
A Composable Security Treatment of the Lightning Network

Aggelos Kiayias
University of Edinburgh and IOHK

Email: akiayias@inf.ed.ac.uk

Orfeas Stefanos Thyfronitis Litos
University of Edinburgh

Email: o.thyfronitis@ed.ac.uk

Abstract—The high latency and low throughput of
blockchain protocols constitute one of the fundamen-
tal barriers for their wider adoption. Overlay proto-
cols, notably the lightning network, have been touted
as the most viable direction for rectifying this in prac-
tice. In this work we present for the first time a full
formalisation and security analysis of the lightning
network in the (global) universal composition setting
that leverages a global ledger functionality, for which
realisability by the Bitcoin blockchain protocol has
been demonstrated in previous work [Badertscher et
al., Crypto’17]. As a result, our treatment delineates
exactly how the security guarantees of the protocol
depend on the properties of the underlying ledger
and the frequent availability of the protocol partici-
pants. Moreover, we provide a complete and modu-
lar description of the core of the lightning protocol
that highlights precisely its dependency to under-
lying basic cryptographic primitives such as igital
signatures, pseudorandom functions, identity-based
signatures and a less common two-party primitive,
which we term a combined digital signature, that
were originally hidden within the lightning protocol’s
implementation.

1. Introduction

Improving the latency of blockchain protocols, in
the sense of the time it takes for a transaction to be
“finalised”, as well as their throughput, in the sense of
the number of transactions they can handle per unit of
time, are perhaps the two most crucial open questions
in the area of permissionless distributed ledgers and
remain fundamental barriers for their wider adoption
in applications that require large scale and reasonably
expedient transaction processing, cf. [1]. The Bitcoin
blockchain protocol, introduced by Nakamoto [2], pro-
vides settlement with probability of error that drops
exponentially in the number of blocks k that accumulate
over a transaction of interest. This has been informally
argued in the original white paper, and further for-
mally demonstrated in [3], from where it can be inferred
that the total delay in actual time for a transaction
to settle is linear in k in the worst case. These results
were subsequently generalised to the setting of partial

synchrony [4] and variable difficulty [5]. Interestingly,
this latency “deficiency” is intrinsic to the blockchain
approach (see below), i.e., latency’s dependency on k is
not a side-effect of the security analysis but rather a
characteristic of the underlying protocol and the threat
model it operates in.
Given the above state of affairs, one has to either

change the underlying settlement protocol or devise
some other mechanism that, in conjunction with the
blockchain protocol, achieves high throughput and low
latency. A number of works proceeded with the first
direction, e.g., hybrid consensus [6], Algorand [7]. A
downside of this approach is that the resulting pro-
tocols fundamentally change the threat model within
which Bitcoin is supposed to operate, e.g., by reducing
the threshold of corrupted players, strengthening the
underlying cryptographic assumptions or complicating
the setup assumption required (e.g., from a public to a
private setup).
The alternative approach is to build an overlay pro-

tocol that utilises the blockchain protocol as a “fall
back” layer and does not relax the threat model in any
way while it facilitates fast “off-chain” settlement under
certain additional assumptions. We note that in light of
the impossibility result regarding protocol “responsive-
ness” from [6] that states that no protocol can provide
settlement in time proportional to actual network delay
(i.e., fast settlement) and provide a security threshold
over 1/3, we know that maintaining Bitcoin’s threat
model will require some additional assumption for the
overlay protocol to offer fast settlement.
The first instance of this approach and by far the

most widely known and utilised to date, came with the
lightning network [8]1 that functions over the Bitcoin
blockchain and leverages the concept of a bilateral pay-
ment channel. The latency for a transaction becomes
linear to actual network delay and another factor that
equals the number of bilateral payment channel hops
in the path that connects the two end-points of the
transaction. Implicated parties are guaranteed that, if
they wish so, eventually the ledger will record a “gross”

1. The specification available online is a more descriptive
reference for the inner workings of the protocol, see
https://github.com/lightningnetwork/lightning-rfc/blob/master/
02-peer-protocol.md. See also the raiden network that implements
Lightning over Ethereum, https://raiden.network.

334

2020 IEEE 33rd Computer Security Foundations Symposium (CSF)

© 2020, Aggelos Kiayias. Under license to IEEE.
DOI 10.1109/CSF49147.2020.00031

settlement transaction that reflects the balance resulting
from all in-channel payments. Deviations from this guar-
antee are cryptographically feasible but deincentivised:
a malicious party trying to commit to an outdated state
will lose funds to a peer that provides evidence of a
subsequent state. Moreover, note that no record of a
specific payment transaction need ever appear on-chain
thus the number of lightning transactions that can be
exchanged can reach the maximum capacity the network
allows between the parties, without being impeded by
any restrictions of the underlying blockchain protocol.
The lightning network has been very influential in

the space and spun a number of follow up research
and implementations (see below for references). We note
that the lightning network is not the only option for
building an overlay over a blockchain. See e.g., [9] for
an alternative approach focusing on reducing latency,
where it is shown that if the assumption is raised to
a security threshold of 3/4 plus the honesty of an ad-
ditional special player, it is possible to obtain optimal
latency. Nevertheless, this approach does not offer the
throughput benefits that are intrinsic to the lightning
network.
Despite the importance of the lightning network for

blockchain scalability there is still no work so far pro-
viding a thorough formal security analysis. This is a
dire state of affairs given the fact that the protocol is
actually currently operational2 and its complexity makes
it difficult to extract precise statements regarding the
level of security it offers.
Our Results. We present the first, to our knowledge,
complete security analysis of the lightning network,
which we carry out in the universal composition (UC)
setting. We model the payment overlay that the light-
ning network provides as an ideal functionality and we
demonstrate how it can be implemented in a hybrid
world which assumes a global ledger functionality. Our
treatment is general and does not assume any specific
implementation for the underlying ledger functionality.
The “paynet” functionality that we introduce abstracts
all the salient security features achieved by the lightning
network. We subsequently describe the whole lightning
protocol in this setting and we prove that it realises
our paynet functionality under standard cryptographic
assumptions; the security guarantees of the functionality
reflect specific environmental conditions regarding the
availability of the honest parties to poll the status of
the network. In more details our results are as follows.
1) We present the FPayNet functionality which ab-
stracts the syntax and security properties provided
by the lightning network. We describe our FPayNet
assuming a global ledger functionality GLedger as
defined in [10], and further refined in [11], which
we know that is realised by the Bitcoin blockchain.
Our approach not only captures lightning, but it is

2. For current deployment statistics see e.g., https://1ml.com/
statistics.

also general as it can be applied to any payment
network by finely tuning the following parts of the
functionality: the exact channel opening message
sequence, the details of the on-chain checks per-
formed by FPayNet, the negligence time bounds and
the penalty in case of a malicious closure being
caught. Using FPayNet, parties can open and close
channels, forward payments along channel paths in
the network as well as poll its status. Importantly,
the functionality keeps track of all the off-chain and
on-chain balances and ensures that when a channel
closes, the on-chain balances are in line with the off-
chain ones. In order to handle realistic adversarial
deviations, FPayNet allows the adversary to choose
one of the following outcomes for each multi-hop
payment: (i) let it go through as requested, (ii)
charge it to an adversarial party along the path, (iii)
charge it to a negligent honest party along the path.
This last outcome is a crucial security characteristic
of the lightning network: honest parties are required
to poll the functionality with a frequency that corre-
sponds to their level of involvement in the network
and the properties of the underlying ledger. If a
party does not poll often enough, FPayNet identifies
it as negligent and it may lose funds.

2) We identify for the first time the exact polling re-
quirements so that honest parties do not lose funds,
as a function of the parameters of GLedger. The
polling requirements for each party are two-fold:
(i) the first type refers to monitoring for closures
of channels of which the party is a member, and
is specified by the parameter “delay” (chosen by
the party), (ii) the second type refers to monitoring
for specific events related to receiving and relaying
payments. In detail, let Alice be an intermediary of
a multi-hop payment. When the payment starts, she
specifies two blockheights h, h′. Also, let a be the
upper bound to the number of blocks that may be
finalised in the ledger from the time a certain trans-
action is emitted to the time it becomes finalised
(i.e. it is included in a block in the “stable” part of
the ledger). Alice should then poll twice while her
local view of the chain advances from blockheight
h to blockheight h′ − a. Moreover, the two pollings
should be separated by a time window so that the
chain can grow by at least a blocks.

3) We provide a complete pseudocode description of
the lightning network protocol ΠLN and prove that
it realises FPayNet in the Random Oracle model.
We identify a number of underlying cryptographic
primitives that have been used in the lightning
network in a non-black-box fashion and without
reference. Interestingly, while most of these primi-
tives are quite standard (a PRF, a Digital Signature
scheme and an Identity Based Signature scheme),
there is also one that is less standard and requires
a new definition. The combined digital signature –
as we will call it – is a special case of an asymmetric

335

two-party digital signature primitive (e.g., see [12]
and references therein) with the following character-
istic: One of the two parties, called the shareholder,
generates and stores a share of the signing key.
The public key of the combined signature can be
determined non-interactively from public informa-
tion produced by both parties. Issuing signatures
requires the availability of the share, which is ver-
ifiable given the public information provided by
the shareholder. We formalise the combined digital
signature primitive and show that the construction
lying within the lightning specification realises it
under standard cryptographic assumptions. In sum-
mary, the realisation of FPayNet is achieved assum-
ing the security of the underlying primitives, which
in turn can be based on EC-DLOG and the Random
Oracle model.

4) We prove that a more idealized ledger functionality,
i.e. a ledger with instant finality, is unrealisable even
assuming a synchronous multicast network. This
result supports our decision to use the more realistic
ledger functionality of [10], since it establishes that
if our analysis was based on such a perfect ledger, it
would not be relevant for any real world deployment
of a payment network since such software would
– necessarily – depend on a non-perfect ledger.
This choice also distinguishes our work compared to
previous attempts [13], [14], [15], [16] to formalize
payment networks, as well as highlights the consid-
erable latency improvement that the protocol offers
in comparison to directly using the ledger.

Related Work. A first suggestion for building a uni-
directional payment channel appeared in [17]. Bidirec-
tional payment channels were developed in [18] and of
course as part of the lightning network [8]. Subsequent
work on the topic dealt with either improving payment
networks by utilising more expressive blockchains such
as Ethereum [16], hardware assumptions, see e.g., [19],
or extending its functionality beyond payments, to smart
contracts, [15] or finally enhancing their privacy, see
e.g., [14], [20], [21]. Additional work looked into develop-
ing supporting protocols for the payment networks such
as rebalancing [22] or finding routes in a decentralised
fashion [23], [24]. With respect to idealising the pay-
ment network functionality in the UC setting, a number
of previous papers [13], [14], [15], [16] presented ideal
functionalities abstracting the concept, but they did not
prove that the lightning network realises them. The main
advantage of our approach however here is that, for the
first time, we present a payment network functionality
that interoperates with a global ledger functionality for
which we know, in light of the results of [10], that
is realisable by the Bitcoin blockchain and hence also
reflects the actual parameters that can be enforced by
the implementation and the exact participation condi-
tions needed for security. In contrast, previous work [13],
[14], [16] utilized “too idealised” ledger functionalities

for their analysis which offer instant finality; as we
prove in Theorem 3, a representative variant of these
functionalities (Fig. 8) is unrealisable even under strong
network assumptions (cf. Section 8). It is worth noting
here that, were such a ledger realizable, layer-2 payment
networks would not be as useful in practice because one
of their two main motivations is the high latency of real
blockchains. On the other hand, in [15] the ledger is not
explicitly specified as a functionality, but only informally
described. Several smart contracts are formally defined
instead as UC ITMs, which are the entities with which
protocols ultimately interact. The execution model of
these contracts and their interaction with the blockchain
is explained in an intuitive way, but a complete formal-
ization of the ledger is missing. Lastly, the ledger used
in [13] cannot be used directly by protocol parties, only
accessed via higher-level functionalities. This limitation
is imposed because otherwise any party could arbitrarily
change the balances of other parties, given the definition
of the functionality. This ledger is therefore a useful
abstraction for higher-level protocols, but not amenable
to direct usage, let alone concrete realisation.
Organisation. In Section 2 we present preliminaries for
the model we employ and the relevant cryptographic
primitives. In Section 3 we present an overview of the
lightning network, accompanied by figures of the rele-
vant transactions. Our payment network functionality is
given an overview description in Section 4. Our abstrac-
tion of the core lightning protocol is provided in Sec-
tion 5. We give more details about the combined digital
signature primitive in Section 6. In Section 7 we provide
an overview of the security proof of the main simulation
theorem. Finally, in Section 8 we formalise our claim
that a ledger functionality with instant finality is un-
realisable. We refer the reader to the appendix of the
full version [25] for the formal definition of the paynet
functionality FPayNet and the protocol ΠLN, along with
the proof that the latter UC-realises the former. Our
claim on the unrealisability of a perfect ledger is also
proven there.

2. Preliminaries
In this section we give a brief overview of the tools

and frameworks used in this work.
Universal Composability framework. In
simulation-based security, cryptographic tasks are
defined via an ideal “functionality” F , which can be
thought of as an uncorruptible entity that gets the
inputs of all parties and returns the expected outputs
while also interacting with the adversary in a prescribed
manner. In this way, the functionality expresses the
essence of a cryptographic task and its security features.
A protocol Π realises the functionality F if for any
real world adversary we can define a “simulator” S,
acting as an ideal world adversary, such that any
environment E cannot distinguish between the real
world and the ideal world executions. Albeit a powerful

336

tool, simulation-based security only works when a single
instance of the protocol is run in isolation. However,
real-world systems almost always run several programs
concurrently, which furthermore may run different
instances of the same protocol. To facilitate this, the
Universal Composability [26] framework allows us to
analyse a single instance of the protocol and then
take advantage of a generic composition theorem to
infer the security of the protocol more broadly. This is
achieved by allowing arbitrary interactions between the
environment and the real-world adversary.
As mentioned, lightning network members have to

periodically check the blockchain to ensure the security
of their funds. However, the execution model of the UC
framework allows E to impose extended periods of inac-
tivity to any party. We opted to avoid the complication
of using the clock functionality to force regular activa-
tion. Restricting the analysis only to environments that
always cater for the needed activations would preclude
the composability of our model. We instead allow E to
deny activation to players (therefore becoming negli-
gent) and provide security guarantees conditional on E
permitting the necessary monitoring of the blockchain.
Hybrid functionalities used. Both our main protocol
and the corresponding functionality use GLedger [10],
[11] as a hybrid. GLedger formalizes an ideal distributed
append-only data structure akin to a blockchain. Any
participating party can read from GLedger, which returns
an ordered list of transactions. Furthermore parties can
submit new transactions which, if valid, will be added
to the ledger and made visible to all parties at the
discretion of the adversary, but necessarily within a
predefined time window. This property is called liveness.
Once a transaction is added to the ledger, it becomes
visible to all parties at the discretion of the adversary,
but within another predefined time window, and cannot
be removed or reordered. This is called persistence. The
exact definition can be found in the full version [25].
The current work makes heavy use of these two security
properties, as the security of the lightning network relies
crucially on the security of the underlying ledger.
Furthermore, GLedger needs the Gclock functionality,

which models the notion of time. Every participating
party can request to read the current time (which is
initialized to 0) and inform Gclock that her round is over.
Gclock increments the time by one once all parties have
declared the end of their round.
As already mentioned, the protocol and functionality

defined in the current work do not make direct use
of Gclock. Indeed, the only notion of time both in the
lightning protocol and in our work is provided by the
height of the blockchain, as reported respectively by
the underlying Bitcoin node and GLedger. We therefore
omit it in the statement of Theorem 2 for simplicity
of notation; it should normally appear as hybrid along
with GLedger. Its exact definition can be found in the full
version [25]. We also note that GLedger and Gclock are
global functionalities [27] and therefore can be accessed

directly by the environment, whereas FPayNet is not.
Transaction structure. GLedger does not define what is
a valid transaction, but leaves it as a system parameter.
Importantly, no notion of coins is built in GLedger. We
therefore specify a valid transaction, closely following
concepts put forth in Bitcoin [2], but avoiding specifying
the entire Bitcoin script.
At a high level, every transaction consists of inputs

and outputs. Each output has an associated value in
coins and a number of “spending methods”. A spending
method specifies the exact requirements for spending the
output. Each input must be connected to exactly one
output and satisfy one of its spending methods.
Transactions in GLedger form a DAG. A new trans-

action is valid only if each of its inputs correctly spends
an output with no other connected input and the sum
of the values of its outputs does not exceed the sum of
the values of the outputs connected to its inputs. We
refer the reader to the full version [25] for a complete
overview.
Cryptographic Primitives. In the Lightning Network
specification, a custom scheme for deriving keys is used.
Its syntax and security aims closely match those of pre-
viously studied Identity Based Signature schemes [28],
[29], thus we use the latter to abstract away the com-
plexity of the construction and highlight the security
requirements it satisfies. We slightly modify previous
IBS schemes by adding an algorithm that, on input of
the public parameters mpk and a label l, returns the
verification key pkl. Such an IBS scheme provides 5
algorithms:

• (mpk, msk) ← Setup(1k): master keypair genera-
tion

• (pkl, skl)← KeyDer(mpk, msk, l): keypair deriva-
tion with label l

• pkl ← PubKeyDer(mpk, l): verification key
derivation with label l

• σ ← SignIBS(m, skl): signature generation with
signing key skl

• {0, 1} ← VerifyIBS(σ, m, pkl): signature verifica-
tion

We refer the reader to [29] for more details. Other
cryptographic primitives used are digital signatures and
pseudorandom functions. Finally, a less common two-
party cryptographic primitive is employed that we for-
malise as combined digital signatures, see Section 6.

3. Lightning Network overview

Two-party channels. The aim of LN is to enable fast,
cheap, off-chain transactions, without compromising se-
curity. Specifically no trust between counterparties is
needed. This is achieved as follows: Two parties that
plan to have recurring monetary exchanges lock up some
funds with one special on-chain transaction. We say that
they opened a new channel. They can then transact with
the locked funds multiple times solely by interacting

337

privately, without informing the blockchain. If they want
to use their funds in the usual, on-chain way again, they
have to close the channel and unlock the funds with one
more on-chain transaction. Each party can unilaterally
close the channel and retrieve the coins they are entitled
to – according to the latest channel state – and thus
neither party has to trust the other.
In more detail, to open a channel Alice and Bob

first exchange a number of keys and desired timelocks
relDelA, relDelB (explained below) and then build lo-
cally some transactions. The “funding transaction” F
contains a 2-of-2 multisig output with one “funding”
public key pkF,A, pkF,B for each counterparty. This mul-
tisig output needs signatures for both designated public
keys in order to be spent. F is funded with cF coins that
belong only to one of the two parties, say Alice.

funding
pkF ,A ∧ pkF ,B

cF

Figure 1. Funding TX (on-chain): Rules over, coins below output.

Each party also builds a slightly different version of
the “commitment transaction” CA, CB . Alice uses her
“delayed payment” key pkdcom,A and Bob’s “revocation”
key pkrev,B (received before), whereas Bob uses Alice’s
“payment” key pkcom,A (received before). Both CA and
CB spend the funding output of F and allow Alice to
retrieve her funds if she acts honestly, as we will explain
shortly. Alice sends Bob the signature of CB made with
her skF,A and vice-versa.

σF ,A ∧ σF ,B

funding
commA

pkrev,B∨

(relDelB ∧ pkdcom,A)
cF

Figure 2. Alice’s initial commitment TX (off-chain): Required data
over input, spent output below input.

σF ,A ∧ σF ,B

funding
commB

pkcom,A

cF

Figure 3. Bob’s initial commitment TX (off-chain): All coins belong
to Alice, so she can immediately spend them if Bob closes.

She now broadcasts F ; once both parties see that it
is confirmed, they generate and exchange new “commit-
ment” keys (used for updating the channel later) and
the channel is open.
Every time they want to make a payment to each

other, they exchange a series of messages that have
two effects. First, a new pair of commitment transac-
tions, along with their signatures by the funding keys,
is created, one for each counterparty. Each of these
transactions ensures that, if broadcast, each party will

be able to spend the appropriate share from the coins
contained in the funding output. Second, the two old
commitment transactions are revoked. This ensures that
no party can close a channel using an old commitment
transaction which may be more beneficial to her than
the latest one.
Invalidating past commitments requires some care.

The reason is that it is impossible to actually make past
commitments invalid without spending the funding out-
put on-chain; doing this for every update would however
defeat the purpose of LN. The following idea is leveraged
instead: If Alice broadcasts an old commitment and Bob
sees it, he can punish Alice by taking all the money in the
channel. Therefore Alice is technically able to broadcast
an old commitment, but has no financial benefit in
doing so. The same reasoning holds if Bob broadcasts
an old commitment. On the donwside this imposes the
requirement that parties must observe the blockchain
periodically — see below the explanation of timelocks
and how they facilitate a time window within which
parties should react.
The punishing mechanism operates as follows. Sup-

pose Alice considers posting her old local commitment
which has an output that carries her old share of the
funds. This output can be spent in two ways: either
with a signature by Alice’s “delayed payment” secret
key skdcom,A which is a usual ECDSA key, or with
a signature by Bob’s “revocation” secret key skrev,B ,
which is also an ECDSA key, but with an additional
characteristic that we will explain soon. Thus, if Alice
broadcasts an old commitment, Bob will be able to
obtain her funds by spending her output using his “revo-
cation” key. This privilege of course opens the possibility
for Bob to abuse it (in particular, when a channel is
closed — see below — Bob may steal Alice’s funds by
using such a revocation key) and hence this side effect
should also be carefully mitigated. The mitigation has
the following form. At the time of creation of a new
commitment, both parties will know Bob’s “revocation”
public key pkrev,B , but no party knows its corresponding
secret – the key can only be computed by combining one
secret value skcom,n,A that Alice knows and one secret
value skcom,n,B that Bob knows. Alice therefore can pre-
vent Bob from using his revocation key until she sends
him skcom,n,A. Therefore, Alice will send Bob skcom,n,A

only after the new commitment transaction is built and
signed. Thus Bob cannot abuse his revocation key on
a commitment before this transaction is revoked. We
note that the underlying cryptographic mechanism that
enables such “revocation keys” is not straightforward
and, as part of our contributions, we formalise it as a new
two-party cryptographic primitive. We call it “combined
signature” and we prove that the construction hidden in
the LN implementation realizes it in the random oracle
model under the assumption that the underlying digital
signature scheme is secure in the full version [25].
The last element needed to make channel updates

secure is the already mentioned “relative timelock”. If

338

Figure 4. All transactions of an open channel with an HTLC in flight. Alice owns cA coins, Bob cB coins, and ch coins will be transferred
to Bob if he discloses the preimage of h until the ledger has heightcltv blocks, otherwise they will return to Alice. “funding” is in the
ledger, Alice keeps locally “commA” and “HTLCA”, and Bob keeps “commB” and “HTLCB”.

Alice broadcasts a commitment transaction, she is not
allowed to immediately spend her funds with her “de-
layed payment” key. Instead, she has to wait for the
transaction to reach a pre-agreed block depth (the rel-
ative timelock, negotiated during the opening of the
channel and hardcoded in the output script of the com-
mitment transaction) in order to give some time to Bob
to see the transaction and, if it does not correspond
to the latest version of the channel, punish her with
his “revocation” key. This avoids a scenario in which
Alice broadcasts an old commitment transaction and
immediately spends her output, which would prevent
Bob from ever proving that this commitment was old.
Lastly, if Alice wants to unilaterally close a channel,

all she has to do is broadcast her latest local commit-
ment (the only one not revoked) and any outstanding
HTLC transactions (explained below) and wait for the
timelock to expire in order to spend her funds. The
LN specification further allows for cooperative channel
closure, achieved by negotiating and broadcasting the
“closing transaction” which is not encumbered with a
timelock, providing immediate availability of funds.
As mentioned timelocks provide specific time win-

dows within which both parties have to check the
blockchain in order to punish a misbehaving counter-
party who broadcasts an old commitment transaction.
This means that parties have to be regularly online to
safeguard against theft. Furthermore, LN makes it possi-
ble to trustlessly outsource this to so-called watchtowers,
but this mechanism is not analyzed in the current work.
Multi-hop payments. Having funds locked down for
exclusive use with a particular counterparty would be

a serious limitation. LN goes beyond that by allowing
multi-hop payments. In a situation where Alice has a
channel with Bob and he has another channel with
Charlie, it is possible for Alice to pay Charlie off-
chain by leveraging Bob’s help. Remarkably, this can
be achieved without any one party trusting any of the
other two. One can think of Alice giving some “marked”
money to Bob, who in turn either delivers it to Charlie
or returns it to Alice – it is impossible for Bob to keep
the money. It is also impossible for Alice and Charlie to
make Bob pay for this transaction out of his pocket.
We will now give a brief overview of how this coun-

terintuitive dynamic is made possible. Alice initiates the
payment by asking Charlie to create a new hash for a
payment of x coins. Charlie chooses a random secret,
hashes it and sends the hash to Alice. Alice promises
Bob to pay him x in their channel if he shows her
the preimage of this particular hash within a specific
time frame. Bob makes the same promise to Charlie: if
Charlie tells Bob the preimage of the same hash within a
specific time frame (shorter than the one Bob has agreed
with Alice), Bob will pay him x in their common channel.
Charlie then sends him the preimage (which is the secret
he generated initially) and Bob agrees to update the
channel to a new version where x is moved from him
to Charlie. Similarly, Bob sends the preimage to Alice
and once again Alice updates their channel to give Bob
x coins. Therefore x coins were transmitted from Alice
to Charlie and Bob did not gain or lose anything, he
just increased his balance in the channel with Alice and
reduced his balance by an equal amount in the channel
with Charlie.

339

This type of promise where a preimage is exchanged
for money is called Hashed Time Locked Contract
(HTLC). It is enforceable on-chain in case the payer
does not cooperatively update upon disclosure of the
preimage, thus no trust is needed. It is realised as
an additional output of the commitment transactions,
which contains the specified hash and transfers its funds
either to the party that should provide the preimage
or to the other party after a timeout. A corresponding
“HTLC transaction” that can spend this output is built
by each party. In the previous example with Alice, Bob
and Charlie, two HTLC transactions were signed and
fulfilled in total for the payment to go through. Two up-
dates happened in each channel: one to sign the HTLC
and one to fulfill it. The time frames were chosen so
that every intermediary has had the time to learn the
preimage and give it to the previous party on the path.
Figure 4 shows all transactions implicated in a channel
that has an HTLC in flight.
In LN zero-hop payments are also carried out using

HTLCs.
LN gives the possibility for intermediaries to charge

a fee for their service, but such fees are not incorpo-
rated in the current analysis for the benefit of avoid-
ing the added complexity and making it easier for the
functionality to keep track of the correct balances. We
note in passing that the “wormhole” attack described
in [30] is captured by our model, as an adversary that
controls two non-neighbouring nodes on a payment path
can skip the intermediate nodes. Nevertheless, such an
attack is inconsequential in our analysis given the lack of
fees. Furthermore, LN leverages the Sphinx onion packet
scheme [31] to increase the privacy of payments, but we
do not formaly analyze the privacy of LN in this work –
we just use it in our protocol description to syntactically
match the message format used by LN.

4. Overview of FPayNet

One of our contributions is the specification of
FPayNet, a functionality that describes the functional
and security guarantees given by an ideal payment
network. Its definition can be found in the full ver-
sion [25]. The central aim of FPayNet is opening payment
channels, keeping track of their state, updating them
according to requested payments and closing them, as
requested by honest players, all in a secure manner. In
particular, the three main messages it can receive from
Alice are (openChannel), (pay), (closeChannel)
and (forceCloseChannel).
When FPayNet receives (openChannel, Alice, Bob,

x, tid) from Alice, it informs simulator S of the intention
of environment E to create a channel between Alice
and Bob where Alice owns x coins. When it receives
(pay, Bob, x,

−−→path, receipt) from Alice, it informs S
that E asked to perform a multi-hop payment of x
coins from Alice to Bob along the −−→path. In the same
vein, when FPayNet receives (closeChannel, receipt,

pchid) or (forceCloseChannel, receipt, pchid) from
Alice (for a cooperative or unilateral close respectively),
it leaks to S the fact that E wants to close the relevant
channel.
In order to provide security guarantees, there are

various moments when FPayNet verifies whether certain
expected events have actually taken place. A number of
messages prompt FPayNet to read from GLedger and per-
form these checks. In the actual implementations of LN
these checks are done periodically by a polling daemon.
Such checks are done by FPayNet in the following cases:

• On receiving (poll) by Alice, FPayNet asks GLedger
for Alice’s latest state ΣAlice and verifies that no
bad events have happened. In particular, FPayNet
halts if any of Alice’s channels has been closed
maliciously with a transaction at height h and,
even though Alice has polled within [h, h +
delay(Alice) − 1], she did not manage to punish
the counterparty. If FPayNet does not halt, it leaks
to S the polling details (including the identity of
the poller and the state of the ledger in their view).

• FPayNet expects S to send a (resolvePays,
charged) message that gives details on the outcome
of one or more multi-hop payments that include the
identity of the party that is charged. Moreover, for
each resolved payment, the message includes two
expiry values, expressed in absolute block height:
OutgoingCltvExpiry, which is the highest block
in which the charged party could claim money
from the previous hop (closer to the payer) and
IncomingCltvExpiry, which is the lowest block in
which the charged party could claim money from
the next hop (closer to the payee). FPayNet checks
that for each payment the charged party was one
of the following: (a) the one that initiated the pay-
ment, (b) a malicious party or (c) an honest party
that is negligent. The latter case happens when the
honest party either:
1) did not poll in time to catch a malicious closure
(similarly to the check performed when a poll

message is handled, as described above) or
2) did not poll twice while the block
height in the view of the player was in
[OutgoingCltvExpiry, IncomingCltvExpiry −
(2 + r) windowSize] with a distance of at least
(2 + r) windowSize between the two polls or

3) did not enforce the retrieval of the funds lost
as a result of this payment when the chain
in her view had height IncomingCltvExpiry −
(2 + r) windowSize with a fulfillOnChain

message, as discussed below.
Note that (2 + r) windowSize is the maximum
number of blocks an honest party needs to wait
from the moment a valid transaction is submitted
until it is added to the ledger state. FPayNet also
ensures that the two expiries (OutgoingCltvExpiry
and IncomingCltvExpiry) have a distance of at

340

least relayDelay(Alice)+(2 + r) windowSize, oth-
erwise it halts. In case the charged party was honest
and non-negligent, FPayNet halts. It also halts if a
particular payment resulted in a channel update for
which S did not inform FPayNet.

• FPayNet executes the function checkClosed(ΣAlice)
every time it receives ΣAlice from GLedger. In this
case, it checks that every channel that E has asked
to be closed or S designated as closed indeed has
a closing transaction that corresponds to its latest
state in ΣAlice. Enough time is given for that trans-
action to settle in ΣAlice, but if that time passes
and the channel is still open or it is closed to a
wrong version and no opportunity for punishment
was given, FPayNet halts.
A number of messages that support the protocol

progress are also handled:
• Every player has to send (register, delay, relay-
Delay) before participating in the network. This
informs FPayNet how often the player has to poll.
“delay” corresponds to the maximum time between
polls so that malicious closures will be caught.
“relayDelay” is useful when the player is an interme-
diary of a multi-hop payment. It roughly represents
the size of the time window the player has to learn a
preimage from the next and reveal it to the previous
node. Subsequently FPayNet asks S to create and
send a public key that will hold the player’s funds.
This public key is subsequently sent back to the
player.

• To complete her registration, Alice has to send the
(toppedUp) message. It lets FPayNet know that the
desired amount of initial funds have been trans-
ferred to Alice’s public key. FPayNet reads Alice’s
state on GLedger to retrieve this number and subse-
quently allows Alice to participate in the payment
network after it updates her onChainBalance.

• When FPayNet receives (checkForNew, Alice,
Bob, tid) from Alice, it asks GLedger for Alice’s latest
state ΣAlice and looks for a funding transaction F
in it. If one is found, S is asked to complete the
opening procedure.

• (pushFulfill, pchid), (pushAdd, pchid) and
(commit, pchid) all nudge S to carry on with the
protocol that updates the state of a specific channel.
FPayNet simply forwards these messages to S.

• (fulfillOnChain) prompts S to close channels in
which the counterparty is not willing to pay, even
though they have promised to do so upon disclosure
of a particular preimage. This message is simply
forwarded to S, but FPayNet takes a note that such
a message was received and the current blockheight
in the view of the calling party.
Last but not least, E sends (getNews) to obtain

the latest changes regarding newly opened or closed
channels, along with updates to the state of existing
ones. Here we make an interesting observation: The

most complex part of LN is arguably the negotiations
that happen when a multi-hop payment takes place,
due to the many channel updates needed; indeed, two
complete channel updates for each hop are needed for
a successful payment to go through. The fact that a
proposal for an update can happen asynchronously with
the commitment to this update, along with the fact that
a single commitment may commit to many indiviual
update proposals only adds to the complexity. It is
therefore only natural to want FPayNet to be unaware
of these details. In order to disentangle the abstraction
of FPayNet from such minutiae, we allow the adversary
full control of the updates that are reported back to
E via FPayNet. Nevertheless, FPayNet enforces that any
reporting deviations induced by the adversary will be
caught when a channel closes. This is quite intuitive:
Consider a user of the payment network that does not
understand its inner workings but can read GLedger and
count her funds there. FPayNet provides no guarantees
regarding any specific interim reporting but the user is
assured that in case she chooses to close the relevant
channel, her state in GLedger will be consistent with all
the payments that went through.

5. Lightning Protocol ΠLN Overview
In order to prove that software adhering to the LN

specification fulfills the security guarantees given by
FPayNet, a concrete protocol that implements LN in the
UC model is needed. To that end we define the formal
protocol ΠLN, an overview of which is given here.
For the rest of this section, we will assume that

Alice, Bob and Charlie are interactive Turing machine
instances (ITIs) [26] that honestly execute ΠLN. Sim-
ilarly to the ideal world, the main functions of ΠLN
are triggered when it receives (openChannel), (pay),
(closeChannel) and (forceCloseChannel) from
E . These three messages along with (getNews) in-
formally correspond to actions that a “human user”
would instruct the system to perform. (register) and
(toppedUp) are sent by E for player intialization. The
rest of the messages sent from E prompt ΠLN to perform
actions that a software implementation would sponta-
neously perform periodically. All messages sent between
Alice, Bob and Charlie correspond to messages specified
by LN. For clarity of exposition, we avoid mentioning
the exact name and contents of every message. We refer
the reader to the formal definition of ΠLN for further
details [25].
Registration. Before Alice can use the network, E first
has to send her a (register, delay, relayDelay) message.
She generates her persistent key and sends it back to E .
The latter may choose to add some funds to this key and
then send (toppedUp) to Alice, who checks her state
in GLedger and records her on-chain balance.
Channel opening.When she receives (openChannel,
Alice, Bob, x, tid) from E , Alice initiates the message
sequence needed to open a channel with Bob, funded by

341

her with x coins. After following the steps described in
Section 3, the funding transaction has been submitted
to GLedger. However the channel is not open yet.
At a later point E may send (checkForNew, Alice,

Bob, tid) to Alice. She then checks if her state in GLedger
contains the funding transaction with the temporary ID
tid and in that case she exchanges new commitment keys
with Bob, as per Section 3. The channel is now open.
Both parties keep a note to give E a receipt of the new
channel the next time they receive (getNews).
Channel closing. When sent by E , the messages
closeChannel and forceCloseChannel prompt
Alice to close the channel cooperatively or unilaterally
respectively, as explained in Section 3. In both cases she
takes a note to notify E that the channel is closed when
she receives (getNews).
Performing payments. We will now follow the exact
steps needed for a multi-hop payment, filling in many de-
tails that we omitted from Section 3. When she receives
(pay, Charlie, x, −−→path) from E , Alice attempts to pay
Charlie x coins, using the provided −−→path. Let us assume
that the path is Alice – Bob – Charlie. Alice asks Charlie
for an “invoice” with the HTLC hash, to which Charlie
reacts by choosing a random preimage and sending back
to Alice its hash. Alice then prepares a Sphinx [31] onion
packet with the relevant information for each party on
the −−→path and sends it to Bob. Bob peels his layer of the
onion and, after performing sanity checks and extracting
the hash, he takes a note of this pending HTLC. He does
not yet forward the onion to Charlie, because Alice is
not yet committed to paying Bob. The latter happens
if Alice subsequently receives (commit, pchidAB) from
E , where pchidAB is the ID of the Alice – Bob channel.
She then sends Bob all the signatures needed to make
the new commitment transaction spendable, who replies
with the secret commitment key of the old commitment
transaction (thus revoking it), along with the public
commitment key of the future commitment transaction
(to allow Alice to prepare the next update, when that
happens). LN demands that before Bob forwards the
onion to Charlie, he must commit as well to the HTLC to
Alice. This happens if he receives the relevant commit

message from E . Now that both parties have the HTLC
in their commitment transaction and all past commit-
ment transactions are revoked, they consider this HTLC
“irrevocably committed”.

Bob may then receive (pushAdd, pchidAB) from E .
Bob sends the onion to Charlie, who in turn peels it,
recognizes that the payment is for him and that indeed
he knows the preimage (since he generated it himself)
and waits for the HTLC between him and Bob to be
irrevocably committed. After both Bob and Charlie
receive (commit), Charlie awaits for a (pushFulfill,
pchidBC) message from E . If it arrives, Charlie sends the
preimage to Bob, who sends it back to Alice. Once more
every party has to receive a (commit) message for each
of the channels it participates in in order to remove the
HTLC and update the definitive balance of each player

to the appropriate value after the payment is complete.
After this last update, each party keeps a note to inform
E about the new balance when it receives (getNews).
Alice and Charlie also keep a note to inform E that the
payment it had asked for succeeded.
Observe that while locked up in an HTLC, funds do

not belong to either player; they are rather in a tempo-
rary, transitive state. If one party learns the preimage,
the funds become theirs, whereas if it does not learn the
preimage after some time, the other party is entitled
to the funds. Also observe that within the UC frame-
work the necessary messages commit, pushFulfill

and pushAdd may never arrive, but in a correct soft-
ware implementation the corresponding actions happen
automatically, without waiting for a prompt by the user.
Polling. Lastly, E may send (poll) to Alice. She then
reads her state in GLedger and checks for closed channels.
If she finds maliciously closed channels (closed using old
commitments), she punishes the counterparty and takes
all the funds in the channel. If she finds in an honestly
closed channel a preimage of an HTLC that she has
previously signed and for which she is an intermediary,
she records it and prepares to send it when she receives
(pushFulfill). Finally, if she finds an honestly closed
channel with an HTLC output for which she knows the
preimage, she spends it immediately. For every closed
channel she finds, she keeps a note to report it to E the
next time she receives (getNews).
Remark 1 (Differences between LN and ΠLN). In LN, a
custom construction for generating a new secret during
each channel update is used. It reduces the space needed
to maintain a channel from O(n) to O(logn) in the
number of updates. As far as we know, its security has
not been formally analyzed. In the current paper we use
instead a PRF [32].
As mentioned earlier, LN uses a custom construc-

tion that takes advantage of elliptic curve homomorphic
properties in order to derive any number of keypairs by
combining a single “basepoint” with different “labels”.
We instead use Identity Based Signatures [28], [29] (IBS)
to abstract the properties provided by the construction.
We also prove in the full version [25] that it actually
implements an IBS.
Additionally, we have chosen to simplify the protocol

in a number of ways in order to keep the analysis
tractable. In particular LN defines several additional
messages that signal various types of errors in transmis-
sion. It also specifies exactly how message retransmission
should happen upon reconnection, specifically for the
case of connection failure while updating a channel. This
allows for a more robust system by excluding many cases
of accidental channel closures. What is more, an LN user
can change their “delay” and “relayDelay” parameters
even after registration, which is not the case in ΠLN.
Lastly, in order to incentivize users to act as interme-

diaries or check for channel closures on behalf of others,
LN provides for fees for these two roles. Furthermore, in
order to reduce transaction size and ensure that bitcoin

342

nodes relay the transactions, it specifies exact rules
for pruning outputs of too low value (known as “dust
outputs”). In the current analysis we do not consider
these features.

6. The Combined Signature primitive

As previously mentioned, we define a new primitive
for combining keys and generating signatures, which is
leveraged in the revocation and punishment mechanism
of channel updates. Furthermore, we prove that the
construction designed by the creators of LN realizes
this primitive. We provide here the concrete syntax and
correctness definitions, along with the intuition behind
it, the exact security definitions, a concrete construction
and proof of its security.
Previous work on the subject of multi-party sig-

natures [12], [33], [34], [35], [36], [37] focuses on use-
cases where some parties desire to generate a signature
without revealing their private information; the latter
is created using an interactive protocol. The resulting
signatures can be verified by a single verification key,
which is also included in the output of the key gener-
ation protocol. As we will see however, the primitive
defined here has different aims and limitations and, to
our knowledge, has not been formalized yet.
A combined signature is a two-party primitive, say

between Alice and Bob, with Bob being the signer and
Alice the holder of a share of the secret key. This
share is essential for issuing signatures, which in turn
are verifiable with the “combined” verification key. The
verification key is generated using public information
drawn from Alice and Bob and is feasible without any
party knowing the corresponding signing key. Bob will
be able to construct the signing key only if Alice shares
her secret information with him.
More specifically, the seven algorithms used by a

Combined Signatures scheme are:
• (mpk, msk)← MasterKeyGen

(
1k

)
• (pk, sk)← KeyShareGen

(
1k

)
• cpkl ← CombinePubKey (mpk, pk)
• (cpkl, cskl)← CombineKey (mpk, msk, pk, sk)
• {0, 1} ← TestKey (pk, sk)
• σ ← SignCS (m, csk)
• {0, 1} ← VerifyCS (σ, m, cpk)

We demand that these three properties hold for a scheme
to have correctness:

• ∀k ∈ N,
Pr[(pk, sk)← KeyShareGen

(
1k

)
,

TestKey(pk, sk) = 1] = 1
I.e. KeyShareGen() must always generate a valid
keypair.

• ∀k ∈ N,
Pr[(mpk, msk)← MasterKeyGen

(
1k

)
,

(pk, sk)← KeyShareGen

(
1k

)
,

(cpk1, csk1)← CombineKey (mpk, msk, pk, sk) ,

cpk2 ← CombinePubKey (mpk, pk) ,
cpk1 = cpk2] = 1
I.e. for suitable input, CombinePubKey() and
CombineKey() produce the same public key.

• ∀k ∈ N, m ∈ M,
Pr[(mpk, msk)← MasterKeyGen

(
1k

)
,

(pk, sk)← KeyShareGen

(
1k

)
,

(cpk, csk)← CombineKey (mpk, msk, pk, sk) ,
VerifyCS(SignCS(m, csk), m, cpk) = 1] = 1
I.e. for suitable input, honestly generated signatures
always verify correctly.
Beyond correctness, combined signatures have two

security properties expressed as follows. Share-EUF se-
curity expresses security from the point of view of Alice,
and establishes that Bob cannot issue a valid combined
signature if he does not possess Alice’s corresponding
secret share. Formally:

1: (aux, mpk, n) ← A (init)
2: for i ← 1 to n do
3: (pki, ski) ← KeyShareGen

(
1k

)
4: end for
5: (cpk∗, pk∗, m∗, σ∗) ← A (keys, aux, pk1, . . . , pkn)
6: if pk∗ ∈ {pk1, . . . , pkn} ∧

cpk∗ = CombinePubKey (mpk, pk∗) ∧
VerifyCS (σ∗, m∗, cpk∗) = 1 then

7: return 1
8: else
9: return 0
10: end if

Game share-EUFA (
1k

)

Definition 1. A Combined Signatures scheme is share-
EUF-secure if

∀A ∈ PPT,Pr
[
share-EUFA (

1k
)
= 1

]
= negl (k)

or equivalently
E-share(k) = negl (k) ,

where E-share(k) = sup
A∈PPT

{Pr[share-EUFA (
1k

)
= 1]}

On the other hand, master-EUF-CMA security is
modeled very similarly to standard EUF-CMA security,
with the difference that Bob (the signer) combines ma-
licious shares into his public key and issues signatures
with respect to such combined keys. The security prop-
erty ensures that these signatures provide no advantage
to the adversary in terms of producing a forged message
for a combined key of its choice. Formally:

1: (mpk, msk) ← MasterKeyGen

(
1k

)
2: i ← 0
3: (auxi, response) ← A (init, mpk)
4: while response can be parsed as (pk, sk, m) do
5: i ← i + 1

Game master-EUF-CMAA (
1k

)

343

6: store pk, sk, m as pki, ski, mi

7: (cpki, cski) ← CombineKey (mpk, msk, pki, ski)
8: σi ← SignCS (mi, cski)
9: (auxi, response) ← A (signature, auxi−1, σi)
10: end while
11: parse response as (cpk∗, pk∗, m∗, σ∗)
12: if m∗ /∈ {m1, . . . , mi} ∧

cpk∗ = CombinePubKey (mpk, pk∗) ∧
VerifyCS (σ∗, m∗, cpk∗) = 1 then

13: return 1
14: else
15: return 0
16: end if

Definition 2. A Combined Signatures scheme is master-
EUF-CMA-secure if

∀A ∈ PPT,

Pr
[
master-EUF-CMAA (

1k
)
= 1

]
= negl (k)

or equivalently
E-master(k) = negl (k) ,

where
E-master(k) = sup

A∈PPT
{Pr[master-EUF − CMAA (

1k
)
= 1]}

Definition 3. A Combined Signatures scheme is
combine-EUF-secure if it is both share-EUF-secure and
master-EUF-CMA-secure.
In conclusion, a collection of algoritms is said to

be a secure Combined Signatures scheme if it conforms
to the syntax of the seven aforementioned algorithms,
it satisfies the three correctness properties and pro-
vides existential unforgeability against key-only attacks
with respect to key shares and existential unforgeability
against chosen message attacks with respect to master
keys.
We here define the particular construction for Com-

bined Signatures used in LN and prove its security.
Parameters: hash function H, group generator G

MasterKeyGen(1k, rand):
return (G · rand, rand)

KeyShareGen(1k, rand):
return (G · rand, rand)

CombinePubKey(mpk, pk):
return mpk · H (mpk ‖ pk) + pk · H (pk ‖ mpk)

CombineKey(mpk, msk, pk, sk):
return (CombinePubKey(mpk, pk), msk ·

H (mpk ‖ pk) + sk · H (pk ‖ mpk))
TestKey(pk, sk):

if pk = G · sk then
return 1

else
return 0

end if
SignCS(m, csk):

return SignDS(m, csk)
VerifyCS(σ, m, cpk):

return VerifyDS(σ, m, cpk)
One can check by inspection that the syntax above

matches the one required by the Combined Signa-
tures scheme definition. Furthermore, assuming that
SignDS() and VerifyDS() are provided by a correct
Digital Signature construction, it is straightforward to
confirm that the construction here satisfies the Com-
bined Signatures correctness properties.
We now move on to proving that the construction is

also secure.
Lemma 1. The construction defined above is share-EUF-
secure in the Random Oracle model under the assump-
tion that the underlying signature scheme is strongly
EUF-CMA-secure and the range of the Random Oracle
coincides with that of the underlying signature scheme
signing keys.

Proof: Let k ∈ N, B PPT algorithm such that

Pr
[
share-EUFB (

1k
)
= 1

]
= a = non− negl (k) .

We construct a PPT distinguisher A (Fig. 5) such that

Pr
[
EUF-CMAA (

1k
)
= 1

]
= non− negl (k)

that breaks the assumption, thus proving Lemma 1.
Let Y be the range of the random oracle. The mod-

ified random oracle used in Fig. 5 is indistinguishable
from the standard random oracle by PPT algorithms
since the statistical distance of the standard random
oracle from the modified one is at most 1

2|Y | = negl (k)
as they differ in at most one element.
Let E denote the event in which B does not invoke

CombinePubKey to produce cpk∗. In that case the val-
ues H (pk∗ ‖ mpk) and H (mpk ‖ pk∗) are decided after
B terminates (Fig. 5, line 24) and thus
Pr [cpk∗ = CombinePubKey (mpk, pk∗) |E] =

= 1
|Y | = negl (k)⇒

Pr [cpk∗ = CombinePubKey (mpk, pk∗) ∧ E] =
= negl (k) .

(1)

It is

(B wins)→ (cpk∗ = CombinePubKey (mpk, pk∗))⇒
Pr [B wins] ≤

≤ Pr [cpk∗ = CombinePubKey (mpk, pk∗)]⇒
Pr [B wins ∧ E] ≤

≤ Pr [cpk∗ = CombinePubKey (mpk, pk∗) ∧ E] (1)⇒
Pr [B wins ∧ E] = negl (k) .

344

1: j
$← U [1, T (B)] // T (M) is the maximum running

time of M
2: Random Oracle: for every first-seen query q from

B set H (q) to a random value
3: return H (q) to B
4: (aux, mpk, n) ← A (init)
5: for i ← 1 to n do
6: (pki, ski) ← KeyShareGen

(
1k

)
7: end for
8: Random Oracle: Let q be the jth first-seen query

from B:
9: if q = (mpk ‖ x) then
10: if H (x ‖ mpk) unset then
11: set H (x ‖ mpk) to a random value
12: end if
13: set H (mpk ‖ x) to

(vk − x · H (x ‖ mpk)) · mpk−1

14: else if q = (x ‖ mpk) then
15: if H (mpk ‖ x) unset then
16: set H (mpk ‖ x) to a random value
17: end if
18: set H (x ‖ mpk) to

(vk − mpk · H (mpk ‖ x)) · x−1

19: else
20: set H (q) to a random value
21: end if
22: return H (q) to B
23: (cpk∗, pk∗, m∗, σ∗) ← B (keys, aux, pk1, . . . , pkn)
24: if vk = cpk∗ ∧ B wins the share-EUF game then //

A won the EUF-CMA game
25: return (m∗, σ∗)
26: else
27: return fail

28: end if

Algorithm A (vk)

Figure 5.

But we know that Pr [B wins] = Pr [B wins ∧ E] +
Pr [B wins ∧ ¬E] and Pr [B wins] = a by the assump-
tion, thus

Pr [B wins ∧ ¬E] > a − negl (k) . (2)

We now focus at the event ¬E. Let F the event in
which the call of B to CombinePubKey to produce
cpk∗ results in the jth invocation of the Random Or-
acle. Since j is chosen uniformly at random and using
Proposition 1 of [25], Pr [F |¬E] = 1

T (B) . Observe that
Pr [F |E] = 0⇒ Pr [F] = Pr [F |¬E] = 1

T (B) .
In the case where the event (F ∧ B wins ∧ ¬E) holds,

it is

cpk∗ = CombinePubKey (mpk, pk∗) =
mpk · H (mpk ‖ pk∗) + pk∗ · H (pk∗ ‖ mpk)

Since F holds, the jth invocation of the Random Oracle
queried either the value H (mpk ‖ pk∗) or H (pk∗ ‖ mpk).
In either case (Fig. 5, lines 9-18), it is cpk∗ = vk. This
means that VerifyCS (σ∗, m∗, vk) = 1. We conclude

that in the event (F ∧ B wins ∧ ¬E), A wins the EUF-
CMA game. A final observation is that the probability
that the events (B wins ∧ ¬E) and F are almost inde-
pendent, thus

Pr [F ∧ B wins ∧ ¬E] =

= Pr [F] Pr [B wins ∧ ¬E]± negl (k) (2)=
a − negl (k)

T (B) ± negl (k) = non− negl (k)

Lemma 2. The construction above is master-EUF-CMA-
secure in the Random Oracle model under the assump-
tion that the underlying signature scheme is strongly
EUF-CMA-secure and the range of the Random Oracle
coincides with that of the underlying signature scheme
signing keys.

Proof: Let k ∈ N, B PPT algorithm such that
Pr

[
master-EUF-CMAB (

1k
)
= 1

]
= a = non− negl (k) .

We construct a PPT distinguisher A (Fig. 6) such that

Pr
[
EUF-CMAA (

1k
)
= 1

]
= non− negl (k)

that breaks the assumption, thus proving Lemma 2.
The modified random oracle used in Fig. 6 is indis-

tinguishable from the standard random oracle for the
same reasons as in the proof of Lemma 1.
Let E denote the event in which CombinePubKey

is not invoked to produce cpk∗. In that case the values
H (pk∗ ‖ mpk) and H (mpk ‖ pk∗) are decided after B
terminates (Fig. 6, line 30) and thus
Pr [cpk∗ = CombinePubKey (mpk, pk∗) |E] =

= negl (k)⇒
Pr [cpk∗ = CombinePubKey (mpk, pk∗) ∧ E] =

= negl (k) .

(3)

We can reason like in the proof of Lemma 1 to deduce
that

Pr [B wins ∧ ¬E] > a − negl (k) . (4)

We now focus at the event ¬E. Let F the event in
which the call of to CombinePubKey that produces
cpk∗ results in the jth invocation of the Random Or-
acle. Since j is chosen uniformly at random and using
Proposition 1 of [25], Pr [F |¬E] = 1

T (B)+T (A) . Observe
that Pr [F |E] = 0⇒ Pr [F] = Pr [F |¬E] = 1

T (B)+T (A) .
Once more we can reason in the same fashion as in

the proof of Lemma 1 to deduce that

Pr [F ∧ B wins ∧ ¬E] =

= Pr [F] Pr [B wins ∧ ¬E]± negl (k) (4)=
a − negl (k)

T (B) + T (A) ± negl (k) = non− negl (k)

345

1: j
$← U [1, T (B) + T (A)] // T (M) is the maximum

running time of M

2: Random Oracle: for every first-seen query q from
B set H (q) to a random value

3: return H (q) to B
4: (mpk, msk) ← MasterKeyGen

(
1k

)
5: Random Oracle: Let q be the jth first-seen query

from B or A:
6: if q = (mpk ‖ x) then
7: if H (x ‖ mpk) unset then
8: set H (x ‖ mpk) to a random value
9: end if
10: set H (mpk ‖ x) to

(vk − x · H (x ‖ mpk)) · mpk−1

11: else if q = (x ‖ mpk) then
12: if H (mpk ‖ x) unset then
13: set H (mpk ‖ x) to a random value
14: end if
15: set H (x ‖ mpk) to

(vk − mpk · H (mpk ‖ x)) · x−1

16: else
17: set H (q) to a random value
18: end if
19: return H (q) to B or A
20: i ← 0
21: (auxi, response) ← B (init, mpk)
22: while response can be parsed as (pk, sk, m) do
23: i ← i + 1
24: store pk, sk, m as pki, ski, mi

25: (cpki, cski) ← CombineKey (mpk, msk, pki, ski)
26: σi ← SignCS (mi, cski)
27: (auxi, response) ← B (signature, auxi−1, σi)
28: end while
29: parse response as (cpk∗, pk∗, m∗, σ∗)
30: if vk = cpk∗ ∧ B wins the master-EUF-CMA game

then // A won the EUF-CMA game
31: return (m∗, σ∗)
32: else
33: return fail

34: end if

Algorithm A (vk)

Figure 6.

The two results can then be combined to obtain the
desired security property:
Theorem 1. The construction above is combine-EUF-
secure in the Random Oracle model under the assumption
that the underlying signature scheme is strongly EUF-
CMA-secure.

Proof: The construction is combine-EUF-secure as
a consequence of Lemma 1, Lemma 2 and the definition
of combine-EUF-security.

7. Security proof overview

Theorem 2 (Lightning Payment Network Security).
The protocol ΠLN realises FPayNet given a global func-

tionality GLedger and assuming the security of the un-
derlying digital signature, identity-based signature, com-
bined digital signature and PRF. Specifically,

∀k ∈ N, PPT E ,

|Pr[Exec
GLedger
ΠLN,Ad,E = 1]− Pr[Exec

FPayNet,GLedger
S,E = 1]| ≤

2nmE-ds(k) + 6npE-ids(k) + 2nmpE-share(k)+
+2nmE-master(k) + 2E-prf(k) ,

where n is the maximum number of registered users, m is
the maximum number of channels that a user is involved
in, p is the maximum number of times that a channel is
updated and the “E-” terms correspond to the insecurity
bounds of the primitives.

Proof Sketch: The proof is done in 5 steps of suc-
cessive game replacement. In the first lemma, we define a
simulator SLN that internally simulates a full execution
of ΠLN for each player, and a “dummy” functionality
that acts as a simple relay between E and SLN. We argue
that this version of the ideal world trivially produces the
exact same messages for E as the real world.
In each subsequent step, we incrementally move re-

sponsibilities from the simulator to the functionality,
while ensuring the change is transparent to both E
and A. Each step defines a different functionality that
handles some additional messages from E exactly like
FPayNet, until the last step where we use FPayNet itself.
Correspondingly, the simulator of each step is adapted
so that the new ideal execution is computationally in-
distinguishable from the previous one. For each step we
exhaustively trace the differences from the previous step
in order to prove that, given the same messages from E
and A, the resulting responses remain unchanged.
The second step, lets F handle registration messages,

along with the corruption messages from S. In the third
step, the functionality additionally handles messages
related to channel opening. It behaves like FPayNet,
but does not execute checkClosed(). The fourth step,
has the functionality handle all messages sent during
channel updates. Lastly, the entire FPayNet is used as
functionality, by incorporating the message for closing a
channel, executing checkClosed() normally and hand-
ing the message that returns to E the receipts for newly
opened, updated and closed channels. The last two steps
introduce a probability of failure in case the various
types of signatures used in ΠLN are forged. We analyze
these cases separately and argue that, if such forgeries
do not happen, the emulation is perfect. Therefore we
can calculate the concrete security bounds shown in the
theorem.
As a concrete example of the proof approach, the

second step entails the following parts: First FPayNet,Reg
is defined, which is a functionality that behaves exactly
like FPayNet when receiving the messages register,
registerDone, toppedUp and corrupted, but sim-
ply forwards all other messages along with the sender to
S. Then SLN−Reg is defined, which simulates all protocol

346

instances, but in response to register messages from
FPayNet,Reg, it provides the public key of the key it
just generated (as FPayNet,Reg expects). It also keeps
track of corruptions and informs FPayNet,Reg thereof.
Lastly, we argue that the functionality and simulator
that were used in the first step can be replaced by
their newly defined counterparts without introducing
any discernible difference to the transcript that any E
sees. This is achieved by exhaustive enumeration of all
possible messages and comparison of the behaviour of
the ideal and the real world for each, to conclude that
the change is transparent to E . The formal proof can be
found in the full version [25].

8. Instant finality ledgers are unrealisable

As already mentioned, previous attempts at formal-
ising payment channels in UC [13], [14], [15], [16] as-
sume a variant of a ledger functionality with instant
finality. We here define a representative variant of this
approach FPerfectL (defined below) where all submitted
transactions are instantly added to the ledger and imme-
diately available to be read by all players. Subsequently
we argue that, albeit an attractive abstraction, such
a functionality is unrealisable, even under strong net-
work assumptions, i.e. a multicast synchronous network
F1

N-MC
. Such a network ensures that messages sent by

honest parties will be instantly delivered to all other
parties; no delays can be introduced by the adversary.
We refer the reader to the full version [25] for the formal
definition of F1

N-MC
. The adversary however may choose

to send its own messages only to specific parties. This
allows the adversary to spread conflicting information or
withhold data from some parties. This adversarial ability
precludes the possibility of such a ledger to be realised.
The complete proof can be found in the full version [25].
Theorem 3 (Perfect Ledger is Unrealisable). For any
ITM ΠPerfectL there exist ITMs EPL, APL such that for
any ITM S

Exec
F1

N-MC
,Ḡclock

ΠPerfectL,APL,EPL
	≈ Exec

FPerfectL,Ḡclock

S,EPL

Proof Sketch: We take advantage of APL’s abil-
ity to selectively send messages to specific players. In
particular, EPL starts an execution with two players and
generates a random message m. In half of the executions
(randomly selected), the adversary simulates a “broken”
ΠPerfectL execution where the effects of submitting m
are only shared with one of the two players, say Alice
by APL (in the real world). The environment then sends
(read) to the other player, say Bob. If Bob returns a
ledger containing m, then EPL concludes that it is the
ideal world, otherwise it sends (read) to Alice. If she
returns a ledger with m, then EPL concludes it is in the
real world, otherwise it concludes it is in the ideal world.
The above is not sufficient since a protocol may

choose to return an empty ledger; to counter this, in
the other half of the executions, EPL sends (submit, m)

to Alice and then (read) to Bob. If, and only if, Bob
knowsm, then EPL concludes this is the ideal world. This
forces the ΠPerfectL protocol to achieve instant finality
and will establish that a distinguishing advantage exists
no matter how ΠPerfectL is implemented.

1: State: List of txs L

2: Upon receiving (Submit, m) from Alice or A,
append m to L and send (Submit, Alice or A, m) to
A

3: Upon receiving (Read) from Alice, send (Read, L)
to Alice

Functionality FPerfectL

9. Future Work and Conclusion

In order to remain tractable, the current analysis
omits some parts of the lightning specification. In par-
ticular, the specification defines how intermediaries of
multi-hop payments can charge a fee for their service.
Furthermore, the per-update secret generation is not
done with a PRF according to the specification: an
optimisation that reduces the storage overhead for the
counterparty is used instead. The security of this opti-
misation however has not been yet formally inspected.
Additionally, the specification provisions for a number
of failure messages that help in keeping counterparties
informed of issues with requested payments and in alle-
viating the problem of unneeded precautionary channel
closures. Transactions that are added on-chain offer a
fee to the blockchain miners (unrelated to the fee of the
off-chain multi-hop payments). When closing a channel
cooperatively, this fee is contributed by both counterpar-
ties, therefore the closing sequence of the specification
includes an iterative negotiation of said fee where the
two parties repeatedly propose a value based on their
settings until they converge to a compromise or fail to
agree. Lastly, most Bitcoin nodes do not relay transac-
tions that include outputs with tiny amounts of coins,
a.k.a “dust” outputs, to avoid bloating the blockchain.
The lightning specification provides extensive instruc-
tions as to how to prune such outputs.
All aforementioned parts of the protocol were not

analysed so that the security of the core parts of the
lightning protocol could be discussed without distrac-
tions. In order for the analysis to cover the entirety of the
current version of the lightning specification however,
the aforementioned features should be incorporated and
their security should be proven. This expansion of the
analysis is left as future work.
In a different direction, big parts of our main security

proof consist of an exhaustive enumeration of the pos-
sible messages that E and A can send to the protocol,
the simulator or the functionality and tracking how such
messages would change the flow of the execution of the
ideal and the real world. It is then argued that in all

347

cases the messages that would be sent to E and A are
indistinguishable. These parts of the proof are good
candidates for rewriting in the environment of an auto-
mated proof assistant [38] to instill additional certainty
that all possible execution paths are indeed checked
and do not contain subtle sources of distinguishability.
Combining our results with the recent mechanization of
UC via Easycrypt [39] would be a natural and interesting
direction for future work.
The lightning specification is not static, but it is con-

tinuously undergoing a number of improvements. The
most noteworthy upcoming change is the introduction
of Pointlocked TimeLocked Contracts (PTLCs). This
mechanism replaces HTLCs and promises to combat the
“wormhole” attack [30], while increasing privacy. Our
work can be modified to cover the case of PTLCs with
relative ease. It also provides a suitable framework for
future work that aims to shed light on the exact privacy
benefit that PTLCs offer as opposed to HTLCs.
The present analysis constitutes the first comprehen-

sive treatment in the Universal Composability frame-
work of a deployed layer-2 protocol on top of a functional
ledger. It can be extended and adapted to analyze other
similar protocols that achieve different security goals or
use another ledger as base layer.

Conclusion. The present work constitutes a fortu-
nate result, since it conclusively proves that software
that adhere to the lightning specification cannot lose
funds accidentally to a malicious protocol player. Indeed,
such a result reinforces trust to the lightning network
and acts as a guarantee to the almost 900 bitcoins
currently in circulation in the layer-2 protocol.
By leveraging the guarantees provided by the Uni-

versal Composability framework, we further assert that
the lightning protocol is freely composable with other
protocols. As such it can run side by side with arbitrary
protocols, or be used as a subroutine to higher-level
protocols without needing to prove its security anew.
By separating particular subroutines of the protocol

as distinct cryptographic primitives and analysing them
individually, we have contributed to its cryptorgaphic
agility. Lastly, by keeping it as protocol-agnostic as pos-
sible, our payment network functionality can be adapted
to express the functional and security requirements of
other layer-2 protocols with relative ease.

References
[1] Croman K., Decker C., Eyal I., Gencer A. E., Juels A., Kosba

A., Miller A., Saxena P., Shi E., Sirer E. G., et al.: On
scaling decentralized blockchains. In International Conference
on Financial Cryptography and Data Security: pp. 106–125:
Springer (2016)

[2] Nakamoto S.: Bitcoin: A Peer-to-Peer Electronic Cash System
(2008)

[3] Garay J., Kiayias A., Leonardos N.: The Bitcoin Back-
bone Protocol: Analysis and Applications. Cryptology ePrint
Archive, Report 2014/765: https://eprint.iacr.org/2014/765
(2014)

[4] Pass R., Seeman L., Shelat A.: Analysis of the Blockchain
Protocol in Asynchronous Networks. IACR Cryptology ePrint
Archive: vol. 2016, p. 454: URL http://eprint.iacr.org/2016/
454 (2016)

[5] Garay J. A., Kiayias A., Leonardos N.: The Bitcoin Back-
bone Protocol with Chains of Variable Difficulty. In J. Katz,
H. Shacham (editors), Advances in Cryptology - CRYPTO
2017 - 37th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 20-24, 2017, Proceed-
ings, Part I: vol. 10401 of Lecture Notes in Computer
Science: pp. 291–323: Springer: ISBN 978-3-319-63687-0:
doi:10.1007/978-3-319-63688-7_10: URL https://doi.org/
10.1007/978-3-319-63688-7_10 (2017)

[6] Pass R., Shi E.: Hybrid Consensus: Efficient Consensus in the
Permissionless Model. In A.W. Richa (editor), 31st Interna-
tional Symposium on Distributed Computing, DISC 2017,
October 16-20, 2017, Vienna, Austria: vol. 91 of LIPIcs:
pp. 39:1–39:16: Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik: ISBN 978-3-95977-053-8: doi:10.4230/LIPIcs.DISC.
2017.39: URL https://doi.org/10.4230/LIPIcs.DISC.2017.39
(2017)

[7] Micali S.: ALGORAND: The Efficient and Democratic
Ledger. CoRR: vol. abs/1607.01341: URL http://arxiv.org/
abs/1607.01341 (2016)

[8] Poon J., Dryja T.: The Bitcoin Lightning Net-
work: Scalable Off-Chain Instant Payments.
https://lightning.network/lightning-network-paper.pdf
(2016)

[9] Pass R., Shi E.: Thunderella: Blockchains with Optimistic
Instant Confirmation. In J.B. Nielsen, V. Rijmen (editors),
Advances in Cryptology - EUROCRYPT 2018 - 37th An-
nual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Tel Aviv, Israel, April
29 - May 3, 2018 Proceedings, Part II: vol. 10821 of Lec-
ture Notes in Computer Science: pp. 3–33: Springer: ISBN
978-3-319-78374-1: doi:10.1007/978-3-319-78375-8_1: URL
https://doi.org/10.1007/978-3-319-78375-8_1 (2018)

[10] Badertscher C., Maurer U., Tschudi D., Zikas V.: Bitcoin
as a transaction ledger: A composable treatment. In Annual
International Cryptology Conference: pp. 324–356: Springer
(2017)

[11] Badertscher C., Gaži P., Kiayias A., Russell A., Zikas V.:
Ouroboros genesis: Composable proof-of-stake blockchains
with dynamic availability. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Se-
curity: pp. 913–930: ACM (2018)

[12] Nicolosi A., Krohn M. N., Dodis Y., Mazières D.: Proactive
Two-Party Signatures for User Authentication. In Proceed-
ings of the Network and Distributed System Security Sym-
posium, NDSS 2003, San Diego, California, USA: The Inter-
net Society: ISBN 1-891562-16-9: URL http://www.isoc.org/
isoc/conferences/ndss/03/proceedings/papers/15.pdf (2003)

[13] Dziembowski S., Faust S., Hostáková K.: General State Chan-
nel Networks. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS
2018, Toronto, ON, Canada, October 15-19, 2018: pp. 949–
966: doi:10.1145/3243734.3243856: URL https://doi.org/10.
1145/3243734.3243856 (2018)

[14] Malavolta G., Moreno-Sanchez P., Kate A., Maffei M., Ravi
S.: Concurrency and Privacy with Payment-Channel Net-
works. In Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security: CCS ’17:
pp. 455–471: ACM, New York, NY, USA: ISBN 978-1-4503-
4946-8: doi:10.1145/3133956.3134096: URL http://doi.acm.
org/10.1145/3133956.3134096 (2017)

348

[15] Miller A., Bentov I., Kumaresan R., Cordi C., McCorry
P.: Sprites and State Channels: Payment Networks that
Go Faster than Lightning. ArXiv preprint arXiv:1702.05812
(2017)

[16] Dziembowski S., Eckey L., Faust S., Malinowski D.: Pe-
run: Virtual Payment Hubs over Cryptocurrencies. In 2019
2019 IEEE Symposium on Security and Privacy (SP): pp.
344–361: IEEE Computer Society, Los Alamitos, CA, USA:
ISSN 2375–1207: doi:10.1109/SP.2019.00020: URL https://
doi.ieeecomputersociety.org/10.1109/SP.2019.00020 (2019)

[17] Spilman J.: Anti dos for tx replacement. https:
//lists.linuxfoundation.org/pipermail/bitcoin-dev/
2013-April/002433.html (2013)

[18] Decker C., Wattenhofer R.: A Fast and Scalable Payment
Network with Bitcoin Duplex Micropayment Channels. In
A. Pelc, A.A. Schwarzmann (editors), Stabilization, Safety,
and Security of Distributed Systems - 17th International
Symposium, SSS 2015, Edmonton, AB, Canada, August 18-
21, 2015, Proceedings: vol. 9212 of Lecture Notes in Com-
puter Science: pp. 3–18: Springer: ISBN 978-3-319-21740-6:
doi:10.1007/978-3-319-21741-3_1: URL https://doi.org/10.
1007/978-3-319-21741-3_1 (2015)

[19] Lind J., Naor O., Eyal I., Kelbert F., Pietzuch P. R., Sirer
E. G.: Teechain: Reducing Storage Costs on the Blockchain
With Offline Payment Channels. In Proceedings of the 11th
ACM International Systems and Storage Conference, SYS-
TOR 2018, HAIFA, Israel, June 04-07, 2018: p. 125: ACM:
doi:10.1145/3211890.3211904: URL https://doi.org/10.1145/
3211890.3211904 (2018)

[20] Green M., Miers I.: Bolt: Anonymous Payment Channels
for Decentralized Currencies. In Thuraisingham et al. [40]:
pp. 473–489: doi:10.1145/3133956.3134093: URL https://doi.
org/10.1145/3133956.3134093 (2017)

[21] Heilman E., Alshenibr L., Baldimtsi F., Scafuro A., Goldberg
S.: TumbleBit: An Untrusted Bitcoin-Compatible Anony-
mous Payment Hub. In 24th Annual Network and Distributed
System Security Symposium, NDSS 2017, San Diego, Califor-
nia, USA, February 26 - March 1, 2017: The Internet Society:
URL https://www.ndss-symposium.org/ndss2017/ (2017)

[22] Khalil R., Gervais A.: Revive: Rebalancing Off-Blockchain
Payment Networks. In Thuraisingham et al. [40]: pp. 439–
453: doi:10.1145/3133956.3134033: URL https://doi.org/10.
1145/3133956.3134033 (2017)

[23] Prihodko P., Zhigulin S., Sahno M., Ostrovskiy A.: Flare: An
Approach to Routing in Lightning Network: White Paper.
https://bitfury.com/content/downloads/whitepaper_flare_
an_approach_to_routing_in_lightning_network_7_7_
2016.pdf (2016)

[24] Sivaraman V., Venkatakrishnan S. B., Alizadeh M., Fanti G.
C., Viswanath P.: Routing Cryptocurrency with the Spider
Network. CoRR: vol. abs/1809.05088: URL http://arxiv.org/
abs/1809.05088 (2018)

[25] Kiayias A., Litos O. S. T.: A Composable Security Treatment
of the Lightning Network. https://eprint.iacr.org/2019/778
(2019)

[26] Canetti R.: Universally Composable Security: A New
Paradigm for Cryptographic Protocols. In 42nd Annual Sym-
posium on Foundations of Computer Science, FOCS 2001,
14-17 October 2001, Las Vegas, Nevada, USA: pp. 136–145:
doi:10.1109/SFCS.2001.959888: URL https://eprint.iacr.org/
2000/067.pdf (2001)

[27] Canetti R., Dodis Y., Pass R., Walfish S.: Universally Com-
posable Security with Global Setup. In Theory of Cryp-
tography, 4th Theory of Cryptography Conference, TCC
2007, Amsterdam, The Netherlands, February 21-24, 2007,
Proceedings: pp. 61–85: doi:10.1007/978-3-540-70936-7_4:
URL https://doi.org/10.1007/978-3-540-70936-7_4 (2007)

[28] Shamir A.: Identity-Based Cryptosystems and Signature
Schemes. In Advances in Cryptology, Proceedings of
CRYPTO ’84, Santa Barbara, California, USA, August 19-22,
1984, Proceedings: pp. 47–53: doi:10.1007/3-540-39568-7_5:
URL https://doi.org/10.1007/3-540-39568-7_5 (1984)

[29] Paterson K. G., Schuldt J. C. N.: Efficient Identity-Based
Signatures Secure in the Standard Model. In Information
Security and Privacy, 11th Australasian Conference, ACISP
2006, Melbourne, Australia, July 3-5, 2006, Proceedings: pp.
207–222: doi:10.1007/11780656_18: URL https://doi.org/
10.1007/11780656_18 (2006)

[30] Malavolta G., Moreno-Sanchez P., Schneidewind C., Kate
A., Maffei M.: Anonymous Multi-Hop Locks for Blockchain
Scalability and Interoperability. In 26th Annual Network and
Distributed System Security Symposium, NDSS 2019, San
Diego, California, USA, February 24-27, 2019 (2019)

[31] Danezis G., Goldberg I.: Sphinx: A compact and provably
secure mix format. In Security and Privacy, 2009 30th IEEE
Symposium on: pp. 269–282: IEEE (2009)

[32] Katz J., Lindell Y.: Introduction to Modern Cryptography,
Second Edition. CRC Press: ISBN 9781466570269 (2014)

[33] Bellare M., Sandhu R. S.: The Security of Practical Two-Party
RSA Signature Schemes. IACR Cryptology ePrint Archive:
vol. 2001, p. 60: URL http://eprint.iacr.org/2001/060 (2001)

[34] Boyd C.: Digital Multisignatures. Cryptography and Coding:
pp. 241–246: URL https://ci.nii.ac.jp/naid/10013157942/en/
(1986)

[35] Ganesan R.: Yaksha: augmenting Kerberos with public key
cryptography. In 1995 Symposium on Network and Dis-
tributed System Security, (S)NDSS ’95, San Diego, Cal-
ifornia, USA, February 16-17, 1995: pp. 132–143: doi:
10.1109/NDSS.1995.390639: URL https://doi.org/10.1109/
NDSS.1995.390639 (1995)

[36] MacKenzie P. D., Reiter M. K.: Two-Party Generation of
DSA Signatures. In Advances in Cryptology - CRYPTO 2001,
21st Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 19-23, 2001, Proceedings: pp.
137–154: doi:10.1007/3-540-44647-8_8: URL https://doi.
org/10.1007/3-540-44647-8_8 (2001)

[37] Ganesan R., Yacobi Y.: A secure joint signature and key
exchange system. Bellcore TM: vol. 24531 (1994)

[38] McCarthy J.: Computer Programs for Checking Mathemat-
ical Proofs. Proceedings of the Fifth Symposium in Pure
Mathematics of the American Mathematical Society: pp. 219–
227: american Mathematical Society (1961)

[39] Canetti R., Stoughton A., Varia M.: EasyUC: Using Easy-
Crypt to Mechanize Proofs of Universally Composable Secu-
rity. In 32nd IEEE Computer Security Foundations Sympo-
sium, CSF 2019, Hoboken, NJ, USA, June 25-28, 2019: pp.
167–183: IEEE: ISBN 978-1-7281-1407-1: doi:10.1109/CSF.
2019.00019: URL https://doi.org/10.1109/CSF.2019.00019
(2019)

[40] Thuraisingham B. M., Evans D., Malkin T., Xu D. (editors):
Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017: ACM: ISBN 978-1-
4503-4946-8: doi:10.1145/3133956: URL https://doi.org/10.
1145/3133956 (2017)

349

