
Nontransitive Security Types for
Coarse-grained Information Flow Control

Yi Lu
School of Computer Science

Queensland University of Technology
Brisbane, Australia

yt.lu@qut.edu.au

Chenyi Zhang
College of Information Science and Technology

Jinan University
Guangzhou, China

chenyi zhang@jnu.edu.cn

Abstract—Language-based information flow control (IFC) aims
to provide guarantees about information propagation in com-
puter systems having multiple security levels. Existing IFC
systems extend the lattice model of Denning’s, enforcing transitive
security policies by tracking information flows along with a
partially ordered set of security levels. They yield a transitive
noninterference property of either confidentiality or integrity.
In this paper, we explore IFC for security policies that are not
necessarily transitive. Such nontransitive security policies avoid
unwanted or unexpected information flows implied by transitive
policies and naturally accommodate high-level coarse-grained
security requirements in modern component-based software.

We present a novel security type system for enforcing nontran-
sitive security policies. Unlike traditional security type systems
that verify information propagation by subtyping security levels
of a transitive policy, our type system relaxes strong transitivity
by inferring information flow history through security levels and
ensuring that they respect the nontransitive policy in effect. Such
a type system yields a new nontransitive noninterference property
that offers more flexible information flow relations induced by
security policies that do not have to be transitive, therefore
generalizing the conventional transitive noninterference. This
enables us to directly reason about the extent of information
flows in the program and restrict interactions between security-
sensitive and untrusted components.

Index Terms—Language-based security, information flow con-
trol, noninterference, security types, type systems

I. INTRODUCTION

Information flow control (IFC) is the problem of ensuring

secure information flow according to specified policies within

computer systems having multiple security levels. The stan-

dard information flow security property, noninterference [1],

guarantees confidentiality that public outputs of a program are

not influenced by private inputs, or vice versa for integrity. In

a programming language setting, language-based techniques,

such as static type systems [2], [3] or dynamic runtime moni-

toring [4], [5], are used for tracking and enforcing information

flow policies. Our focus in this paper is on IFC enforced

through type systems.

Most language-based IFC systems extend the lattice model

of Denning [6], [7] to deal with transitive policies, which

assume security levels to be partially ordered in a security

lattice. Such partially ordered security levels are used to

Yi Lu and Chenyi Zhang are the co-first authors. Chenyi Zhang is the
corresponding author.

abstract program values (inputs, outputs and intermediate

values in variables) and to track dependencies between them.

While transitive policies can be verified through the simple

subtyping of security levels associated with program variables

[2], nontransitive policies are more flexible especially in

expressing coarse-grained security requirements of interactions

among software components.

Modern applications are composed of reusable software

components from different sources. Untrusted code (e.g. com-

ponents downloaded from the Internet) may be executed in

the same process, alongside sensitive system code. Instead

of trusting developer-provided security policies, users (such

as application developers, builders or deployers that use the

downloaded components to build applications) must specify

security policies to protect sensitive system components from

untrusted code. Without knowing implementation details, the

users can express only coarse-grained policies on downloaded

components according to their expected functionalities, where

the entire code of a component is associated with a single

security level (i.e. not labeling all variables individually).

For example, the Java programming language provides a

sandboxing mechanism that makes the use of user-provided

security policy files to assign privileges to code bases [8].

Furthermore, systems with coarse-grained policies are easier to

design and implement, reducing the security annotation burden

that fine-grained systems impose on developers [9], [10].

In a transitive IFC system, the information in a security level

can flow to all security levels by the transitive closure of the

information flow relation defined by its policy. This makes it

difficult to use transitive policies to express coarse-grained se-

curity requirements. For example, a component Alice may trust

only another component Bob with her information, however

due to implied transitive relations, her information may flow

not only to Bob but also indirectly to all components that Bob

trusts, which is undesirable for Alice. Furthermore, mutual and

circular information flows among security levels are precluded,

for instance, Alice and Bob cannot send information to each

other unless both components are in the same security level

(i.e. they must share the same information flow relations with

any other component).

In this paper, we explore IFC for security policies that are

not necessarily transitive, in order to avoid unwanted flow

199

2020 IEEE 33rd Computer Security Foundations Symposium (CSF)

© 2020, Yi Lu. Under license to IEEE.
DOI 10.1109/CSF49147.2020.00022

relations implied by transitivity and support more flexible flow

structures than transitive closures in traditional IFC systems.

(Note, our notion of nontransitive noninterference is not to

be confused with the previous notion of intransitive noninter-
ference, as discussed in Section III.) Such nontransitive poli-

cies can facilitate reasoning about and accommodate coarse-

grained security requirements. For example, it is safe for Bob

to send his own information to Charlie (who is untrusted by

Alice), as long as Bob does not expose Alice’s information

to Charlie. Nontransitive security policies can easily express

permitted information flow relations from Alice to Bob as

well as from Bob to Charlie, while still forbidding undesired

information flow relation from Alice to Charlie (because there

is no implied relation from Alice to Charlie in the absence of

transitivity). Moreover, mutual and circular information flow

relations across components in different security levels can be

supported. For example, Alice and Bob may trust each other

without having to share the same trust to Charlie, by specifying

flow relations from Alice to Bob, from Bob to Alice, and from

Bob to Charlie (but not from Alice to Charlie). Nontransitive

policies generalize transitive policies by requiring that transi-

tive information flow relationships must be specified explicitly

rather than derivable implicitly. Therefore, transitive security

models are a special case of nontransitive models where all

transitive closures are explicitly specified.

Nontransitive security models are particularly useful in

modern component-based software development, where high-

level coarse-grained information flow policies are specified

by the users or deployers of the code bases, components

or modules, who do not have to trust the developers to

provide low-level fine-grained security policies on their im-

plementation. Let’s consider a simple program in Fig. 1 that

is composed from three code components, named Alice,

Bob and Charlie, developed by different developers. Each

component may enclose some data and operations, like usual

classes or modules. Let’s assume that Alice would share her

information with Bob (e.g. for performing certain function-

ality), but Charlie must never receive Alice’s information.

There are two operations in Bob; Bob.bad should be rejected

because it sends Alice’s data to Charlie, while Bob.good

should be allowed because Bob only sends his own data to

Charlie without revealing Alice’s. We will examine both

transitive and nontransitive IFC systems in specifying the

desired security policies to meet these security requirements.

A transitive IFC system with fine-grained analysis requires

annotating (or inferring) the label of every intermediate value,

and then carefully tracks dependencies among these values.

In the example shown in Fig. 1, four security levels (LA, LB1,

LB2, LC), partially ordered by the transitive relation ≥, are

used to label program variables in the components:

Alice.data : LA

Bob.data1 : LB1

Bob.data2 : LB2

Charlie.data : LC

Alice {
data;
main() {
Bob.receive(data);
Bob.good();
Bob.bad();

}
}

Bob {
data1;
data2;
receive(x) { data1 = x; }
good() { Charlie.receive(data2); }
bad() { Charlie.receive(data1); }

}

Charlie {
data;
receive(x) { data = x; }

}

Fig. 1. Charlie must not receive Alice’s information.

A transitive policy is specified as a couple of (permitted)

information flow relations:

LA ≥ LB1

LB2 ≥ LC

To correctly track dependencies between program values,

variables in the same component Bob are separated into two

security levels LB1 and LB2. This allows the IFC system

to distinguish the data received from Alice (stored in the

variable Bob.data1) and the data sent to Charlie (loaded

from the variable Bob.data2), and to verify that values

labeled security level LA can never flow to variables labeled

LC. The operation Bob.good is permitted because Bob.data2

is labeled LB2 which is allowed to flow to LC by the policy

in effect. Another operation Bob.bad is rejected by checking

the labels because Bob.data1 is labeled LB1 and there is no

derivable flow relation from LB1 to LC by the policy.

Such low-level labeling and policies at the granularity of

program variables are typically specified by the developers

who have the domain knowledge of the software components.

However, developers of code downloaded from the Internet

may not necessarily be trusted; such code may be malicious or

contain developer-induced security issues. Therefore, it would

be desirable that the users of untrusted components are able

to specify high-level security policies at the granularity of

components such as modules and code bases, without having

to know their implementation details.

The developers of software components generally cannot

anticipate how their components may be used in all possible

application contexts which have different application-specific

information flow requirements. For example, the developer of

Bob would not specify separate security levels for Bob.data1

and Bob.data2 unless he knew that the component would

200

be used in only applications whose security policies forbid

information flow from Alice to Charlie. On the other hand,

user-provided security policies can specify application-specific

information flow requirements, facilitating the reusability of

software components.

Next, we try to use information flow policies coarsely, by

associating a single security level with an entire component

and not labeling any variable individually. This enables the

user of the components to label each component based on

their intended functionalities, rather than their implementation

details (i.e. Bob.data1 and Bob.data2):

Alice : LA

Bob : LB

Charlie : LC

Now, all variables within the scope of a component implicitly

share the same label on the component. For example, both

Bob.data1 and Bob.data2 are labeled by the same security

level LB. Since the IFC system cannot distinguish these

variables from their security levels, the operations Bob.good

and Bob.bad would either pass together or fail together by

checking their labels. It is hard to provide a meaningful

transitive policy at component-level to capture the security

requirement of the application. For instance, the user may

specify a transitive policy:

LA ≥ LB

LB ≥ LC

By transitivity, the policy implicitly provides LA ≥ LC;

therefore, both operations Bob.good and Bob.bad would

be permitted by the IFC system. In other cases, if the user

specifies only LA ≥ LB, then both Bob.good and Bob.bad are

rejected by the IFC system as there is no allowed information

flow from LB to LC. Conversely, if only LB ≥ LC is specified

then both operation are accepted (Alice.main is rejected for

no permitted information flow from LA to LB).

Finally, we employ a nontransitive IFC system for the user

to label and specify coarse-grained information flow policies,

such that all variables within a component share the same

label. Significantly, these security levels (SA, SB, SC) are not

necessarily partially ordered by a lattice.

Alice : SA
Bob : SB

Charlie : SC

A nontransitive security policy provides an arbitrary informa-

tion flow relation � to define permissible information flows

(in general, this relation would be reflective to be useful). For

example, SA � SB specifies that information can flow from

security level SA to another security level SB.

SA � SB
SB � SC

In the absence of transitivity, information flow relations cannot

be derived but must be explicitly specified in the policy. With

such a policy, information associated with SA must not flow to

components associated with SC because there is no derivable

information flow relation from SA to SC. In our example, this

policy means there may be information flows from Alice to

Bob and from Bob to Charlie but Alice’s information must

never flow to Charlie directly or indirectly. To verify that

information flows comply with the nontransitive policy, we

need to track the dependencies between program variables. In

the example, we can easily observe that variable Bob.data1

depends on Alice.data as the information in Alice.data

may flow to Bob.data1. On the other hand, Bob.data2 does

not depend on Alice.data. In this paper, we track such de-

pendencies through type inference on information propagation

history that is abstracted by security levels. For example, the

type system infers that Bob.data1 depends on the information

associated with the security level SA. The following table

summarizes the dependencies of program variables on security

levels (including own levels):

Alice.data depends on SA
Bob.data1 depends on SA, SB
Bob.data2 depends on SB

Our security type system then ensures that there must be

a flow relation (�) defined in the policy from the inferred
dependencies of the sender variable to the specified label of

the receiver variable. For example, in Bob.bad, information

flows from Bob.data1, which depends on both SA and SB,

to Charlie.data, which is given the label SC. The type

system rejects Bob.bad because there is no derivable flow

relation SA � SC. On the other hand, Bob.good is safe,

where information flows from Bob.data2 to Charlie.data,

because Bob.data2 only depends on SB and the policy

provides SB � SC.

Technically nontransitive security policies provide a richer

set of information flow relations (than transitive policies) to

allow users to easily specify minimal flow relations needed

by the components to perform their tasks. This facilitates the

principle of least privileges [11], because each component

must access only the information and resources that are

necessary for its legitimate purpose. For example, nontransitive

policies can easily express mutual (SA�SB, SB�SA) and cyclic

(SA � SB, SB � SC, SC � SA) information flow requirements

across security levels, while transitive policies would have to

merge all security levels with circular dependencies therefore

undesirably over-approximate their security requirements.

In general, nontransitive security policies allow users to

express meaningful coarse-grained information flow require-

ments that are otherwise difficult with transitive policies. On

the one hand, users do not have to trust the developers of

downloaded code components or developer-provided security

specification; instead, users can specify own security policies

coarsely according to the expected functionalities of the com-

ponents and enforce these policies through a security type

201

system. On the other hand, developers do not have to specify

fine-grained security policies on their components, reducing

considerable annotation overhead. Furthermore, nontransitive

policies are more adaptable to policy changes (when security

policies are extended, composed or revoked), because all per-

mitted information flow relations are explicitly specified and

do not depend on other relations. In contrast, changes made on

transitive policies may accidentally introduce undesirable flow

relations or remove desirable flow relations that are implicitly

inferred thus dependent on added or removed relations.

To summarize, the technical contributions of this paper are:

• We propose a new IFC system that provides guarantees

about information propagation in computer software us-

ing nontransitive security policies. Informally, our se-

curity system ensures that, for any operation, all the

code responsible for (i.e. may directly or transitively

influence) the operation is explicitly authorized by the

given security policy. Formally, this system yields a new

noninterference theorem that offers more flexible infor-

mation flow relations induced by security policies that do

not have to be transitive, generalizing the conventional

transitive noninterference theorem without distinguishing

confidentiality and integrity.

• We present a security type system to demonstrate how

to statically enforce security policies that are possibly

nontransitive, controlling both explicit and implicit in-

formation flows raised from conditionals and lambda

values in a small core language with references. Unlike

traditional security types that use subtyping (of security

levels labeled on program variables) to regulate transitive

information propagation across the program, our type

system tracks the dependencies of program variables by

inferring information flow history in the program and

ensuring they respect the specified nontransitive policy.

We prove both the subject reduction theorem and the

generalized noninterference theorem.

The rest of the paper is organized as follows. Section II

describes our core language and its operational semantics,

which allow us to formalize the generalized noninterference

in Section III. Section IV presents the security type system

that statically enforces nontransitive security policies. The

noninterference result enforced by the type system is proved in

Section V. Section VI discusses an application of nontransitive

IFC to the well-known confused deputy problem. Section VII

discusses related work and Section VIII concludes the paper.

II. A CORE LANGUAGE

The syntax of our language, defined in Fig. 2, is similar

to [9], [12]. A value may be a number, a lambda (standard:

a local variable and an expression), or a tagged runtime

address ια (also called concrete location). We use α to denote

the allocation site (or abstract location) of the new memory

allocated at ι (we sometimes omit α in rules where it is

not used). An expression may be values, variables, function

applications, memory allocations (tagged with allocation site

v ::= Value
c constant

λx.e abstraction

ια address

e ::= Term
v value

x variable

e e application

newα e memory allocation

e := e assignment

!e dereference

if e then e else e conditional

e⊕ e binary operation

x, y Variable
c, d Constant
α, β Alloc. Site

Fig. 2. Language syntax.

α), assignments, dereferences, conditionals or binary oper-

ations. This language is intentionally minimal, in order to

clearly present our information flow evaluation strategies. A

rich variety of additional constructs such as let, sequence

or recursion are not directly defined because they are easily

encoded [4]. For example, some standard encoding:

let x = e in e′ def
= (λx.e) e′

e; e′ def
= (λx.e′) e where x /∈ FV (e′)

Security policies use the syntax defined in Fig. 3.

� ∈ Label
P ∈ Security Policy = Alloc. Site → Label
S ∈ Security Env. ::= ∅ | S, �� �

Fig. 3. Policy syntax.

As usual, we use labels to denote security levels. Each

allocation site is assigned to a security label by P , which

maps allocation sites to security labels. For example: P(α)=�
means the memory allocated at α is assigned to the security

label �. A security policy is defined as a pair of S and P . The

security environment S represents a permitted flow relation

� ⊆ Label × Label, which is not necessarily transitive. We

use the judgment S � � � �′ (or simply � � �′, since there is

only one fixed S in the program) to denote two security labels

� and �′ are related by S , so that information may flow from

memories labeled by � to memories labeled by �′.
We do not explicitly define coarse-grained constructs for our

language, because our type system supports both fine-grained

and coarse-grained security policies. For coarse-grained poli-

cies, P simply assigns a single security label to all allocation

sites found in a code component or module. For example,

P(α) = P(β) when α and β are allocation sites in the same

component.

The evaluation rules are defined in the form as follows:

M e ⇓ M ′ v

202

M v ⇓ M v
[VAL]

M e ⇓ M ′ λx.e′′ M ′ e′ ⇓ M ′′ v
M ′′ e′′[v/x] ⇓ M ′′′ v′

M e e′ ⇓ M ′′′ v′
[APP]

M e ⇓ M ′ c c
= 0 M ′ e′ ⇓ M ′′ v
M (if e then e′ else e′′) ⇓ M ′′ v

[THEN]

M e ⇓ M ′ 0 M ′ e′′ ⇓ M ′′ v
M (if e then e′ else e′′) ⇓ M ′′ v

[ELSE]

M e ⇓ M ′ v ια /∈ dom(M ′)
M newα e ⇓ (M ′, ια �→ v) ια

[ALLOC]

M e ⇓ M ′ ι M ′ e′ ⇓ M ′′ v
M e := e′ ⇓ M ′′[ι �→ v] v

[ASSIGN]

M e ⇓ M ′ ι M ′(ι) = v

M !e ⇓ M ′ v
[DEREF]

M e ⇓ M ′ c M ′ e′ ⇓ M ′′ c′

M e⊕ e′ ⇓ M ′′ c⊕ c′
[OP]

Fig. 4. Evaluation rules.

where an expression e is evaluated in the context of a memory

M , and it returns the resulting value v and (possibly modified)

M ′. The memory (or store), M , maps addresses to values:

M ∈ Memory = Address → Value

A big-step operational semantics is given in Fig. 4, which is

mostly standard. In [APP], instead of keeping bindings, function

parameter x is substituted upon application (the notation

e[v/x] denotes x is substituted for v in the term e). [ASSIGN]

assigns the value that e′ evaluates to, to the location that e
evaluates to (the notation M [ι �→ v] denotes ι is updated

in M with the value v). [ALLOC] extends the memory with a

newly allocated address. Note that the choice of fresh address

allocated to the new memory allocation is arbitrary in [ALLOC].

This allocation behavior may be accommodated using standard

renaming of locations over an indistinguishability relation on

memories (in Section III). But for simplicity, like in [2], [13],

we assume a deterministic scheme for memory allocation. We

sometimes write P(ια)=� if P(α)=� for some � ∈ Label. An

address ι is associated with a security label � where P(ι) = �,
and may serve as a communication channel for the security

level �. In that sense, a value (input) can be left at ι before

the program execution and its resulting value (output) can be

observed at the end of the execution.

III. NONTRANSITIVE NONINTERFERENCE

In this section we define the main security property of

our IFC system, nontransitive noninterference, provided by

security policies that are not necessarily transitive. Our notion

of nontransitive noninterference is not to be confused with

the previous notion of intransitive noninterference [14]–[19],

which has a completely different interpretation. Intransitive

noninterference is a flow-control mechanism which controls

the path of information flow with respect to the various

security levels of the system. The canonical example is a

confidentiality policy which says that information may flow

directly from low-level A to high-level C (the transitive part

of the policy), and from C to a declassifier level B, and from B
to A, but not directly from C to A (the intransitive part of the

policy). The definition of intransitive noninterference ensures

that any downgraded information indeed passes through the

declassifier, and is thereby controlled; it is classified as a

type of where-based downgrading methods by [20]. On the

other hand, our nontransitive noninterference enforces that

any (direct or indirect) information flow from two security

levels must be explicitly specified by the security policies.

For example, if a flow relation from A to C is not specified

in the policy, then no information can flow from A to C,

neither directly (from A to C) nor through other security

levels (e.g. from A to B and from B to C). Thus, intransitive

noninterference is an extension of the standard transitive non-

interference (i.e. lattice-based flow relations) with intransitive

downgrading exceptions, while nontransitive noninterference

is a generalization of transitive noninterference where all flow

relations (including transitive closures of transitive relations)

are explicitly specified in the policy.

With the formal notion of noninterference by Goguen and

Meseguer [1], a system is modeled as a state machine with

inputs and outputs classified by security levels. The non-

interference property for a confidentiality policy guarantees

that any sequence of lower-level inputs will produce the

same lower-level outputs, regardless of what the higher-level

inputs are. Intuitively, this ensures that an attacker at lower-

level is unable to distinguish two computations from their

outputs if they vary only in their higher-level secret inputs.

Conversely, the noninterference property for an integrity policy

guarantees any sequence of higher-level inputs will produce

the same higher-level outputs, regardless of what the lower-

level inputs are. This ensures that a system keeps its trusted

contents/outputs (at higher-level) unaltered by any untrusted

(lower-level) inputs.

In our system, given � ∈ Label, for any security label

�′, we have either �′ � � or �′ � �. Although there is no

ordering (high and low) of security levels in nontransitive

policies, the Goguen and Meseguer-style noninterference [1]

may be considered still valid in the sense that the outputs

observable by � may only depend on the inputs with security

labels permitted to interfere with �, therefore altering inputs

from a label �′ that is not permitted to interfere with � does

not cause any change to the outputs of �. In a language-

based setting, memory addresses assigned to different security

labels become channels for inputs and outputs, and the notion

of noninterference can be captured by an indistinguishability

relation on memories with respect to specific security labels.

The formalism of our noninterference property uses a

203

number of auxiliary definitions. Two memory states are in-

distinguishable for a specified security label � if all memory

addresses with the label � contain the same content in both

states. We define an indistinguishability relation for both a

single security label � ∈ Label and a set of security labels

L ⊆ Label respectively, as follows.

∀ι∈dom(M1)∪dom(M2) · P(ι)=� =⇒ M1(ι)=M2(ι)

M1
�
=M2

[�-EQ]

∀� ∈ L ·M1
�
=M2

M1
L
=M2

[L-EQ]

Given a deterministic memory allocation scheme, two dif-

ferent runs of a program will assign the same address value if

the same program counter newα is evaluated the same number

of times. As a consequence, we have the following property.

Lemma 1:

M1
P(α)
= M2

M1 newα v1 ⇓ M ′
1 ι1

M2 newα v2 ⇓ M ′
2 ι2

⎫⎪⎬
⎪⎭ =⇒ ι1 = ι2

If M1 and M2 agree on the security label P(α) that is assigned

to memory allocation α, then for all ια ∈ dom(M1), we have

ια ∈ dom(M2), and for all ια ∈ dom(M2), we have ια ∈
dom(M1). Therefore, M1 and M2 contain the same number

of references to allocations at α. Then by the deterministic

allocation scheme, ι1 freshly allocated at α in M1 must be

the same as ι2 freshly allocated at α in M2.

Given � ∈ Label and an information flow relation � that is

not necessarily transitive, we collect all security labels that are

permitted to pass information to � in a set �� = {�′ | �′ � �}.

No security label outside �� is allowed to interfere with �.
We also have � ∈ �� because the flow relation is reflexive.

Therefore, the security requirement for the label � is that

the final outputs observable by � only depend on inputs

from security labels that are permitted to (both directly and

indirectly) interfere with � (i.e., the set ��). Now, we can

present our termination-insensitive noninterference property

using memory indistinguishability.

Definition 1: (Nontransitive noninterference)

M1
��
= M2

M1 e ⇓ M ′
1 v

M2 e ⇓ M ′
2 v

⎫⎬
⎭ =⇒ M ′

1
�
=M ′

2

The notion of nontransitive noninterference formalized in

Definition 1 states that any sequence of inputs will produce

the same outputs, as long as all inputs that may influence

them are initially the same (i.e. regardless of any other

inputs that may not influence them, which may differ freely).

Nontransitive noninterference implies that information flows,

either directly or indirectly, are possible only if their flow

relations are specified explicitly by the nontransitive policy �.

This property makes it easy to control the extent of information

flows in the program.

Transitive noninterference provides either an integrity prop-

erty or a confidentiality property due to the ordering of security

levels. The attacker and the system are typically considered

lower-level and higher-level respectively, so that information

is permitted to flow in only one direction: from lower-level

to higher-level in confidentiality noninterference, alternatively,

from higher-level to lower-level in integrity noninterference.

On the other hand, without security level ordering, nontran-

sitive noninterference does not distinguish confidentiality and

integrity therefore uniformly provides both. The explicit flow

relation provided by � governs both ends of any information

flow, which can be either the attacker or the system. Intuitively,

our property ensures that an attacker keeps its untrusted

contents/outputs unaltered by any secret inputs, at the same

time, a system keeps its secret contents/outputs unaltered by

any untrusted inputs.

IV. THE TYPE SYSTEM

In this section, we show how to enforce nontransitive

noninterference by using a security type system. Like transitive

security type systems, we use security labels to abstract pro-

gram values for tracking dependencies between them. Unlike

transitive security type systems that verify transitive policies

by subtyping security labels associated with program variables,

we track dependencies by capturing the history of information

flows through security labels defined by nontransitive policies.

τ ∈ Labeled Type ::= tL

t ∈ Unlabeled Type ::= n | τ L→ τ | refA τ
A,B ∈ Set of Alloc. Sites ::= ∅ | A, α
L, pc ∈ Set of Labels ::= ∅ | L, �

Fig. 5. Type syntax.

Types are defined in Fig. 5, where every type τ , including

a type nested inside another, carries a set of security labels.

In the absence of label transitivity, a set of labels L (rather

than a single label) is used to represent the dependencies of

the values the types ascribe. Security labels (denoted by �) are

drawn from an arbitrary relation �, which is not necessarily

transitive. In our typing rules, we use L1 � L2 to denote that

�1 � �2 for all �1 ∈ L1 and �2 ∈ L2, where L1,L2 ⊆ Label.
For convenience, we also define unlabeled types for base,

function and reference. We use n to denote the base type for

constant values. The write effect L of a lambda type τ
L→ τ

is captured by a label set that tracks all possible implicit

flows to the body of the function from control flow structures.

The reference type refA carries a set of allocation sites

A, representing all possible allocation sites of the memory.

Note that all values produced within the scope of the same

component implicitly have that label; hence, it is not necessary

to label individual values (as explained previously, P(α) is

used to look up the specified label for the value created at

allocation site α).

The subtyping rules are defined in Fig. 6. The label set

in labeled types can be weakened (increased) freely with

204

the subtyping rule [S-TYPE]. Subtyping for unlabeled reference

types refA τ is invariant in τ , as usual, but co-variant in the

set of possible allocation sites A (i.e. over-approximation).

Subtyping for unlabeled function types is co-variant in output

type and contra-variant in input type and function effect.

t ≤ t′ L ⊆ L′

tL ≤ t′L
′ [S-TYPE]

A ⊆ B
refA τ ≤ refB τ

[S-REF]

τ ′1 ≤ τ1 τ2 ≤ τ ′2 L′ ⊆ L
τ1

L→ τ2 ≤ τ ′1
L′
→ τ ′2

[S-FUN]

Fig. 6. Subtyping rules.

The type judgment is defined as follows:

Γ Π �pc e : τ

The type environment Γ maps free variables of e to their

types. Another type environment Π provides allocation typing,

mapping allocation sites to the types of contents in the

allocated memory. To help formalize and prove the safety

properties, Π predicts the types for all allocation sites and must

be respected by all actual values at runtime (see [MEMORY] in

Section V). Our type judgment means that, given the types for

free variables in Γ and allocations in Π, e has type τ .

The annotation pc, often called the program counter label,

tracks implicit information flows from program structures to

the write effects of e. The type system ensures that for any

reference that e writes, there must be a flow relation by the

security policy from pc to the specified label of the reference’s

allocation site (see [T-ASN] and [T-NEW]). This is necessary to

prevent information leaks via the heap.

The typing rules are shown in Fig. 7, which track depen-

dencies of values in types (tL) by collecting all security labels

of historical flows into the label set L carried by their types.

We explain the important rules in more detail. The standard

subsumption rule is defined in [T-SUB], using the subtyping

rules. For simplicity, we use τ∪L to denote tL
′∪L where

τ = tL
′
.

Dereferences read information from memory. The rule for

dereference [T-DEREF] looks up the security types of all possible

allocation sites of the reference and ensures they are subsumed

by the resulting type of the dereference. This implies that

all labels collected from historical information flows into the

reference are captured in the label set of the resulting type

(because subtyping preserves the set of labels). Note that

the reference type refA carries a set of allocation sites,

representing all possible allocation sites of the memory that e
is evaluated to.

Assignments write information to memory. The rule for

assignment [T-ASN], similarly, tracks information flows from

e′ to all possible allocation sites of the reference type. In

Γ Π �pc′ e : τ
′ pc ⊆ pc′ τ ′ ≤ τ

Γ Π �pc e : τ
[T-SUB]

Γ Π �pc c : n
L [T-CONST]

Γ, x : τ ′ Π �L′ e : τ L ⊆ L′

Γ Π �pc λx.e : (τ
′ L′
→ τ)L

[T-FUN]

Γ(x) = τ

Γ Π �pc x : τ
[T-VAR]

Γ Π �pc e : (τ
′ L′
→ τ)L

Γ Π �pc e
′ : τ ′ pc ⊆ L′

Γ Π �pc e e′ : τ∪L [T-APP]

Γ Π �pc e : n
L

Γ Π �pc∪L e′ : τ Γ Π �pc∪L e′′ : τ
Γ Π �pc if e then e′ else e′′ : τ∪L [T-IF]

Γ Π �pc e : t
L tL∪pc ≤ Π(α)

L ∪ pc� P(α) P(α) ∈ L′

Γ Π �pc newα e : (ref{α} tL)L
′ [T-NEW]

Γ Π �pc e : (refA tL)L
′

Γ Π �pc e
′ : tL

′

∀α ∈ A · L′ ∪ pc� P(α) tL∪L′∪pc ≤ Π(α)

Γ Π �pc e := e′ : tL
′ [T-ASN]

Γ Π �pc e : (refA τ)L

∀α ∈ A · Π(α) ≤ τ∪L

Γ Π �pc !e : τ
∪L [T-DEREF]

Γ Π �pc e : n
L Γ Π �pc e

′ : nL

Γ Π �pc e⊕ e′ : nL
[T-OP]

Γ Π �pc Π(α) = τ

Γ Π �pc ια : ref{α} τ
[T-ADDR]

Fig. 7. Typing rules.

addition, it checks that such information flows are permitted

for all possible allocation sites by flow relations defined by �.

Significantly, nontransitive IFC is enabled by separating the

permissible reads (determined by the labels inferred from his-

torical flows, i.e. L where tL = Π(α)) and writes (determined

by the label specified by pre-defined security policy, i.e. P(α))
of the references. Both reads and writes are governed by a

nontransitive relation �, allowing us to escape from the strong

transitivity of traditional security types.

The rule for memory allocation [T-NEW] tracks information

flow from e to the allocation site α in Π and ensures the flow

is permitted by flow relations defined by �. The specified

security label of the abstract location α is captured in the

205

label set of the resulting type.

In the rule for constant [T-CONST], we allow a constant

value to be given any security label (unbound in the rules)

because, intuitively, a value is never intrinsically sensitive—it

is sensitive only if it comes from a sensitive location [3]. In

the rule for function [T-FUN], L is covered in L′ to prevent

implicit leaks arising from the identity of the function when

it gets evaluated. The rule for application [T-APP] ensures that

pc is carried into the write effect of the function L′.
In the rule for conditional [T-IF], both branches are typed

in a pc that is joined with L, which is the label set of the

condition e. This ensures that the execution of the branches is

control dependent on a value produced by the condition.

The rule for runtime address [T-ADDR] ensures that the

address has the type predicted by the allocation typing Π. Of

course, these typing rules will accurately predict the results of

evaluation only if the concrete memory used during evaluation

actually conforms to the allocation typing that we assume for

purposes of type checking (see [MEMORY] in Section V).

V. NONTRANSITIVE NONINTERFERENCE BY TYPE

CHECKING

In this section, we prove that a well-typed program satisfies

nontransitive noninterference. The following rule defines well-

formed memory. Intuitively, a memory M is consistent with

an allocation typing Π if every value in the memory has the

type predicted by the allocation typing.

∀ια · M(ια) = v =⇒ Γ Π �pc v : Π(α)

Γ Π �pc M
[MEMORY]

Our type system guarantees information that flows into a

location labelled by � must be permitted to influence � by the

given policies for any program evaluation. This is represented

by the indistinguishability relation on memory states related

by
�
=, provided that all information allowed to interfere with �

(i.e., ��) is the same before the evaluation and both evaluations

terminate. The main result of the paper is stated in Theorem
1, which enforces Definition 1 by typing.

Theorem 1: (Nontransitive noninterference by type system)

M1
��
= M2

M1 e ⇓ M ′
1 v

M2 e ⇓ M ′
2 v

Γ Π �pc e : t
{�}

Γ Π �pc M1

Γ Π �pc M2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
=⇒ M ′

1
�
=M ′

2

In order to prove Theorem 1, we need to establish a few

intermediate lemmas. As usual, we show that if an expression

is well typed, then its type is preserved after evaluation.

Lemma 2: (Subject reduction)

Γ Π �pc e : t
L

Γ Π �pc M
M e ⇓ M ′ v

⎫⎬
⎭ =⇒

{
Γ Π �pc v : t

L

Γ Π �pc M
′

Proof: To show the preservation of type from e to v, we

prove by structural induction on e. We only show the case of

[T-APP], as the other cases are more straightforward.

Let M e1 e2 ⇓ M ′′′ v then by definition we have M e1 ⇓
M ′ λx.e, M ′ e2 ⇓ M ′′ v′ and M ′′ e[v′/x] ⇓ M ′′′ v. Let

Γ Π �pc e1 e2 : t
L.

Then by [T-APP] we have

Γ Π �pc e1 : (τ
′ L′
→ tL1)L2 , (1)

Γ Π �pc e2 : τ
′, (2)

pc ⊆ L′, (3)

L1 ∪ L2 = L. (4)

By I.H. and (1), we have

Γ Π �pc λx.e : (τ
′ L′
→ tL1)L2 . (5)

Similarly, by I.H. and (2),

Γ Π �pc v
′ : τ ′. (6)

Then by [T-FUN] and (5), we have

Γ, x : τ ′ Π �L′ e : tL. (7)

Therefore Γ Π �L′ e[v′/x] : tL. (8)

Then by I.H. and (8), we have

M ′′ e[v′/x] ⇓ M ′′′ v and Γ Π �L′ v : tL. (9)

By (3) and [T-SUB], Γ Π �pc v : t
L. (10)

The preservation of well-formed memory is by [T-NEW] and

[T-ASN]. �
The next lemma says if an expression evaluates into a

memory location, then the information about its allocation site

is stored in its type.

Lemma 3: (Location)

Γ,Π �pc e : (refAτ)L

M e ⇓ M ′ ια

}
=⇒ α ∈ A

Proof: By Lemma 2 (Subject reduction), we have Γ,Π �pc

ια : (refAτ)L, which implies that ref{α}τ is a subtype of

refAτ , i.e., {α} ⊆ A by [S-REF]. �
Given Π(α) a type carrying the set of security labels

that may flow to allocation α, we present the following

intermediate result regarding the property of function Π. We

write Π̂(α) for the set of labels L if Π(α) = tL.

Two security labels �1 and �2 are effectively equivalent if (1)

�1��2, (2) �2��1, (3) ���1 iff ���2 for all �, (4) �1�� iff �2�
�1 for all �. This may be used to encode allocation sites within

the sample code block by equivalent security labels. Since

our system allows security labels to be effectively equivalent

yet still different, without loss of generality, to this point, we

assume that all allocations have distinct labels in the proofs.

Lemma 4: (Transitivity with respect to Π)

� ∈ Π̂(α) ∧ P(α) ∈ Π̂(β) =⇒ � ∈ Π̂(β)

Proof: Suppose � ∈ Π̂(α) and P(α) ∈ Π̂(β). The only

ways to have a security label included in Π̂(β) are via [T-

NEW] or [T-ASN]. Without loss of generality, we assume it is

the case of [T-ASN]. That is, we have Γ Π �pc e := e′ : tL
′
,

Γ Π �pc e : (refA tL)L
′
, Γ Π �pc e′ : tL

′
, e evaluates to ιβ

with β ∈ A, and L′∪pc ⊆ Π̂(β). Therefore, either P(α) ∈ L′

or P(α) ∈ pc.

206

Without loss of generality, assume P(α) ∈ L′. Then the

only way to have P(α) included in L′ is via [T-DEREF], in

the way that Π̂(α) ⊆ L′, which derives Π̂(α) ⊆ Π̂(β). Then

� ∈ Π̂(β). �
Intuitively, by the rules [T-DEREF], [T-ASN] and [T-NEW], if

there is a flow from location α to location β, all security

labels stored in Π̂(α) will be copied to Π̂(β) either directly

or indirectly.

Moreover, given a security label �, only those values labeled

by �′ satisfying �′ � � are allowed to influence an address

labeled by � in a typable program, as witnessed in [T-NEW]

and [T-ASN]. Define Π̂(�) =
⋃

P(α)=� Π̂(α), then we have the

following property.

Lemma 5: For all � ∈ Label, Π̂(�)� �.
Proof: Similar to the above lemma, this is a direct conse-

quence of [T-NEW] and [T-ASN]. �
For the next lemma, if expression e is typable at program

counter pc, then the evaluation of e does not modify memory

locations that are not influenced by (labels in) pc. Recall that in

a transitive policy (such as in [9]), the type system enforces

a lower bound type pc as the permitted write effects of e.

For example, given the two-level policy l � h, Γ,Π �{h} e
restricts all write effects to the h-component of a memory

state, and the evaluation of M e ⇓ M ′ v results in a pair of

l-equivalent memory states M and M ′. We extend this way

of thinking to the more general (nontransitive) policies, such

that the type system enforces an equivalence relation for all

labels not (directly) influenced by security labels in pc. For

the sake of readability, we present the proof of Lemma 6 in

the appendix.

Lemma 6: (Local-Respects)

Γ,Π �pc e : t
L

pc
⊆ Π̂(�)
M e ⇓ M ′ v

⎫⎬
⎭ =⇒ M

̂Π(�)
= M ′

The next lemma serves as the main stepping stone to the

proof of Theorem 1, which says that given a typable expression

which allows inputs (by substitution), the final result of its

evaluation is independent to inputs that are not entirely labeled

in Π̂(�), and the indistinguishability relation on memories with

respect to Π̂(�) is maintained during evaluation. Again, since

the proof of Lemma 7 is quite involved, which applies the

results of most previous lemmas, we leave the complete proof

in the appendix for better readability of the paper.

Lemma 7: (Substitution consistency)

M1

̂Π(�)
= M2

M1 e[�u/�x] ⇓ M ′
1 v′1

M2 e[�v/�x] ⇓ M ′
2 v′2

Γ, {xi : t
Li
i }i∈I Π �pc e : t

L
2

∀j ∈ I. Lj ⊆ Π̂(�)⇒ uj = vj

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
=⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M ′
1

̂Π(�)
= M ′

2

L ⊆ Π̂(�)
⇒ v′1 = v′2

e[�u/�x] is short for the substitution e[u1/x1, . . . u|I|/x|I|],
where I is a finite index.

Finally, given � ⊆ Π̂(�) (by reflexivity of a policy) and

Π̂(�) ⊆ �� (by Lemma 5), by treating e as an empty input

Library { // protected code
// only accessible via Service

process(source_data){ ... }
retrieve(key){
...
ret some_data;

}
}

Service { // priviledged code
logFile;
addLog(x) {
append(logFile, x);

}
print(data) {
Library.process(data);

}
query_data(key){
ret Library.retrieve(key);

}
}

Downloaded_Code { // untrusted code
d = ...; // untrusted data
main() {
Service.addLog(d);
Service.print(d.data);
... = Service.query_data(d.key);

}
}

Trusted_Code { // trusted local code
...

}

Fig. 8. Confused deputy attack.

vector �ε, a special form of the premises for Lemma 7, the

result of Theorem 1 directly follows.

VI. EXAMPLE: CONFUSED DEPUTY PROBLEM

In addition to avoiding unwanted transitive information

flows and supporting a richer set of information flow relations,

our nontransitive IFC system has significant implications for

the programming model and usability. In particular, it provides

meaningful coarse-grained security policies for effectively

reasoning about high-level interactions between program com-

ponents, separated from their implementation details. This

means the users of untrusted code do not have to trust

or verify developer-provided specification; instead, users can

specify high-level security policies on untrusted code and let

the type system perform low-level analysis to automatically

enforce these policies. The separation of security policies and

implementation details of software components strengthens

the security and distribution of responsibility, as well as

promoting the reusability of components by favoring use-

site policies over definition-site policies. Thus, our approach

enables reasoning that is difficult in conventional transitive

IFC systems.

207

In this section, we discuss an application of nontransitive

IFC to the confused deputy problem, using the example in

Fig. 8. We show how to use nontransitive type system to

enforce confused deputy attack freedom (CDAF). A confused

deputy problem occurs when trusted, more privileged code is

manipulated by untrusted code into misusing its authority to

perform a protected sensitive action. Rajani et al. [21] define

CDAF as information flow integrity, where a confused deputy

attack is considered as a breach of system integrity. Given

an Attacker’s Interest Set (AIS, i.e., the set of resources in

the system to be protected from untrusted parties), a system

is CDAF, if for all locations r ∈ AIS, either the attacker’s

code can (directly) determine the value of r, or r cannot

be (indirectly) influenced by the attacker. In other words, if

the attacker is not allowed to modify system resource r, then

there is no way for the attacker to make changes of r via an

intermediate party (the deputy).

In the example, we assume a local system in which the

Library is protected and accessible via only the privi-

leged code Service. Code downloaded from Internet is not

trusted, which may be permitted to access Service but not

Library. For instance, Downloaded_Code is allowed to in-

voke addLog() that appends some (untrusted) data into a non-

executable log file to be inspected manually by the system ad-

ministrator. Since the appended data is not further propagated

to other parts of the system, this action is regarded as secure.

The untrusted Downloaded_Code also invokes print() from

Service that reads and prints out untrusted data using pro-

tected Library resources via process(). This call is inse-
cure. Although the function print() has the privilege to call

process() from Library, and Downloaded_code has the

privilege to use the Service interface, Downloaded_Code

should not influence the execution of Library functions.

Consequently, this exhibits a confused deputy problem—while

Downloaded_code cannot directly access the printout in

Library, it can still influence the printout via the (confused)

deputy Service.

Transitive IFC with fine-grained security policies can solve

the above problem by assigning security levels to individ-

ual program variables in Service, for example, specifying

addLog.x to be accessible to all code while print.data

to be accessible to only trusted local code. However, since

Service may contain a large number of variables and func-

tions to be shared among a variety of third party applications,

specification of individual program variables may be difficult

and error-prone. Nontransitive IFC with coarse-grained secu-

rity policies provides a simpler and more intuitive solution, by

assigning security levels L, S and D to code bases Library,

Service and Downloaded_Code respectively, and specifying

D � S and S � L (thus disallowing D � L). With such

policies, D cannot influence L directly or indirectly, therefore

D’s access to S must not interfere with the functionalities

provided by L. Coarse-grained flow policies simply rule

out any untrusted code (e.g. Downloaded_Code) that may

(indirectly) cause changes to Library, achieving CDAF. For

any trusted local code such as Trusted_Code, we simply

assign it a security level T and add T � S and T � L to the

existing policies consistently.

Note that Downloaded_Code also invokes query_data()

which retrieves information from Library via Service. This

is a violation of information flow confidentiality, and can be

rejected by adding additional nontransitive security policies

L � S and S � D (thus disallowing L � D). Therefore,

nontransitive IFC can simultaneously enforce integrity (such

as CDAF) as well as prevent breach of confidentiality via the

confused deputy.

We briefly discuss how the type system of Section IV can

be used to enforce the nontransitive security policies used

in this example. First, all variables in Downloaded_Code

are initially typed n{D} where n is the base type and D is

the security label specified to the entire downloaded code.

Since Downloaded_Code invokes functions in Service, it

propagates the label D to the variables in Service; the type

system infers Γ(Service.print.data) = n{D,S} where

S is the security label specified to Service. This label

D is further propagated through a call to Library, thus

Γ(Library.process.source_data) = n{D,S,L} where L
is the security label specified to Library. Since D�L is not

explicitly specified in the security policies, the composition of

Downloaded_Code with the local system is not typeable, and

the program will be consequently rejected by the type system.

VII. RELATED WORK

We focus on the literature closely related to our work on

noninterference with a general flow relation and those of

similar semantic frameworks in language-based security.

The notion of noninterference based on information flow is

introduced in Goguen and Meseguer’s seminal work [1], where

the transitivity of flow relations has been discussed. Based

on a deterministic state machine model, the authors suggest

that an information flow relation is not necessarily transitive

and the only restriction placed on the flow relation is that it

should be reflexive. However, in their presented formulation,

only transitive relations have a useful interpretation. Rushby

[15] considers an interpretation of intransitive policies that

specify channel-control behaviors, such that information can

flow upward in security level without restriction (a standard

transitive policy), but only flow downward through the medi-

ation of the presumably trusted declassifier domain (a where-

based downgrading policy [20]). The notation of intransitive

noninterference is developed with unwinding conditions in a

state-based system model. A similar notion of noninterference

is proposed by Pinsky [16], which also uses deterministic state

machines as system model. [18] focuses on definitions that can

cope with intransitive policies for non-deterministic systems.

Chong and van der Meyden [22], [23] extend Rushby’s

model by adopting an epistemic view of the system, i.e., if

information flows from H to L via D, then whatever L knows

of H must be available to D (in the distributed knowledge of

D as a group of downgraders).

In language-based information flow security, Denning et

al. [6], [7] first observe that static program analysis can be

208

used to control information flow in a lattice model. Denning’s

transitive IFC system is not explicitly connected to noninter-

ference on the semantic level until the work of Volpano and

Smith [2], [3] in which Denning’s method is formalized as a

set of type rules that enforce a simple L ≤ H transitive policy.

A survey of early development on language-based information

flow security can be found in [24].

Strictly transitive noninterference is generally too strong to

be usable in realistic programs. Therefore, many approaches

to allow controlled releases of information have been devised

[25]–[31]. These information declassification or downgrad-

ing approaches extend the standard transitive policy with

exceptions that grant additional information flow relations

once a condition has been fulfilled. For example, DLM [26]

provides a transitive IFC framework via multiple ownership

of labeled information; the exceptions to this transitive policy

are introduced via programmatic constructs of declassification

of the information controlled by its owners. DC labels [27]

introduce a label format to classify data sensitivities in IFC

systems, with privileges that enable downgrading specified as

declassification (for confidentiality policies) and endorsement

(for integrity policies). Various notions of secure downgrading

and declassification have been proposed, differing from each

other in respect of their downgrading conditions, as discussed

in [20]. Our work presented in this paper is orthogonal to

downgrading techniques, as we neither extend any transitive

policy nor consider any downgrading condition. However,

it may be possible to adopt some downgrading policies to

support runtime updates on security labels and information

flow relations (e.g. the work on action-state systems [32] and

language semantics [33]); this is beyond the scope of this

paper.

Rajani and Garg consider the granularity of tracking depen-

dencies in information flow security type systems [9]. They

show type systems that track dependencies at the level of

individual values are equally expressive to type systems that

track dependencies coarsely at the level of entire computation

context (which require a construct to limit the scope of the

context label), by providing a semantics- and type-preserving

translation between them. Their expressiveness means the

ability of a type system to type as many semantically secure

programs as possible. Their later paper shows a similar result

for dynamic IFC systems that additionally allow introspection

on labels at run-time [10]. On the other hand, our paper

considers the expressiveness of security policy specification

with the ability to express as many desired information flow

relations as possible. While our security policies can be

coarse-grained, our type system is fine-grained and tracks

dependencies at the level of individual values. As [9], [10]

only consider transitive security policies, it may be interesting

to investigate if similar techniques can be adapted to handle

nontransitive policies.

Ernst et al. describe a collaborate verification model for high

assurance app stores [34], in which app developers provide an-

notated source code with security policies whose information

flow properties are verified by the app store’s auditors. Since

they focus on detecting Trojan behavior, their security policies

only consider information flow in individual apps from system-

defined sensitive sources to sensitive sinks. While provided by

untrusted developers, their security policies are nontransitive

in the sense that transitive flows through source-sink pairs

must be explicitly written in the flow policy to prevent indirect

flows by apps to whitewash sensitive information. Our work

focuses on reasoning about nontransitive information flow

among different parts of the system which may each have

their own sensitive information. This general approach may

be useful for providing constraints on interactions among apps

and the system.

VIII. CONCLUSION

In this paper, we tackle the problem of securing information

flow in software composed of untrusted code by proposing

a nontransitive IFC system where permissible flow relations

cannot be derived from transitivity. Such a system provides

a new nontransitive noninterference theorem that can be en-

forced by a security type system. It ensures that, if a program

typechecks, it is information-flow secure, i.e., information

flows, either directly or indirectly, are possible only when

their flow relations are explicitly specified by the nontransitive

policy in effect. This property allows us to reason directly

about the extent of information flows in the program, and

has potential application in many areas (for example, tracking

interactions with untrusted third-party modules, customer-

deployed microservices or downloaded mobile apps). This

provides a novel contribution to ongoing work investigating

the use of type systems, and other formalisms, for securing

information flows in programs with complex structures and

communication channels. There are fruitful avenues opened

up for ongoing research. For us the most promising direction

is to investigate incorporating more kinds of security policies,

such as possible downgrading properties.

REFERENCES

[1] J. A. Goguen and J. Meseguer, “Security Policies and Security Models,”
in 1982 IEEE Symposium on Security and Privacy, Apr. 1982, pp. 11–
11.

[2] D. Volpano, C. Irvine, and G. Smith, “A Sound Type System for
Secure Flow Analysis,” J. Comput. Secur., vol. 4, no. 2-3, pp.
167–187, Jan. 1996. [Online]. Available: http://dl.acm.org/citation.cfm?
id=353629.353648

[3] D. Volpano and G. Smith, “A type-based approach to program security,”
in TAPSOFT ’97: Theory and Practice of Software Development, ser.
Lecture Notes in Computer Science, M. Bidoit and M. Dauchet, Eds.
Springer Berlin Heidelberg, 1997, pp. 607–621.

[4] T. H. Austin and C. Flanagan, “Efficient Purely-dynamic Information
Flow Analysis,” in Proceedings of the ACM SIGPLAN Fourth
Workshop on Programming Languages and Analysis for Security,
ser. PLAS ’09. New York, NY, USA: ACM, 2009, pp. 113–124,
event-place: Dublin, Ireland. [Online]. Available: http://doi.acm.org/10.
1145/1554339.1554353

[5] ——, “Permissive Dynamic Information Flow Analysis,” in Proceedings
of the 5th ACM SIGPLAN Workshop on Programming Languages and
Analysis for Security, ser. PLAS ’10. New York, NY, USA: ACM,
2010, pp. 3:1–3:12, event-place: Toronto, Canada. [Online]. Available:
http://doi.acm.org/10.1145/1814217.1814220

[6] D. E. Denning, “A Lattice Model of Secure Information Flow,”
Commun. ACM, vol. 19, no. 5, pp. 236–243, May 1976. [Online].
Available: http://doi.acm.org/10.1145/360051.360056

209

[7] D. E. Denning and P. J. Denning, “Certification of Programs for Secure
Information Flow,” Commun. ACM, vol. 20, no. 7, pp. 504–513, Jul.
1977. [Online]. Available: http://doi.acm.org/10.1145/359636.359712

[8] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers, “Going
beyond the sandbox: An overview of the new security architecture in the
Java development kit 1.2,” in In Proceedings of the Usenix Symposium
on Internet Technologies and Systems, 1997, pp. 103–112.

[9] V. Rajani and D. Garg, “Types for Information Flow Control: Label-
ing Granularity and Semantic Models,” in 2018 IEEE 31st Computer
Security Foundations Symposium (CSF), Jul. 2018, pp. 233–246.

[10] M. Vassena, A. Russo, D. Garg, V. Rajani, and D. Stefan, “From Fine-
to Coarse-grained Dynamic Information Flow Control and Back,” Proc.
ACM Program. Lang., vol. 3, no. POPL, pp. 76:1–76:31, Jan. 2019.
[Online]. Available: http://doi.acm.org/10.1145/3290389

[11] J. H. Saltzer, “Protection and the Control of Information Sharing in
Multics,” Commun. ACM, vol. 17, no. 7, pp. 388–402, Jul. 1974.
[Online]. Available: http://doi.acm.org/10.1145/361011.361067

[12] F. Pottier and V. Simonet, “Information Flow Inference for ML,” ACM
Trans. Program. Lang. Syst., vol. 25, no. 1, pp. 117–158, Jan. 2003.
[Online]. Available: http://doi.acm.org/10.1145/596980.596983

[13] M. Pistoia, A. Banerjee, and D. A. Naumann, “Beyond Stack Inspection:
A Unified Access-Control and Information-Flow Security Model,” in
2007 IEEE Symposium on Security and Privacy (SP ’07), May 2007,
pp. 149–163.

[14] J. T. Haigh and W. D. Young, “Extending the Noninterference Version
of MLS for SAT,” IEEE Transactions on Software Engineering, vol.
SE-13, no. 2, pp. 141–150, Feb. 1987.

[15] J. Rushby, “Noninterference, transitivity, and channel-control security
policies,” SRI International, Tech. Rep., dec 1992. [Online]. Available:
http://www.csl.sri.com/papers/csl-92-2/

[16] S. Pinsky, “Absorbing covers and intransitive non-interference,” in
Proceedings 1995 IEEE Symposium on Security and Privacy, May 1995,
pp. 102–113.

[17] A. W. Roscoe and M. H. Goldsmith, “What is intransitive noninterfer-
ence?” in Proceedings of the 12th IEEE Computer Security Foundations
Workshop, Jun. 1999, pp. 228–238.

[18] H. Mantel, “Information Flow Control and Applications - Bridging
a Gap -,” in FME 2001: Formal Methods for Increasing Software
Productivity, ser. Lecture Notes in Computer Science, J. N. Oliveira
and P. Zave, Eds. Springer Berlin Heidelberg, 2001, pp. 153–172.

[19] H. Mantel and D. Sands, “Controlled Declassification Based on Intran-
sitive Noninterference,” in Programming Languages and Systems, ser.
Lecture Notes in Computer Science, W.-N. Chin, Ed. Springer Berlin
Heidelberg, 2004, pp. 129–145.

[20] A. Sabelfeld and D. Sands, “Declassification: Dimensions and princi-
ples,” Journal of Computer Security, vol. 17, no. 5, pp. 517–548, 2009.

[21] V. Rajani, D. Garg, and T. Rezk, “On access control, capabilities, their
equivalence, and confused deputy attacks,” in IEEE 29th Computer
Security Foundations Symposium, CSF. IEEE Computer Society, 2016,
pp. 150–163.

[22] R. van der Meyden, “What, indeed, is intransitive noninterference?”
Journal of Computer Security, vol. 23, no. 2, pp. 197–228,
Jan. 2015. [Online]. Available: https://content.iospress.com/articles/
journal-of-computer-security/jcs516

[23] S. Chong and R. V. D. Meyden, “Using Architecture to Reason About
Information Security,” ACM Trans. Inf. Syst. Secur., vol. 18, no. 2, pp.
8:1–8:30, Dec. 2015. [Online]. Available: http://doi.acm.org/10.1145/
2829949

[24] A. Sabelfeld and A. C. Myers, “Language-based information-flow se-
curity,” IEEE Journal on Selected Areas in Communications, vol. 21,
no. 1, pp. 5–19, Jan. 2003.

[25] A. C. Myers, “JFlow: practical mostly-static information flow control,”
in Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, ser. POPL ’99. San Antonio,
Texas, USA: Association for Computing Machinery, Jan. 1999, pp.
228–241. [Online]. Available: https://doi.org/10.1145/292540.292561

[26] A. C. Myers and B. Liskov, “Protecting Privacy Using the
Decentralized Label Model,” ACM Trans. Softw. Eng. Methodol.,
vol. 9, no. 4, pp. 410–442, Oct. 2000. [Online]. Available:
http://doi.acm.org/10.1145/363516.363526

[27] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell, “Disjunction
Category Labels,” in Information Security Technology for Applications,
ser. Lecture Notes in Computer Science, P. Laud, Ed. Springer Berlin
Heidelberg, 2012, pp. 223–239.

[28] L. Waye, P. Buiras, D. King, S. Chong, and A. Russo, “It’s My
Privilege: Controlling Downgrading in DC-Labels,” in Security and Trust
Management, ser. Lecture Notes in Computer Science, S. Foresti, Ed.
Springer International Publishing, 2015, pp. 203–219.

[29] A. C. Myers, A. Sabelfeld, and S. Zdancewic, “Enforcing Robust De-
classification and Qualified Robustness,” Journal of Computer Security,
vol. 14, no. 2, pp. 157–196, Jan. 2006. [Online]. Available: https:
//content.iospress.com/articles/journal-of-computer-security/jcs258

[30] E. Cecchetti, A. C. Myers, and O. Arden, “Nonmalleable Information
Flow Control,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’17. New York,
NY, USA: ACM, 2017, pp. 1875–1891, event-place: Dallas, Texas,
USA. [Online]. Available: http://doi.acm.org/10.1145/3133956.3134054

[31] N. Broberg, B. van Delft, and D. Sands, “Paragon for Practical Pro-
gramming with Information-Flow Control,” in Programming Languages
and Systems, ser. Lecture Notes in Computer Science, C.-c. Shan, Ed.
Springer International Publishing, 2013, pp. 217–232.

[32] S. Eggert and R. van der Meyden, “Dynamic intransitive noninterference
revisited,” Formal Aspects of Computing, vol. 29, no. 6, pp.
1087–1120, Nov. 2017. [Online]. Available: https://doi.org/10.1007/
s00165-017-0430-6

[33] B. van Delft, S. Hunt, and D. Sands, “Very Static Enforcement of
Dynamic Policies,” in Principles of Security and Trust, ser. Lecture
Notes in Computer Science, R. Focardi and A. Myers, Eds. Springer
Berlin Heidelberg, 2015, pp. 32–52.

[34] M. D. Ernst, R. Just, S. Millstein, W. Dietl, S. Pernsteiner, F. Roesner,
K. Koscher, P. B. Barros, R. Bhoraskar, S. Han, P. Vines, and E. X. Wu,
“Collaborative Verification of Information Flow for a High-Assurance
App Store,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’14. New York, NY,
USA: ACM, 2014, pp. 1092–1104, event-place: Scottsdale, Arizona,
USA. [Online]. Available: http://doi.acm.org/10.1145/2660267.2660343

APPENDIX

A. Proof of Lemma 6 (Local-Respects)

Γ,Π �pc e : t
L

pc
⊆ Π̂(�)
M e ⇓ M ′ v

⎫⎬
⎭ =⇒ M

̂Π(�)
= M ′

Proof: As one may observe that in the rules [T-ASN] and

[T-NEW], those updated store values are required to be legally

influenced by both the program counter pc and the security

label of the new value. We show how the equivalence between

states can be derived in the following cases which may update

the memory M .

• The base case [VAL] is trivial.

• For [ASSIGN], let M e ⇓ M ′ ια, M ′ e′ ⇓ M ′′ v, and

M e := e′ ⇓ M ′′[ια �→ v] ια. Also we have Γ Π �pc

e := e′ : tL. Then by [T-ASN], we have

Γ Π �pc e : (refA tL
′
)L

′′
, (1)

Γ Π �pc e
′ : tL, (2)

L′′ ⊆ L. (3)

Then by I.H.,

M
̂Π(�)
= M ′ and M ′ ̂Π(�)

= M ′′. (4)

Therefore, by (4) and transitivity of
̂Π(�)
= ,

M
̂Π(�)
= M ′′. (5)

By [T-ASN], L ∪ pc ⊆ Π̂(α) for all α ∈ A. Then we

must have P(α)
∈ Π̂(�) for all α ∈ A. Since if P(α) ∈
Π̂(�), by Lemma 4, we would have pc ⊆ Π̂(�), which is

contradiction.

210

By Lemma 3, α ∈ A, then P(ια)
∈ Π̂(�). Therefore

M ′′ ̂Π(�)
= M ′′[ια �→ v], which derives M

̂Π(�)
= M ′′[ια �→

v] by (5) and transitivity of
̂Π(�)
= , as required.

• For [ALLOC], M e ⇓ M ′ v and M newα e ⇓ M ′[ια �→
v] ια. Then by [T-NEW], we have

Γ Π �pc newα e : (ref{α}tL)L
′
, (6)

Γ Π �pc e : t
L, (7)

L ∪ pc ⊆ Π̂(α). (8)

Then by (7) and I.H., M
̂Π(�)
= M ′. (9)

Similar to the above case, by (8), we must have P(α)
∈
Π̂(�). Since if P(α) ∈ Π̂(�), by Lemma 4, we would

have pc ⊆ Π̂(�), which is contradiction. Therefore, ι
∈
Π̂(�), and M ′ ̂Π(�)

= M ′[ια �→ v], which derives M
̂Π(�)
=

M ′[ια �→ v] by transitivity.

• For [THEN], let M e ⇓ M ′ v and v
= 0, and M ′ e′ ⇓
M ′′ v′. By [T-IF],

Γ Π �pc if e then e′ else e′′ : tL, (10)

Γ Π �pc∪L′ e′ tL
′′

, (11)

Γ Π �pc e nL′
, (12)

L = L′ ∪ L′′. (13)

By I.H., pc
⊆ Π̂(�) and (12), we have

M
̂Π(�)
= M ′, (14)

By pc
⊆ Π̂(�), we have pc ∪ L′
⊆ Π̂(�), (15)

By I.H., (11) and (15), we have

M ′ ̂Π(�)
= M ′′. (16)

Then by (14), (16) and transitivity of
̂Π(�)
= , we have

M
̂Π(�)
= M ′′. (17)

• The [ELSE] case is similar to [THEN].

• For [APP], let M e1 ⇓ M ′ λx.e, M ′ ⇓ M ′′ v, and

M ′′ e[v/x] ⇓ M ′′′ v′. Then by [T-APP],

Γ Π �pc e1 e2 : t
L, (18)

Γ Π �pc e1 : (t
L1
1

L′
→ tL2)L3 , (19)

Γ Π �pc e2 : t
L1
1 , (20)

L3 ∪ pc ⊆ L′, (21)

L = L2 ∪ L3. (22)

By I.H. and (19), we have M
̂Π(�)
= M ′. (23)

By I.H. and (20), we have M ′ ̂Π(�)
= M ′′. (24)

By (23), (24) and transitivity of
̂Π(�)
= , we have

M
Π(�)
= M ′′. (25)

By [T-FUN], Γ, x : tL1
1 Π �L′ e1 : t

L2 . (26)

By Lemma 2,

Γ Π �pc v : t
L1
1 , (27)

then Γ Π �L′ e1[v/x] : t
L2 . (28)

By pc ⊆ L′ and pc
⊆ Π̂(�), L′
⊆ Π̂(�). (29)

Then by I.H. and (29), we have M ′′ ̂Π(�)
= M ′′′. (30)

By (25), (30) and transitivity of
̂Π(�)
= , we have

M
̂Π(�)
= M ′′′. (31)

• All the other cases never update the memory, and the

results trivially hold.

�

B. Proof of Lemma 7 (Substitution consistency)

M1

̂Π(�)
= M2

M1 e[�u/�x] ⇓ M ′
1 v′1

M2 e[�v/�x] ⇓ M ′
2 v′2

Γ, {xi : t
Li
i }i∈I Π �pc e : t

L
2

∀j ∈ I. Lj ⊆ Π̂(�)⇒ uj = vj

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
=⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(A) M ′
1

̂Π(�)
= M ′

2

(B) L ⊆ Π̂(�)
⇒ v′1 = v′2

where I is a finite index, and e[�u/�x] is short for the substitution

e[u1/x1, . . . u|I|/x|I|].

Proof: Suppose M1

̂Π(�)
= M2, we prove by structural

induction on e[�u/�x] and e[�v/�x]. For the base case [VAL] there

are two cases.

• If both terms are the same value v, trivial.

• If both terms are the same variable x, and the input

vectors are singletons u and v with u = v, then we have

M1 e[u/x] ⇓ M1 u and M2 e[v/x] ⇓ M2 v, and u = v.

For the inductive cases, we go through the following rules.

• For [OP], let M1 e1[�u/�x] ⊕ e2[�v/�x] ⇓ M ′′
1 c and

M2 e1[�u/�x] ⊕ e2[�v/�x] ⇓ M ′′
1 d. Then we have

M1 e1[�u/�x] ⇓ M ′
1 c1, M ′

1 e2[�v/�x] ⇓ M ′′
1 c2 and c =

c1 ⊕ c2. Similarly, M2 e1[�u/�x] ⇓ M ′
2 d1, M ′

2 e2[�v/�x] ⇓
M ′′

2 d2 and d = d1 ⊕ d2. Then by [T-OP],

Γ, {xi : t
Li
i }i∈I Π �pc e1 ⊕ e2 : n

L1∪L2 , (1)

Γ, {xi : t
Li
i }i∈I Π �pc e1 : n

L1 , (2)

Γ, {xi : t
Li
i }i∈I Π �pc e2 : n

L2 . (3)

Regarding (A), since all premises are not changed,

by I.H., we have

M ′
1

̂Π(�)
= M ′

2 and M ′′
1

̂Π(�)
= M ′′

2 . (4)

Regarding (B), suppose L1 ∪ L2 ⊆ Π̂(�), we have

L1 ⊆ Π̂(�) and L2 ⊆ Π̂(�) (5)

By I.H., c1 = d1 and c2 = d2. (6)

Given c1, c2, d1, d2 are all constants, c = d. (7)

• For [APP], let M1 e1[�u/�x] ⇓ M ′
1 λz.e, M ′

1 e2[�u/�x] ⇓
M ′′

1 v1 and M1 e[�u/�x, v1/z] ⇓ M ′′′
1 v′1. Similarly,

let M2 e1[�v/�x] ⇓ M ′
2 λz.e′, M ′

2 e2[�v/�x] ⇓ M ′′
2 v2

and M2 e′[�v/�x, v2/z] ⇓ M ′′′
2 v′2. By [T-APP], Γ, {xi :

tLi
i }i∈I Π �pc e1 e2 : tL, Γ, {xi : tLi

i }i∈I Π �pc

e1 : (tL1
1

L′
→ tL2

2)L3 , Γ, {xi : t
Li
i }i∈I Π �pc e2 : tL1

1 ,

L3 ∪ pc ⊆ L′ and L = L2 ∪ L3.

Suppose L ⊆ Π̂(�). Then L3 ⊆ Π̂(�). We need to show

both (A) and (B).

Then by I.H., M ′
1

̂Π(�)
= M ′

2, (8)

and λz.e = λz.e′ (9)

We have the following two cases.

– Suppose L1 ⊆ Π̂(�). (10)

By I.H. and (10), M ′′
1

̂Π(�)
= M ′′

2 and v1 = v2. (11)

211

By Lemma 2, we have

Γ, {xi : t
Li
i }i∈I Π �pc v1 : t

L1
1

Γ, {xi : t
Li
i }i∈I Π �pc v2 : t

L1
1 .

Given Γ, {xi : t
Li
i }i∈I Π �pc e1 : (t

L1
1

L′
→ tL2

2)L3 ,

then by [T-FUN],

we have Γ, {xi : t
Li
i }i∈I , {z : tL1

1 } �L′ e : tL2
2 .(12)

By L2 ⊆ L and (10), we have L2 ⊆ Π̂(�) (13)

By (12), (13) and I.H., we have

M ′′′
1

̂Π(�)
= M ′′′

2 and v′1 = v′2. (14)

– Suppose L1
⊆ Π̂(�). (15)

By I.H., we have M ′′
1

̂Π(�)
= M ′′

2 . (16)

(but it is possible that v1
= v2)

By Lemma 2,

Γ, {xi : t
Li
i }i∈I Π �pc v1 : t

L1
1 , (17)

Γ, {xi : t
Li
i }i∈I Π �pc v2 : t

L1
1 . (18)

Given Γ, {xi : t
Li
i }i∈I Π �pc e1 : (t

L1
1

L′
→ tL2

2)L3 ,

by [T-FUN], we have

Γ, {xi : t
Li
i }i∈I , {z : tL1

1 } �L′ e : tL2
2 . (19)

We define a new index I ′ = I ∪ {|I|+ 1}, and let

x|I|+1 = z and

t
L|I|+1

|I|+1 = tL1
1 . By L1
⊆ Π̂(�), the new input vector

{xj : t
Lj

j }I′ satisfies for all j ∈ I ′ :
(Lj ⊆ �)⇒ uj = vj . (20)

By (13), (17), (18), (20) and I.H., we have

M ′′′
1

̂Π(�)
= M ′′′

2 and v′1 = v′2. (21)

Suppose L
⊆ Π̂(�), we only need to show proof

obligation (A). We have the following two cases.

– Suppose L3
⊆ Π̂(�). (22)

By I.H., we still have M ′
1

̂Π(�)
= M ′

2. (23)

(but it is possible that λz.e
= λz.e′)

Similarly, by I.H., we have M ′′
1

̂Π(�)
= M ′′

2 . (24)

Given Γ, {xi : t
Li
i }i∈I Π �pc e1 : (t

L1
1

L′
→ tL2

2)L3 ,

by [T-FUN], we have Γ, {xi : t
Li
i }i∈I , {z : tL1

1 } �L′

e : tL2
2 .

By L3 ⊆ L′, we have L′
⊆ Π̂(�). (25)

Then by Lemma 6, we have

M ′′
1

̂Π(�)
= M ′′′

1 and M ′′
2

̂Π(�)
= M ′′′

2 . (26)

Then by (24), (26) and transitivity of
̂Π(�)
= , we have

M ′′′
1

̂Π(�)
= M ′′′

2 . (27)

– Suppose L3 ⊆ � and L2
⊆ Π̂(�). (28)

By I.H., M ′
1

̂Π(�)
= M ′

2 and λz.e = λz.e′. (29)

Similarly, by I.H., we have M ′′
1

̂Π(�)
= M ′′

2 (30)

and L1 ⊆ Π̂(�) implies v1 = v2. (31)

Given Γ, {xi : t
Li
i }i∈I Π �pc e1 : (t

L1
1

L′
→ tL2

2)L3 ,

by [T-FUN],

we have Γ, {xi : t
Li
i }i∈I , {z : tL1

1 } �L′ e : tL2
2 .

We define a new index I ′ = I ∪ {|I|+ 1}, and let

x|I|+1 = z and t
L|I|+1

|I|+1 = tL1
1 . (32)

By (31), no matter L1 ⊆ Π̂(�) or L1
⊆ Π̂(�),

the new input vector {xj : t
Lj

j }I′ satisfies for all

j ∈ I ′ : (Lj ⊆ �)⇒ uj = vj . (33)

by (33) and I.H., we have M ′′′
1

̂Π(�)
= M ′′′

2 . (34)

• For [ASSIGN], let M1 e1[�u/�x] ⇓ M ′
1 ι1, M ′

1 e2[�u/�x] ⇓
M ′′

1 v1 and M1 e1[�u/�x] := e2[�u/�x] ⇓ M ′′
1 [ι1 �→ v1] v1.

Similarly, M2 e1[�v/�x] ⇓ M ′
2 ι2, M ′

2 e2[�v/�x] ⇓ M ′′
2 v2

and M2 e1[�v/�x] := e2[�v/�x] ⇓ M ′′
2 [ι2 �→ v2] v2.

By [T-ASN],

Γ, {xi : t
Li
i }i∈I Π �pc e1 := e2 : t

L′
, (35)

Γ, {xi : t
Li
i }i∈I �pc e1 : (refAtL)L

′
(36)

Γ, {xi : t
Li
i }i∈I �pc e2 : t

L′
, (37)

∀α ∈ A.L′ ∪ pc� P(α) and L ∪ L′ ∪ pc ⊆ Π̂(α). (38)

We have the following two cases.

– Suppose L′ ⊆ Π̂(�). (39)

By (36) and I.H., we have

M ′
1

̂Π(�)
= M ′

2 and ι1 = ι2. (40)

By (37) and I.H., we have

M ′′
1

̂Π(�)
= M ′′

2 and v1 = v2. (41)

By (40) and (41), we have

M ′′
1 [ι1 �→ v1]

̂Π(�)
= M ′′

2 [ι2 �→ v2], and v1 = v2. (42)

– Suppose L′
⊆ Π̂(�). (43)

By (36) and I.H., M ′
1

̂Π(�)
= M ′

2. (44)

By (37) and I.H., M ′′
1

̂Π(�)
= M ′′

2 . (45)

Since L′
⊆ Π̂(�), we must have for all α ∈ A :
P(α)
∈ Π̂(�). Because if P(α) ∈ Π̂(�), by [T-

ASN], L′ ⊆ Π̂(α), then by Lemma 4, we would have

L′ ⊆ Π̂(�), which is contradiction. By Lemma 3,

both ι1 and ι2 correspond to a program counter in

A. Therefore P(ι1) /∈ Π̂(�) and P(ι2) /∈ Π̂(�), then

by (45), we have M ′′
1 [ι1 �→ v1]

̂Π(�)
= M ′′

2 [ι2 �→ v2].

• For [THEN] and [ELSE], let M1 e[�u/�x] ⇓ M ′
1 v1. W.l.o.g.,

let v1
= 0, and M ′
1 e′[�u/�x] ⇓ M ′′

1 v′1, which derives

M if e then e′ else e′′ ⇓ M ′′
1 v′1.

By [T-IF],

Γ, {xi : t
Li
i }i∈I Π �pc if e then e′ else e′′ : tL, (46)

Γ, {xi : t
Li
i }i∈I Π �pc∪L′ e′ tL

′′
, (47)

Γ, {xi : t
Li
i }i∈I Π �pc e nL′

, (48)

and L = L′ ∪ L′′. (49)

We have the following three cases.

– If L ⊆ Π̂(�), we have L′ ⊆ Π̂(�), then by (48)

and I.H., M2 e[�v/�x] ⇓ M ′
2 v2, M ′

1

̂Π(�)
= M ′

2 and

v1 = v2
= 0. Since L′′ ⊆ L, we have L′′ ⊆ �,
then again by (47) and I.H., M ′

2 e′[�v/�x] ⇓ M ′′
2 v′2,

v′1 = v′2 and M ′′
1

̂Π(�)
= M ′′

2 .

– If L
⊆ Π̂(�) and L′
⊆ Π̂(�), then by (48) and

I.H., M2 e ⇓ M ′
2 v2 and M ′

1

̂Π(�)
= M ′

2. Note it is

possible that v1
= v2. W.l.o.g., let v2 = 0. Since

212

L′
⊆ Π̂(�), we have pc ∪ L′
⊆ Π̂(�), then by

Lemma 6, M ′
2 e′′[�v/�x] ⇓ M ′′

2 v′2 and M ′
2

̂Π(�)
= M ′′

2 .

Similarly, by Lemma 6, M ′
1 e′[�u/�x] ⇓ M ′′

1 v′1 and

M ′
1

̂Π(�)
= M ′′

1 . Therefore M ′′
1

̂Π(�)
= M ′′

2 by transitivity

of the relation
̂Π(�)
= .

– If L
⊆ Π̂(�), L′ ⊆ Π̂(�) and L′′
⊆ Π̂(�). Since L′ ⊆
Π̂(�), by (48) and I.H., M2 e[�v/�x] ⇓ M ′

2 v2, M ′
1

̂Π(�)
=

M ′
2 and v1 = v2
= 0. Therefore both executions

choose the first branch e′. Although L′′
⊆ Π̂(�), by

(47) and I.H., we still have M ′
2 e′[�v/�x] ⇓ M ′′

2 v′2
and M ′′

1

̂Π(�)
= M ′′

2 .

Suppose v1 = 0, this is the [ELSE] case which can be

treated in a way symmetric to the [THEN] case.

• For [ALLOC], let M1 e[�u/�x] ⇓ M ′
1 v1 and

M ′
1 newα e[�u/�x] ⇓ M ′

1[ι1 �→ v1] ι1. Also let

M2 e[�v/�x] ⇓ M ′
2 v2 and M ′

2 newα e[�v/�x] ⇓ M ′
2[ι2 �→

v2] ι2.

By [T-NEW],

Γ, {xi : t
Li
i }i∈I Π �pc newα e : (ref{α}tL)L

′
(50)

Γ, {xi : t
Li
i }i∈I Π �pc e : t

L, (51)

L ∪ pc ⊆ Π̂(α), (52)

P(α) ∈ L′. (53)

By (51) and I.H., we have M ′
1

̂Π(�)
= M ′

2. (54)

Regarding (A), we have the following two cases.

– If L ⊆ Π̂(�), then v1 = v2 by I.H.(B). Then

whether or not P(α) ∈ Π̂(�), we always have

M ′
1[ι1 �→ v1]

̂Π(�)
= M ′

2[ι2 �→ v2].
– If L
⊆ Π̂(�), we must have P(α)
∈ Π̂(�). Because

if P(α) ∈ Π̂(�), by (52) and Lemma 4, we would

have L ⊆ Π̂(�), contradiction. Since P(α)
∈ Π̂(�),

we have M ′
1[ι1 �→ v1]

̂Π(�)
= M ′

2[ι2 �→ v2].

Regarding (B), suppose L′ ⊆ Π̂(�). By (53), P(α) ∈
Π̂(�). Then by Lemma 1 and (54), we have ι1 = ι2.

• For [DEREF], let M1 e[�u/�x] ⇓ M ′
1 ι1, M ′(ι1) = v1 and

M1 !e[�u/�x] ⇓ M ′
1 v1. Similarly, let M2 e[�u/�x] ⇓ M ′

2 ι2,

M ′(ι2) = v2 and M2 !e[�u/�x] ⇓ M ′
2 v2.

By [T-DEREF],

Γ, {xi : t
Li
i }i∈I Π �pc e : (refAtL)L

′
, (55)

Γ, {xi : t
Li
i }i∈I Π �pc !e : t

L∪L′
, (56)

∀α ∈ A. Π̂(α) ⊆ L ∪ L′. (57)

Then by (55) and I.H., we have M ′
1

̂Π(�)
= M ′

2. (58)

If L ∪ L′ ⊆ Π̂(�), then L′ ⊆ Π̂(�), and by I.H., we have

ι1 = ι2. (59)

By Lemma 2, Γ,Π �pc M1 and Γ,Π �pc M2, we have

Γ,Π �pc M
′
1 and Γ,Π �pc M

′
2 (60)

By [MEMORY] and (60), we have

Γ,Π �pc M
′
1(ι1) : Π(α) and (61)

Γ,Π �pc M
′
2(ι2) : Π(α). (62)

By (57), we have Π̂(α) ⊆ Π̂(�). (63)

By (58), (59) and (63), we have M ′
1(ι1) =M ′

2(ι2),

i.e., v1 = v2. (64)

�

213

