput(S′)) = {1S′}
In conclusion, we have that both of the following two things
hold:

toInput(S) ∼S′ toInput(S′)

E[equal](toInput(S)) = ∅ �∼S′ {1S′} = E[equal](toInput(S′))

Which contradictions our assumption that E is TI-secure.

Because Theorem 8 proves the easiest τ -τ ′ enforcement
to be impossible to do efficiently, a simple corollary is the
following.

Corollary 3. Efficient black-box TI-TI, TI-MT, TI-TS, MT-MT,
MT-TS, and MT-Total enforcement are all impossible.

VII. FUTURE WORK

There are a number of limitations to our model. Firstly,
we do not consider reactive (like [13, 17]) or interactive (like
[21]) programs. We expect that extending our model to cover
this case will introduce new challenges related to termination
and progress channels. For example, there is no reason to
expect that reactive systems are any easier to secure than
batch-job ones, as in the batch-job setting we have access
to everything, including the program and all the inputs, from
the start. Whereas in the reactive or interactive setting the
enforcement mechanism needs to react to new information
and act on partial knowledge of the input. Furthermore, in

the interactive case, the fact that the attacker can dynamically
choose inputs to respond to the action of the enforcement
mechanism may pose additional issues for efficient transparent
enforcement.

Likewise, our model does not yet deal with declassification.
Extensional accounts of declassification in multi-execution
already exist [21, 33], and we expect they can be adapted to
our setting.

The final, and we believe most important, future work is to
resolve the question of whether or not efficient transparent
enforcement is at all possible even for our simple model.
The connection between multi-execution and transparent en-
forcement established in Section V means that efficiency of
enforcement and efficiency of multi-execution are intimately
related. However, to the best of our knowledge multi-execution
requires something akin to efficient program analysis, either
static or dynamic, to break the exponential blowup barrier [16].
The inherent limitations posed by undecidability therefore
leads us to conjecture that efficient transparent enforcement
is impossible.

Conjecture 1. Total-efficient TI-Total enforcement is impossi-
ble.

This conjecture states the strongest possible variant of
this theorem in our framework. TI-Totalenforcement is our
weakest condition, which means that impossibility of efficient
TI-Total enforcement implies impossibility of efficient τ -τ ′

enforcement for all τ and τ ′ in this paper. We believe that
a proof of this conjecture could use Theorems 6 and 7 and
Proposition 7 from Section V, which we formalise in the
following lemma statement.

Lemma 3. Unless there is a Total-efficient TI-Total level
assignment L such that:

1) For all Total-secure p, L(p(x)) = L(p, x)
2) For all p, λx. L(p, x) is a TI-secure program

There is no Total-efficient TI-Total enforcement mechanism.

The lemma uses the LE level-assignment from Section
V. Condition (1) follows from the fact that L(E[p](x)) =
L(p(x)) when E is Total-transparent and p Total-secure.
Condition (2) meanwhile follows from E being TI-secure.

VIII. RELATED WORK

There exists a large body of work on the expressive
power and precision of different enforcement mechanisms for
noninterference. Bielova and Rezk [30] study a number of
different mechanisms and rank them in order of precision.
Ngo et al. [25] show that TS-TS enforcement is impossible.
Hamlen et al. also study the complexity classes of monitors
and enforcement mechanisms [27].

Ngo et al. [34] provide both a generic black-box enforce-
ment mechanism for reactive programs that is transparent,
as well as lower and upper bounds on what hyperproperties
can and cannot be black-box transparently enforced. While
this work is impressive, it has two limitations. Firstly, in the
interest of tractability the paper partly side-steps the issue

of termination by demanding that programs always make
progress. Secondly, the paper is only concerned with what
can and cannot be enforced in a black-box manner. We believe
that a natural and exciting direction for future work is to marry
their formalism and ours to allow careful study of white-box
transparency with non-termination in a reactive setting.

A number of authors have provided multi-execution based
enforcement mechanism with subtly different τ -τ ′ properties
[7, 13–18, 21, 24, 26]. However, only a small number of articles
focus on the efficiency trade-offs related to transparency.
Austin and Flanagan [7] compare the performance of SME
and MF on a number of micro-benchmarks. MF was originally
proposed as an optimisation of SME. However, it has since
been made clear that MF and SME have some complementary
performance behaviours [14]. Schmitz et al. [14] study the
time-memory trade-off in FSME, a system which attempts to
get “the best of both worlds” performance between MF and
SME. Ngo et al. [15] show a qualitative optimisation of MF.

Pfeffer et al. [19] study a byte-code level multi-execution
technique which they optimise by selectively multi-executing
similarly to FSME [14]. However, they work in a statically
labeled setting with small lattices, and do are not exposed to
the issues of exponential overhead we study here.

Algehed et al. [16] provide a framework for optimising
FSME which inspired our discussion of level-assignments.
Their “computation-oriented” optimisations are capable of
reducing exponential to polynomial overhead. However, these
methods have to be applied by manual analysis of the program
being optimised. It is unlikely that the technique can be
automated to work for all programs, as this requires a complete
static analysis tool for level assignments.

Some authors have also studied multi-execution in other
contexts than security, notably with applications to debugging
[22] and program repair [35]. While an implementation of
these methods has been heavily optimised [22], they suffer
from the same unavoidable exponential overheads as other
multi-execution techniques discussed in this paper.

IX. CONCLUSION

In this paper we have presented a thorough study of the
feasibility and efficiency of transparent information flow con-
trol. Our results indicate that while transparent IFC is possible
to achieve for a diverse set of security criteria including
Monotonically Terminating Noninterference and Termination
Insensitive Noninterference, current methods are practically
infeasible for many systems due to inherent limitations on
efficiency. We show that any enforcement mechanism that
is secure and transparent also gives rise to a secure and
transparent multi-execution based enforcement with polyno-
mial slowdown. We also show that any traditional multi-
execution based enforcement mechanism can expect to have
large runtime overheads. Furthermore, we prove that efficient
black-box IFC is impossible.

We also pose the conjecture that transparent, efficient, and
secure IFC enforcement is impossible in general, not just
in the black-box case. We give a lemma which we think

will help researchers find a proof for our conjecture that is
based on our proof that transparent enforcement is intimately
linked to multi-execution. Our conjecture, as stated, is without
reference to any hardness assumptions for other problems in
the complexity theory literature. Readers familiar with com-
plexity theory may note that such un-qualified lower bounds
are typically difficult to prove, and we therefore think that a
proof of a weakened version of our conjecture may be one
suitable next step for the community.

Taken together, our results indicate that the quest for trans-
parent IFC is unlikely to generate a panacea for securing
third-party and legacy code. This is a troubling result, it
indicates that there is no “easy way out” for securing existing
software systems. At the same time, we believe that our results
indicate a clear future path for the IFC and programming
languages communities. If efficient transparent enforcement
is impossible, the community ought instead to focus on tools
to help software engineers build secure systems from scratch.

We also note that while our results paint a bleak picture for
multi-execution in general, they do not mean that there are
no application areas for the techniques. For example, when
the size of the security lattice is small multi-execution can
still be applicable [19, 20]. The techniques are also useful in
less efficiency-sensitive contexts than general enforcement, for
example in testing [22] and program repair [35]. Similarly,
efficient transparent enforcement being unlikely to work does
not preclude designing enforcement for the common case to
achieve good average-case performance.

REFERENCES

[1] A. Sabelfeld and A. C. Myers, “Language-based information-flow secu-
rity,” IEEE Journal on selected areas in communications, vol. 21, no. 1,
pp. 5–19, 2003.

[2] D. E. Denning, “A lattice model of secure information flow,” Commu-
nications of the ACM, vol. 19, no. 5, pp. 236–243, 1976.

[3] V. Simonet and I. Rocquencourt, “Flow caml in a nutshell,” in Proceed-
ings of the first APPSEM-II workshop, 2003, pp. 152–165.

[4] A. Banerjee and D. A. Naumann, “Secure information flow and pointer
confinement in a java-like language.” in CSFW, vol. 2, 2002, p. 253.

[5] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke, “A core calculus
of dependency,” in Proceedings of the 26th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. ACM, 1999, pp.
147–160.

[6] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières, “Flexible dynamic
information flow control in haskell,” in ACM Sigplan Notices, vol. 46,
no. 12. ACM, 2011, pp. 95–106.

[7] T. H. Austin and C. Flanagan, “Multiple facets for dynamic information
flow,” in ACM Sigplan Notices, vol. 47, no. 1. ACM, 2012, pp. 165–
178.

[8] J. A. Goguen and J. Meseguer, “Security policies and security models,”
in 1982 IEEE Symposium on Security and Privacy. IEEE, 1982, pp.
11–11.

[9] J. McLean, “Proving noninterference and functional correctness using
traces,” Journal of Computer security, vol. 1, no. 1, pp. 37–57, 1992.

[10] S. Zdancewic and A. C. Myers, “Observational determinism for concur-
rent program security,” in 16th IEEE Computer Security Foundations
Workshop, 2003. Proceedings. IEEE, 2003, pp. 29–43.

[11] D. King, B. Hicks, M. Hicks, and T. Jaeger, “Implicit flows: Can’t
live with ’em, can’t live without ’em,” in International Conference on
Information Systems Security. Springer, 2008, pp. 56–70.

[12] C.-A. Staicu, D. Schoepe, M. Balliu, M. Pradel, and A. Sabelfeld, “An
empirical study of information flows in real-world javascript,” arXiv
preprint arXiv:1906.11507, 2019.

[13] D. Devriese and F. Piessens, “Noninterference through secure multi-
execution,” in 2010 IEEE Symposium on Security and Privacy. IEEE,
2010, pp. 109–124.

[14] T. Schmitz, M. Algehed, C. Flanagan, and A. Russo, “Faceted secure
multi execution,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2018, pp. 1617–
1634.

[15] M. Ngo, N. Bielova, C. Flanagan, T. Rezk, A. Russo, and T. Schmitz,
“A better facet of dynamic information flow control,” in WWW’18
Companion: The 2018 Web Conference Companion, 2018, pp. 1–9.

[16] M. Algehed, A. Russo, and C. Flanagan, “Optimising Faceted Secure
Multi-Execution,” in Proc. of the 2019 32nd IEEE Computer Security
Foundations Symp., ser. CSF ’19. IEEE Computer Society, 2019.

[17] D. Zanarini, M. Jaskelioff, and A. Russo, “Precise enforcement of
confidentiality for reactive systems,” in 2013 IEEE 26th Computer
Security Foundations Symposium. IEEE, 2013, pp. 18–32.

[18] J. Yang, T. Hance, T. H. Austin, A. Solar-Lezama, C. Flanagan, and
S. Chong, “Precise, dynamic information flow for database-backed
applications,” in ACM SIGPLAN Notices, vol. 51, no. 6. ACM, 2016,
pp. 631–647.

[19] T. Pfeffer, T. Göthel, and S. Glesner, “Efficient and precise information
flow control for machine code through demand-driven secure multi-
execution,” in Proceedings of the Ninth ACM Conference on Data and
Application Security and Privacy. ACM, 2019, pp. 197–208.

[20] W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens, “Flowfox:
a web browser with flexible and precise information flow control,” in
Proceedings of the 2012 ACM conference on Computer and communi-
cations security. ACM, 2012, pp. 748–759.

[21] W. Rafnsson and A. Sabelfeld, “Secure multi-execution: Fine-grained,
declassification-aware, and transparent,” Journal of Computer Security,
vol. 24, no. 1, pp. 39–90, 2016.

[22] C.-P. Wong, J. Meinicke, L. Lazarek, and C. Kästner, “Faster variational
execution with transparent bytecode transformation,” Proceedings of the
ACM on Programming Languages, vol. 2, no. OOPSLA, p. 117, 2018.

[23] D. Hedin and A. Sabelfeld, “A perspective on information-flow control.”
Software Safety and Security, vol. 33, pp. 319–347, 2012.

[24] N. Bielova and T. Rezk, “Spot the difference: Secure multi-execution
and multiple facets,” in European Symposium on Research in Computer
Security. Springer, 2016, pp. 501–519.

[25] M. Ngo, F. Piessens, and T. Rezk, “Impossibility of precise and sound
termination-sensitive security enforcements,” in 2018 IEEE Symposium
on Security and Privacy (SP). IEEE, 2018, pp. 496–513.

[26] M. Jaskelioff and A. Russo, “Secure multi-execution in haskell,” in
International Andrei Ershov Memorial Conference on Perspectives of
System Informatics. Springer, 2011, pp. 170–178.

[27] K. W. Hamlen, G. Morrisett, and F. B. Schneider, “Computability classes
for enforcement mechanisms,” Cornell University, Tech. Rep., 2003.

[28] S. A. Zdancewic, “Programming languages for information security,”
Ph.D. dissertation, Ithaca, NY, USA, 2002, aAI3063751.

[29] T. H. Austin and C. Flanagan, “Permissive dynamic information flow
analysis,” in Proceedings of the 5th ACM SIGPLAN Workshop on
Programming Languages and Analysis for Security, ser. PLAS ’10.
New York, NY, USA: ACM, 2010, pp. 3:1–3:12. [Online]. Available:
http://doi.acm.org/10.1145/1814217.1814220

[30] N. Bielova and T. Rezk, “A taxonomy of information flow monitors,” in
International Conference on Principles of Security and Trust. Springer,
2016, pp. 46–67.

[31] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell, “Disjunction
category labels,” in Nordic conference on secure IT systems. Springer,
2011, pp. 223–239.

[32] H. Rogers, Theory of recursive functions and effective computability.
McGraw-Hill New York, 1967, vol. 5.

[33] I. Boloşteanu and D. Garg, “Asymmetric secure multi-execution with
declassification,” in International Conference on Principles of Security
and Trust. Springer, 2016, pp. 24–45.

[34] M. Ngo, F. Massacci, D. Milushev, and F. Piessens, “Runtime en-
forcement of security policies on black box reactive programs,” in
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 2015, pp. 43–54.

[35] C.-P. Wong, J. Meinicke, and C. Kästner, “Beyond testing configurable
systems: applying variational execution to automatic program repair
and higher order mutation testing,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. ACM, 2018,
pp. 749–753.

APPENDIX

A. Proofs

Proofs showing that C(S) partitions L
Lemma 4. Given any finite S ⊆ L and �, j ∈ S such that
� �= j, � ↑ S is disjoint from j ↑ S.

Proof. Assume �̂ ∈ � ↑ S and �̂ ∈ j ↑ S. Clearly � � �̂
and j � �̂, and so j � � and � � j, therefore � = j, a
contradiction.

Lemma 5. Given any finite S ⊆ L we have that
⋃{ � ↑

C(S) | � ∈ C(S) } = L.

Proof. Left-to-right inclusion is trivial. For all � ∈ L it is the
case that there is a greatest element j ∈ C(S) such that j � �
(as ⊥ ∈ C(S)) and � ∈ j ↑ C(S).

Proposition 4. Given any S ⊆ L, the family which maps each
� ∈ C(S) to � ↑ C(S) partitions L.

Proof. Immediate from lemmas 4 and 5.

Properties of MEF

Theorem 3. For all p, x, if L is finite we have that:

MEF[p]x = ME[p]x

Proof. We first prove that MEF[p](x) ⊆ ME[p](x). If a� ∈
MEF[p](x), then there exists some j such that a� ∈ p(x ↓ j)
and x ↓ � = x ↓ j and so a� ∈ p(x ↓ �)@� and so a� ∈
ME[p](x).

Next we show that ME[p](x) ⊆ MEF[p](x). If a� ∈
ME[p](x), then clearly a� ∈ p(x ↓ �) and there is an j ∈
C(L(x)) such that x ↓ � = x ↓ j and � ∈ j ↑ C(L(x))
and, consequently, a� ∈ p(x ↓ j)@(j ↑ C(L(x))) and so
a� ∈ MEF[p](x).

We have that MEF[p](x) ⊆ ME[p](x) and ME[p](x) ⊆
MEF[p](x) when both are defined, and so MEF[p](x) =
ME[p](x) provided both are defined.

Next we show that when L is finite, MEF[p](x)� ⇔
ME[p](x)�. If MEF[p](x)� then p(x ↓ �)� for all � ∈
C(L(x)). But, for all j ∈ L it is the case that x ↓ j = x ↓ �
for some � ∈ C(L(x)) and so p(x ↓ �)�, and consequently
ME[p](x)�. If ME[p](x)� then clearly p(x ↓ �)� for all � ∈
C(L(x)) and so MEF[p](x)�.

Theorem 9. MEF is MT-transparent.

Proof. By Theorem 3 we have that for all p and x it is the
case that MEF[p](x) = ME[p](x) if ME[p](x) and MEF[p](x)
are both defined. Furthermore, by Theorem 2 we have that
ME[p](x) = p(x) if p is MT-secure. If the lattice L is non-
finite ME can only be read as a specification, and not an algo-
rithm. However, the argument in Theorem 3 suffices to show
that MEF implements the ME specification when it terminates.
Therefore, it remains only to show that given an MT-secure p,
it is the case that MEF[p](x)� ⇔ p(x)�. If MEF[p](x)� then

p(x ↓⊔L(x))� and so because x = x ↓⊔L(x) we have that
p(x)�. Conversely, if p(x)� then by p MT-secure we know
that p(x ↓ �)� for all � and so MEF[p](x)�.

Level Assignments

Proposition 6. If L(p, x) = C(L(x)) ∩ L
′(p) for some total

L
′, then L is an MT-secure level assignment.

Proof. If x ∼� y then C(L(x)) ∼� C(L(y)) and so L(p, x) ∼�

L(p, y). Consequently, L(p,) is TI-secure. By Lemma 1 we
have that L is TI-secure and so MEL is noninterfering. To
see that MEL[p] is MT-terminating, observe that L(p, x ↓ �) ⊆
L(p, x) and so if MEL[p](x)

� then p(x ↓ �)� for � ∈ L(p, x)
and so MEL[p](x ↓ �)�.

Lemmas for Theorems 6 and 7

Recall the extended interpretation �-equivalence from Sec-
tion V to subsets of L based on the following definition of
S ↓ �:

S ↓ � = { �′ ∈ L | �′ � � }
Lemma 1. If the program λx. L(p, x) is TI-secure for all p,
then L is TI-secure.

Proof. Consider any �, p, x ∼� y such that L(p, x)� and
L(p, y)�. Clearly, for all j � �, j ∈ L(p, x) if and only if
j ∈ L(p, y) and so if this is the case then:

MEL[p](x)@j

= p(x ↓ j) @j

= p(y ↓ j) @j

= MEL[p](y)@j

And otherwise MEL[p](x)@j = ∅ = MEL[p](y)@j. As
MEL[p](x)@j = MEL[p](y)@j for all j � � we have that
MEL[p](x) ∼� MEL[p](y) and so MEL[p] is noninterfering.
Consequently, MEL[p] is TI-secure for all p and then so is
L.

Lemma 2. L is MT-transparent if for all MT-secure programs
p and inputs x, we have that p(x)� if and only if L(p, x)�

and L(p, x) = L(p(x)).
Proof. Assume L satisfies the stated condition and p is an MT-
secure program. Clearly, MEL[p](x)

� if and only if p(x)�.
Furthermore a� ∈ p(x) if and only if a� ∈ p(x ↓ �) which
means that a� ∈ MEL[p](x). For the other direction, if a� ∈
MEL[p](x) then a� ∈ p(x ↓ �) and so a� ∈ p(x).

