
Abstracting Faceted Execution
Kristopher Micinski∗, David Darais†, Thomas Gilray‡

∗Syracuse University {kkmicins}@syr.edu
†University of Vermont {david.darais}@uvm.edu

‡University of Alabama at Birmingham {gilray}@uab.edu

Abstract—Faceted execution is a linguistic paradigm for dy-
namic information-flow control with the distinguishing feature
that program values may be faceted. Such values represent
multiple versions or facets at once, for different security labels.
This enables policy-agnostic programming: a paradigm permit-
ting expressive privacy policies to be declared, independent of
program logic. Although faceted execution prevents information
leakage at runtime, it does not guarantee the absence of failure
due to policy violations. By contrast with static mechanisms
(such as security type systems), dynamic information-flow control
permits arbitrarily expressive and dynamic privacy policies but
imposes significant runtime overhead and delays discovery of any
possible violations.

In this paper, we present the two different abstract inter-
pretations for faceted execution in the presence of first-class
policies. We first present an abstraction which allows one to
reason statically about the shape of facets at each program
point. This abstraction is useful for statically proving the absence
of runtime errors and eliminating runtime checks related to
facets. Reasoning statically about the contents of faceted values,
however, is complicated by the presence of first-class security
labels, especially because abstract labels may conflate more than
one runtime label. To address these issues, we also develop a more
precise abstraction that relies on an analysis tracking singleton
heap abstractions. We present an implementation of our coarse
abstraction in Racket and demonstrate its performance on several
sample programs. We conclude by showing how our precise
domain can be used to verify information-flow properties.

I. Introduction

Digital systems are used to manage sensitive data more than

ever before. As these systems continue to grow in complexity,

so do their privacy policies. In the wild, these policies are

dynamic, imperfect and evolve over time, yet we still lack the

tools to design software robust to policy evolution. Developers

face daunting (re)engineering efforts in order to ensure sys-

tems correctly implement their stated policies—the program

logic to implement these policies typically being scattered

throughout a codebase, making it hard to gain confidence in

its correctness. Unlike program crashes—which may simply

cause downtime—bugs in policy code is likely to have privacy

implications for millions of users.

There is a vibrant research community built around rea-

soning about the information-flow security of data. These

efforts have culminated in successful programming languages

(e.g., Jif [35]), analysis techniques (e.g., self-composition and

product programs [6], [5]), and core formalisms (e.g., the

dependency core-calculus and decentralized label model [34]).

However, all of these solutions assume a single static privacy

policy will hold forever. As we are reminded—often daily—

this is essentially never the case.

Policy-agnostic programming [48] allows developers to

write code that interacts with sensitive data without any

additional logic to enforce the data’s privacy policy—the

implementation of such logic is often error-prone and changes

rapidly. Instead, a dynamic monitor is used to ensure the

system respects the data’s privacy policy, regardless of the

functional program logic. This allows data to be guarded by

privacy policies that are written independently but remain as

expressive as the underlying language itself.

In this paper, we present a static analysis methodology for

programs written in the policy-agnostic style. Our technique

works by analyzing the program using a semantics built

on faceted execution—a dynamic monitor for policy-agnostic

programming. Faceted execution [3], [4] represents privileged

data via decision trees, where each node is a policy or privilege

level (keyed on a label), and branches represent views of the

data from two perspectives: one where the nodes policy grants

the privilege, and one where it doesn’t.

As computation progresses, faceted execution normally

must propagate data from both views, versions, or privilege

levels, ensuring that protected data is never leaked to an

unprivileged context other than by means of an explicit obser-

vation (and evidence that the policy holds). We leverage this

faceted semantics and design a static analysis using abstract

interpretation [11] of an abstract machine [43]. The result is a

static analysis for policy-agnostic programs which manipulate

data in a system with dynamic authorization policies.

A core technical problem in designing our abstract inter-

pretation is the choice of abstract domain for faceted values.

As we show, the natural structural abstraction for facets

is unsound, as our abstract interpretation must necessarily

approximate the set of (unbounded) runtime policies in a finite

way. Instead, we present a sound but imprecise abstract domain

for facets which merges the two branches of a facet into a

single branch representing an approximation of both values.

Additionally, we observe that we can distinguish branches as

long as the label guarding the facet is approximated by a

singleton abstraction. Therefore, we present a more precise

representation of facets whose labels can be shown to be

representing exactly one concrete label.

We implemented our abstract interpreter in Racket, scaling

our core formalism to handle k-ary lambdas, built-ins,

bindings, and conditionals. Our precise abstract domain for

facets relies on abstract counting—a technique to ascertain

whether abstractions of labels in our programs are singletons in

the analysis. Abstract counting [32] is known to be imprecise

using a global heap analysis, so we present a frontier semantics

184

2020 IEEE 33rd Computer Security Foundations Symposium (CSF)

© 2020, Kristopher Micinski. Under license to IEEE.
DOI 10.1109/CSF49147.2020.00021

for retaining high-precision abstract counting while maintain-

ing an efficient analysis overall. Our analysis then uses a lazy

count-based facet collapse, so that we can soundly move from

a high-precision analysis when possible to a sound but less

precise abstraction when necessary.

Specifically, this paper makes the following contributions:

first, we present a novel formulation of faceted execution as a

small-step semantics. We develop a sound abstract domain for

faceted values that is precise for the abstract labels guarding

its facets but imprecise for its underlying values—we call this

a branch-insensitive abstraction. Next, we present a precise

abstract domain for faceted values that retains its sensitivity

to distinct branches but is only sound for singleton abstract

labels. We present an implementation of our coarse abstract

domain in Racket and detail its performance on five benchmark

programs. We conclude by discussing how our precise abstract

domain may be applied to verify information-flow properties.

II. Background

To introduce our setting we present the implementation of

Battleship, a small guessing-based board game, using a policy-

agnostic programming paradigm. In this game, each player

has a grided board on which they place tiles (or “ships”). The

players hide their boards from each other as play progresses

in rounds. Each turn, a player guesses the position of a ship

on the other players board. If the guess is successful, that tile

is removed from the board. Play ends once one player’s board

has no remaining tiles, at which point that player loses.

We implement game boards as lists of cons cells represent-

ing the (x, y) coordinates of ships. Board creation yields an

empty list, and adding a piece is implemented using cons:

1
2 −
3

Next, we define , which takes a player’s board and

removes a piece if the guessed coordinate is present. We return

a pair of the updated board and a boolean indicating whether

the guess was a hit:

4 −
5
6
7
8
9

10
11
12 −
13
14

Although will operate on sensitive data (game

boards), it is written without any special machinery to maintain

the secrecy of . Protecting data w.r.t. policies is instead

handled automatically and implicitly by a runtime monitor.

When Alice and Bob want to play, they both create a label to

protect their game board. A label is a dynamically allocated

predicate that takes an argument, a credential—only if the

predicate returns true for the credential should the value’s

secret branch be observable. Alice’s label is used to annotate

whatever data she wants kept secret. Supposing Alice chooses

to be player 1, she will use the following label:

15
−

Bob would use a similar label (but for player 2 instead of

player 1). At runtime, the form creates a label � and

returns it to the binding for . When Alice wants to

protect a value, she creates a facet, annotated with her label

and two branches. The positive (left) branch represents the

value as it should appear to her, and the negative (right) to

everyone else:

16
− 〈 − : −

1 1 ... n n � � 〉

�

p1 �

p2 p3

In the above example, Alice uses � (lazy

failure) to represent that others parties should

fail if attempting to observe her data. In

other applications, she might choose a public

default value to reveal to others. She may

even want to create a nested facet. For ex-

ample, in a social-networking application she may want a

nested facet consisting of two labels: � and � . She

would present three views of her social-media profile: p1 to

her family, containing her phone number, p2 to her friends

showing her interests, and p3 to everyone else, showing only

name and email.
As gameplay progresses, Alice and Bob both make guesses,

and a driver calls the function with each of their

(faceted) game boards. However, because Alice and Bob’s

game boards are both facets, cannot be immediately

applied, as the argument is a facet. Faceted execution

“splits” the execution of the function on faceted arguments,

running it first on the positive branch, then again on the

negative branch. Finally, the results from each branch are

merged again to produce a faceted value:

(mark−hit 〈 �A ? v+ � v− 〉 x y)

(mark−hit v− x y)= v′′(mark−hit v+ x y)= v′

〈 �A ? v′ � v′′ 〉
Because the applied function could be stateful, faceted

execution also records the current privilege level in a program
counter when splitting evaluation over two branches of a

faceted value. The program counter is used to build new

label-guarded facets when writes are made to the store inside

a privileged context. We expand upon these subtleties in

Section III, where we present a full semantics.
To introspect on faceted values (e.g., the return value

from) we must observe them. Facet observation is

performed via the form in our semantics, which takes a

label, argument to the label, and potentially-faceted value:

= {� �→ 〈λ . 〉}
1 〈� ? v+ � v−〉 �∗

1 v+ v− �∗ v+
1 2 first executes the predicate associated with

using the argument 1. Then, will remove all of the

facets from 2, selecting either the positive or negative branch

based on whether the label’s predicate returns true or false. For

example, (�)(1)�∗ , so select the right side of

the Alice’s facet.

185

Analyzing Faceted Execution. Faceted execution will

ensure at runtime that no secret information leaks from Alice

to Bob. However, faceted execution cannot guarantee sensible

results (e.g., observing � results in failure). We want to be

able to write code independent of the policy, while retaining

the robustness of dynamic policies. Faceted execution achieves

this at runtime, but doesn’t tell us anything about the policy

statically. Additionally, faceted execution is a fairly heavy-

weight dynamic monitor, imposing significant performance

overhead, especially on code that uses many-faceted values.

Ideally, we want the best of both worlds: the flexibility of

dynamic policies with the ability to verify many of them up-

front. In the case that we cannot verify a policy ahead of time—

as all analyses must concede some degree of imprecision—we

can gracefully degrade to normal faceted execution.

Static analysis has dynamic monitoring to fall back on,

where it fails, so whatever can be learned statically will be of

benefit to optimization and verification with no improvement

being the worst case. This case may arise when complex and

dynamic use of faceted values thwarts analysis by requiring

it to see through many layers of abstraction. Neither the

failures or successes of static analysis will lead to an increased

permissiveness in the compiled application: failures can fall

back on dynamic monitoring, successes correspond to true

proofs that the application code must behave as indicated by

the analysis. Analysis is at odds with dynamic monitoring

in that all relevant code should be available or an analysis

cannot help but yield no information. For example, a system

may allow for security or privacy policies to be updated live,

without rebuilding the application code; in this case, static

analysis can only verify properties that are fully independent

of any information-control policies. Static analysis can only

verify specific properties of code that is available at analysis-

time.

For this example, our static analysis (developed in Sec-

tion IV) tells us that every call to selects only the positive

view of a faceted value. This could be used to gain confidence

in the program’s security despite the use of dynamic policies.

It also enables an optimization: as the program never violates

the policy, the negative branch of the facets don’t need to be

computed at all. Inside of a compiler (for programs written in

policy-agnostic languages) this result could be used to elimi-

nate the machinery needed to manage faceted applications.

III. Semantics of Faceted Execution

Figure 1 gives the syntax for our source language. λFE

extends the lambda calculus with mutable references and three

new forms unique to faceted execution: label creation, facet

creation, and facet observation. Our implementation (described

in Section V) also includes bindings, conditionals, various

builtins, k-ary lambdas, and sequencing.

The form dynamically generates and returns a new

label each time it is evaluated. Such labels uniquely address a

policy predicate comprised of a policy variable x and a policy

body e (closed by parameter x and the current environment).

When a policy is later invoked, the body evaluates to a

boolean that indicates whether to observe the positive or

c ∈ � () | | | . . . constants
x ∈ � 〈identifiers〉 variables
e ∈ � c | x constants | variables

| λx. e | e(e) function creation | application
| (e) | ! e | e ← e reference creation | read | write
| [x](e) label creation
| 〈e ? e � e〉 facet creation
| [e e](e) observing a faceted value

Fig. 1. Syntax of λFE

negative branch of a facet. Facets are created with the form

〈e1 ? e2 � e3〉 where the label (address) returned by e1 is

allowed to be an expression (as label addresses are first-class).

The expressions e2 and e3 are the facet’s positive and negative

branches, respectively. To introspect on a faceted value, the

expression [e1 e2](e3) observes the label e1 of faceted

value e3. The expression e2 is evaluated to a key value and

passed to the policy predicate bound to the label bound to e1—

if the policy predicate returns true, all facets guarded by label

e1 under e3 are replaced by their positive branch, or negative

branch when the predicate returns false.

We formalize the concrete semantics of λFE as a big-step

reduction relation presented in Figure 2. Our presentation pri-

marily follows that of Austin et al. [3]. The reduction relation

⇓E
pc takes an environment (ρ), store (σ), and term (e), to

produce a final value and store. The relation is parameterized

by a current program counter (pc) which is a set of branches:

positive or negative labels. As evaluation splits to evaluate the

positive and negative branches of facets, the program counter

remembers which branches were taken. The program counter

is used for two reasons. First, it avoids doing redundant work

by selecting the left branch of a facet such as 〈� ? v+ � v−〉
when +� ∈ pc, rather than splitting. Second, it is used during

store update to form facets that remember the label of the

privileged information along the branch.

The rules for constants (Const), variables (Var), and lambda

(Lam) are standard. However, many other rules must be ex-

tended to account for faceted values. For example, application

(App) must handle faceted values being applied. Consider the

application (� ? λx. x � λx. 0)(1). To handle this, the App rule

calls out to an application relation ⇓A
pc. This reduction splits

execution in the case that a facet with label � is applied to a

value (AppFacetSplit), as long as {+�,−�}∩pc = ∅, indicating

that execution has not yet split on � (so we cannot be sure if

we have permission for label � yet). The application rule first

considers the positive branch, applying 〈λx. x, ρ〉 to 1 while

extending pc to record the fact that the positive branch was

taken. The AppBase rule applies unfaceted values to arguments

in the expected way. Next, the negative branch is evaluated

under the extended program counter pc ∪ {−�}, being careful

to thread through the store produced by the evaluation of the

positive branch. After both branches are evaluated, the rule

facets the results again using label �, in this case producing

〈� ? 1 � 0〉. To avoid creating redundant facets, the application

rules do not split execution when a branch is already present in

pc. Instead, the rules AppFacetLeft and AppFacetRight select

the appropriate branch of the facet to apply. Last, AppStar

handles the application of �, a value representing lazy failure,

useful as a default value for store updates.

186

α ∈ � . . .
� ∈ � . . .

bv ∈ � c | α | � | 〈λx. e, ρ〉 | �
v ∈ � bv | 〈� ? v � v〉

b ∈ � +� | −�
pc ∈ � ℘()
ρ ∈ � ⇀
σ ∈ � � ⇀

(Selected rules only. . .) ρ, σ, e ⇓E
pc σ, v

Lam

ρ, σ, λx. e ⇓E
pc σ, 〈λx. e, ρ〉

Read

ρ, σ, e ⇓E
pc σ

′, v v′ = (pc, σ′, v)
ρ, σ, ! e ⇓E

pc σ
′, v′

Facet

ρ, σ, e1 ⇓E
pc σ

′, � ρ, σ′, e2 ⇓E
pc σ

′′, v1 ρ, σ′′, e3 ⇓E
pc σ

′′′, v2
ρ, σ, 〈e1 ? e2 � e3〉 ⇓E

pc σ
′′′, 〈〈� ? v1 � v2〉〉

App

ρ, σ, e1 ⇓E
pc σ

′, v1 ρ, σ′, e2 ⇓E
pc σ

′′, v2 σ′′, v1(v2) ⇓A
pc σ

′′′, v
ρ, σ, e1(e2) ⇓E

pc σ
′′′, v

Write

ρ, σ, e1 ⇓E
pc σ

′, v1 ρ, σ′, e2 ⇓E
pc σ

′′, v2 σ′′′ = (pc, σ′′, v1, v2)
ρ, σ, e1 ← e2 ⇓E

pc σ
′′′, ()

Obs

ρ, σ, e1 ⇓E
pc σ

′, � ρ, σ′, e2 ⇓E
pc σ

′′, v2
ρ, σ′′, e3 ⇓E

pc σ
′′′, v3 σ′′′, σ′′′(�)(v2) ⇓A

pc σ
′′′′, b

ρ, σ, [e1 e2](e3) ⇓E
pc σ

′′′′, (�, b, v3)

(Selected rules only. . .) σ, v(v) ⇓A
pc σ, v

AppBase

ρ[x �→ v], σ, e ⇓E
pc σ

′, v′

σ, 〈λx. e, ρ〉(v) ⇓A
pc σ

′, v′
AppStar

σ,�(v) ⇓A
pc σ,�

AppFacetSplit

{+�,−�} ∩ pc = ∅
σ, v1(v3) ⇓A

pc∪{+�} σ
′, v′1 σ′, v2(v3) ⇓A

pc∪{−�} σ
′′, v′2

σ, 〈� ? v1 � v2〉(v3) ⇓A
pc σ

′′, 〈〈� ? v′1 � v′2〉〉
∈ × × ⇀

(�, b, bv) � bv
(�, , 〈� ? v1 � v2〉) � v1

(�, , 〈� ? v1 � v2〉) � v2
(�, b, 〈�′ ? v1 � v2〉) � 〈�′ ? (�, b, v1) � (�, b, v2)〉 where � � �′

Fig. 2. Concrete Big-step Semantics (Selected Rules)

The Facet rule creates a faceted value by calling out to the

〈〈· ? · � ·〉〉 meta-operator, which canonicalizes a facet. Facet

canonicalization ensures that all facets exist in a normal form,

and prevents the creation of facets such as 〈� ? 〈� ? a � b〉 �
〈� � c � d〉〉, collapsing this instead to 〈� ? a � d〉. Sets of

labels can also be given where 〈〈∅ ? v1 � v2〉〉 = v1 and 〈〈{k} ∪
pc ? v1 � v2〉〉 = 〈〈k ? 〈〈pc ? v1 � v2〉〉 � v2〉〉. This technique

was first used by Austin et al. [3] to optimize the runtime

of faceted programs, since the semantics is otherwise doing

redundant work. We omit the definition of canonicalization

due to space: the interested reader can refer to Figure 6 in [3].

Labels are created with the Label rule. This rule extends the

store with a new closure, and binds it to a fresh label address

�, returning �. Because the label may be produced under a non-

empty program counter, the label address is faceted under the

current pc, with a default value of �. Unless the label escapes

its enclosing context, it is essentially an unfaceted value, as

the subsequent Obs rule will unfacet � using the current pc

when checking the policy associated with the label.

l = [x]()
f v = 〈l ? 100 � 200〉
l = x
[l](f v)

Labels in our semantics are

store-allocated, rather than lexi-

cally scoped. This is important

to retain the security of program

values. To understand why, consider the example on the right,

which rebinds the label �. In our semantics, this will result

in the faceted value 〈�1 ? 100 � 200〉, not 200—�1 is the

label address generated by the first use of the Label rule (on

line 1). If the semantics for label introduction rebound the

current l from the lexical environment, instead of dynamically

generating a fresh one and returning it as a first-class address,

the program would be able to circumvent the label originally

associated with the facet by simply rebinding to a more

permissive policy (e.g., λx. true).

The Obs rule evaluates syntax [e1 e2](e3), which intro-

spects on a faceted value e3. It first evaluates e1 to a label �,
e2 to a value v2, and e3 to a possibly-faceted value v3, and

calls out to the meta-operator (�, b, v3). This meta-operator

performs the observation, returning the base value in the case

its argument v3 is a base value, and the appropriate branch

(based on b) if v3 is a facet whose label is �. Otherwise (as

the facet being observed may be farther down the tree),

recurs to both its branches, rebuilding facets upon its return.

Our semantics allows references, reads, and writes via the

Ref, Read, and Write rules respectively. The Ref rule creates a

new reference cell in the store and initializes it with the result

of the expression e. Crucially, Ref must remember the current

pc upon creating a faceted value. For example, consider the

evaluation of (λx. (x))(〈� ? 1 � 0〉). During the positive

branch of 〈� ? 1 � 0〉, we have that pc = {+�}, via the

AppFacetSplit and AppBase rules. Under this pc, the Ref rule

creates a reference to 〈� ? 1 � �〉, as simply returning a

reference to 1 would strip away the label � and would permit

the exfiltration of sensitive data.

The Read and Write rules are similar, remembering that if

they modify the store they must do so in a way that respects

pc. Read uses the metafunction , which takes pc as an

argument and uses it to return the correct branch of a faceted

reference cell. For example, ({+�}, σ, 〈� ? 1 � �〉) returns

1 and ({−l}, σ, 〈� ? 1 � �〉) returns �. The Write rule

is similar, using the value presently in the cell as the default

value in the case of facet construction.

The Projection Property and Noninterference. Austin et

al. [3], [4] demonstrate how faceted execution simulates mul-

tiple concrete runs, one for each combination of branches in

℘(). This is done via a projection property. Projection

interprets every q ∈ ℘(branch) as projection of 〈� ? v+ � v−〉
to v+ if +� ∈ q and to v− if −� ∈ q. This is extended to environ-

ments and stores in the expected way. We say that two sets of

branches pc and q are consistent when they do not contradict

on any labels, i.e., ¬∃�.(+l ∈ pc∧−l ∈ q)∨(−l ∈ pc∧+l ∈ q).

Theorem III.1 (Projection Theorem). Suppose ρ, ρ, e ⇓E
pc σ

′, v.
Then for any q ∈ ℘(branch) such that pc and q are consistent,
q(ρ), q(σ), q(e) ⇓E

pc\q q(σ′), q(v).

As our semantics is largely similar to that in Austin et al. [4]

(which updates the projection theorem to include support for

first-class labels), we elide the proof of the projection theorem.

The projection theorem can be used to immediately prove

termination-insensitive noninterference, as shown in [3], [4].

Small-Step Semantics of Faceted Execution. As a

first step towards abstraction, we reformulate our big-step

semantics in the small-step style using an abstract machine. We

187

a ∈ � c | x | λx. e
e ∈ � a | (a) | ! a | a ← a | a(a)

| [x](e) | 〈a ? e � e〉 | [a a](a)

κ ∈ � ∗
f r ∈ � 〈� ? � � E〈e, ρ, pc〉〉 | 〈� ? � � A〈v, v, pc〉〉

| 〈� ? v � �〉 | O〈�, �, v〉 |
ς ∈ � E〈e, ρ, pc, σ, κ〉 eval

| A〈v, v, pc, σ, κ〉 apply
| T 〈v, σ, κ〉 return

A�·� : × ⇀ A�c�(ρ) � c A�x�(ρ) � ρ(x) A�λx. e�(ρ) � 〈λx. e, ρ〉

ς� ς
E〈a, ρ, pc, σ, κ〉� T 〈v, σ, κ〉 where v = A�a�(ρ)

E〈 (a), ρ, pc, σ, κ〉� T 〈α, pc, σ[α �→ v′], κ〉 where v = A�a�(ρ) v′ = 〈〈pc ? v � �〉〉 α � (σ)
E〈! a, ρ, pc, σ, κ〉� T 〈 (pc, σ, v), σ, κ〉 where v = A�a�(ρ)

E〈a1 ← a2, ρ, pc, σ, κ〉� T 〈(), (pc,σ,v1,v2),κ〉 where v1 = A�a1�(ρ) v2 = A�a2�(ρ)
E〈a(a), ρ, pc, σ, κ〉� A〈v1, v2, pc, σ, κ〉 where v1 = A�a1�(ρ) v2 = A�a2�(ρ)

E〈 [x](e), ρ, pc, σ, κ〉� T 〈�, σ[� �→ v], κ〉 where v = 〈〈pc ? 〈λx. e, ρ〉 � �〉〉 � � (σ)
E〈a ? e1 � e2, ρ, pc, σ, κ〉� E〈e1, ρ, pc ∪ {+�}, σ, κ′〉 where � = A�a�(ρ) κ′ = 〈� ? � � E〈e2,ρ,pc〉〉 :: κ

E〈 [a1 a2](a3),ρ,pc,σ,κ〉� A〈σ(�), v2, ρ, pc, σ, κ′〉 where � = A�a1�(ρ) v2 = A�a2�(ρ) v3 = A�a3�(ρ) κ′ = O〈�, �, v3〉 :: κ
A〈〈λx. e, ρ〉, v, pc, σ, κ〉� E〈e, ρ[x �→ v], pc, σ, κ〉

A〈�, v, pc, σ, κ〉� T 〈�,σ, κ〉
A〈〈� ? v1 � v2〉, v, pc, σ, κ〉� A〈v1, v, pc, σ, κ〉 where +� ∈ pc
A〈〈� ? v1 � v2〉, v, pc, σ, κ〉� A〈v2, v, pc, σ, κ〉 where −� ∈ pc
A〈〈� ? v1 � v2〉, v, pc, σ, κ〉� A〈v1, v, pc, σ, κ′〉 where {+�,−�} ∩ pc = ∅ pc′ = pc ∪ {+�} κ′ = 〈� ? � � A〈v2,v,pc〉〉 :: κ

T 〈v,σ,〈� ? � � E〈e,ρ,pc〉〉::κ〉� E〈e, ρ, pc ∪ {−�}, σ, 〈� ? v � �〉 :: κ〉
T 〈v,σ,〈� ? � � A〈v1,v2,pc〉〉::κ〉� A〈v1, v2, pc ∪ {−�}, σ, 〈� ? v � �〉 :: κ〉

T 〈v1, σ, 〈� ? v2 � �〉 :: κ〉� T 〈〈〈� ? v1 � v2〉〉, σ, κ〉
T 〈b, σ,O〈�, �, v〉 :: κ〉� T 〈 (�, b, v), σ, κ〉

Fig. 3. Concrete Small-step Syntax and Semantics

assume that expressions in our language have been converted

to A-Normal Form [16], shown in the top of Figure 3. Our

atomic expressions include constants, variables, and lambdas,

which are evaluated using A�·�.
The top of Figure 3 also shows the configurations of our

abstract machine. Configurations include environments (ρ),
stores (σ), and program counters (pc)—all with the same

structure as in Figure 2. Additionally, configurations include

stacks, which are lists of frames.

The E and A configurations in our small-step semantics

correspond to the reduction relations ⇓E
pc and ⇓A

pc in Figure 2

respectively. Starting from evaluation of both E and A, com-

putation terminates with a value in the T configuration, which

inspects the continuation and handles it appropriately.

The small-step semantics are shown in Figure 3. Stack

frames track work left to be done once reaching a value. For

example, in the AppFacetSplit rule, the reduction ⇓A
pc first eval-

uates the positive branch of the facet using the ⇓E
pc∪{l} reduction,

before then evaluating the negative branch. This corresponds

to the rule for A〈〈l ? v1 � v2〉...〉 in the small-step semantics,

which first performs the application of v1, extending pc with

+�. However, this rule uses the l ? � � A〈v2, v, pc〉 frame to

remember to apply v2 before forming a result using v, and

tracking l to ensure that {−l} is added to pc.

Expression evaluation occurs within the E configuration,

which defers to the other configurations when it encounters

possibly-faceted values. The evaluation of atomic expressions,

reference creation, label creation, reads, and writes are all

analogous to the big-step semantics, and immediately produce

a T state. Application defers to A, which applies the argument

v2 to the possibly-faceted function v1. The A configuration

reduces v1 to a base value before finally applying it, building

continuations along the way to explore negative branches.

Facet creation defers to E to evaluate the positive branch of

the facet while extending pc with +�, remembering to go back

and evaluate the negative branch using the 〈� ? ��E〈e2, ρ, pc〉〉
frame (which must remember � and pc so that e2 can be run

with {−�} ∪ pc). Observation first evaluates each of the label,

parameter, and value to observe to values. It then applies σ(�)
(as � is store-allocated) to the parameter. This application must

result in a boolean, and when it does so, the O〈�,�, v3〉 frame

will be indicate that an observation should be performed on

v3, reducing the � facet in v3 to its positive or negative branch.

As previously mentioned, the A configuration performs

applications. The base case defers to the E rule using the

closure’s body and extending the environment for the binding.

In the case that v1 is a facet, the A configuration will

recursively pull apart facets, via subsequent A forms, and

remembers the negative branch in a continuation. As in the

big-step semantics, if a facet with label � is applied and either

+� ∈ pc or −� ∈ pc, the appropriate branch of the facet is

taken to avoid redundant splitting.

The T rule decides what to do with a value based on the last

frame in the stack. The 〈� ? � � E〈e, ρ, pc〉〉 frame explores

the negative branch e of a facet during facet creation, and

pushes the 〈� ? v � �〉 frame onto the stack. This frame

remembers to create a facet from �, v, and the value in

the value position of the T frame. As mentioned previously,

� ? v � A〈v1, v2, pc〉 remembers to jump back to evaluate

the application of a negative branch, remembering to create

the facet upon completion. The O〈�,�, v〉 frame performs an

observation, by calling out to the (�, b, v3) meta-operator.

We conclude this section by the statement of a theorem

that stipulates our small-step semantics simulates our big-

step semantics. The full statement of this theorem and its

corresponding proof may be found in a companion tech

report [30]. Our theorem, small-step simulation, establishes

a mapping from each evaluation in the big-step semantics to

a corresponding sequence of steps in our small-step semantics

(nothing is said about the other direction). Given this theorem,

our big-step semantics is approximated by our small-step

semantics, which is in turn approximated by the abstract

interpretation developed in section IV. Taken together, this

gives us soundness for safety properties.

188

Theorem III.2 (Small-step Simulation). The small-step se-
mantics simulates the big-step semantics, that is, the following
are mutually true:

1) For all ρ, σ, e, σ′ and v.
If: ρ, σ, e ⇓E

pc σ
′, v

Then for all: κ
E〈e, ρ, pc, σ, κ〉�∗ T 〈v, σ′, κ〉

2) For all: σ, v1, v2, σ′ and v:
If: σ, v1(v2) ⇓P

pc σ
′, v

Then for all: κ
A〈v1, v2, pc, σ, κ〉�∗ T 〈v, σ′, κ〉

Proof. We omit a detailed proof here and defer its details to a

tech report. The proof proceeds by mutual induction on each

of the big-step derivations along with a lemma establishing

simulation for atomic values. �

IV. An Abstract Semantics for Faceted Execution

We develop a static analysis of this faceted execution

semantics using the framework of abstracting abstract ma-
chines (AAM): a general approach to developing abstract
interpretations of abstract-machine semantics [44]. Abstract

interpretation is a well-explored set of tools and techniques

for approximating the fixed points of a semantic function over

an infinite lattice either by structurally finitizing the lattice

(formalizing a Galois connection between the infinite and finite

lattice) or by accelerating convergence to a fixed point (using

a widening operator), or both [11], [12]. The heart of the

AAM approach is the use of small-step transitions, preparatory

store-allocating transformations shown in section IV-C that

break direct recursion in the state space, and the systematic

derivation of Galois connections for higher-order machine

components (such as abstract stores) by composing Galois

connections for lower-order components (such as abstract

addresses and abstract first-order values).

The problem with structurally abstracting a traditional op-

erational interpreter for the λ-calculus lies in the recursive

nature of closures: closures include environments which can

include closures, and so forth to an arbitrary depth. It should

be no surprise as this feature is precisely what makes uni-

versal computation through higher-order recursion possible

with only variable reference, lambda, and application. All

static analyses, however, must voluntarily concede precision

in order to achieve guarantees of computability (and bounded

complexity).

The AAM methodology is to prepare a small-step machine

for abstraction by first store-allocating all values (not just

explicit ref cells). This means that binding environments

map variables to store/heap addresses, and stores map these

addresses to values (e.g., closures, ref addresses, base values).

At this point, the address set, along with the domains for base

values, can be finitized: abstracted to a finite set of abstract
addresses at which an approximation of multiple concrete

values become conflated during analysis. This imprecision in

the store, where a single abstract address can map to many pos-

sible concrete values, goes hand-in-hand with nondeterminism

in the small-step transition relation (e.g., multiple closures can

be bound to at a call site).

� = λa. �̂[x](x ?
= a)

= (ALICE) ; = 〈 ? TAILS � �〉
= (BOB) ; = 〈 ? HEADS � �〉

e1 � [BOB]()
e2 � 〈 ? � �〉

(C1) e1 �∗ [� BOB](〈� ? TAILS � �〉) �∗ 〈� ? TAILS � �〉
(U1) ê = e1
σ̂ = ∅

�̂∗ ê = [̂� BOB](〈̂� ? TAILS � �〉)
σ̂ = {̂� �→ {〈λx. x ?

= a, {a �→ ALICE}〉
,〈λx. x ?

= a, {a �→ BOB}〉}}

�̂∗ ê = {TAILS, �}
σ̂ = . . . unchanged

(C2) e2 �∗ 〈〈� ? 〈� ? TAILS � �〉 � �〉〉 �∗ 〈� ? 〈� ?TAILS��〉
� 〈� ? � � �〉〉

(U2) ê = e2
σ̂ = ∅

�̂∗ ê = 〈〈̂� ? 〈̂� ? TAILS � �〉 � �〉〉
σ̂ = {̂� �→ {〈λx. x ?

= a, {a �→ ALICE}〉
,〈λx. x ?

= a, {a �→ BOB}〉}}

�̂∗ ê = 〈̂� ? TAILS � �〉
σ̂ = . . . unchanged

Fig. 4. An example of concrete and abstract faceted execution. (C1) and (C2)
are concrete executions, and (U1) and (U2) are unsound candidate abstract
executions.

Finitizing the store is fundamentally how AAM cedes preci-

sion in order to gain a finite, computable, and sound analysis,

and the selection of abstract addresses in this process has also

been shown to be a exceptionally broad parameter with which

to tune analysis polyvariance (e.g., context sensitivity) [19].

Once a finite domain for abstract addresses and abstract base

values has been selected, these abstractions (formally Galois

connections) may be systematically lifted to abstractions for

stores, environments, and machine states [31].

A. Challenges Abstracting Faceted Values

As much of the AAM process for a language like ours

is standard, the core issue is our representation for abstract

values—especially abstract faceted values. The representation

of abstract base values is relatively straightforward: we ab-

stract constants with a flat lattice (e.g., ⊥ � 1 � �, but

1 � 2 and 2 � 1). We abstract closures to a powerset of

abstract closures (that is, a syntactic lambda paired with an

abstract environment mapping variables to abstract addresses).

We abstract addresses for ref cells to a powerset of abstract

addresses. Finally, we abstract concrete addresses according to

our desired polyvariance—in the simplest case, this means as-

signing one abstract address to each syntactic variable (called

monovariance or context insensitivity).

We are now faced with our choice of a domain for abstract

faceted values. As a first attempt, we might structurally ab-

stract facets via their components. Unfortunately, this approach

is necessarily unsound if we want to retain any precision in

our abstraction of facet-structure (i.e., the existence of labels

and differentiation of branches).

To understand the issue, consider Figure 4. The top of the

figure shows two examples, and , sharing a common

prologue . The setting for our examples is a guessing

game in which Alice and Bob both place bets as to the result of

a coin flip (heads or tails). Both players will use facets to hide

the information from each other. The function takes

an argument and returns a label (capturing in the closure

encoding the label’s policy) that will reveal its positive branch

only to a user with key . The label uses

to generate a label specialized to key ALICE, and Alice’s bet is

189

faceted on this label. Similarly, Bob creates a label

that reveals its positive branch to himself, and facets his bid

for HEADS. The example attempts to observe Alice’s facet via

Bob’s label, which should make no change to the faceted value

because � is not present in it. Second, forms a facet of

Alice’s bet under Bob’s label, which our concrete semantics

represents as a faceted value encoding a decision tree with

two levels: one for Alice’s label, and one for Bob’s. Only

after successively observing on both of these labels will the

bet become visible.

Directly under the example, we show a concrete execution

(C1) of via the small-step semantics (abbreviated somewhat

for presentation). Starting with the initial state for , control

will eventually step to the form on the last line, in a

configuration where a label � was dynamically generated for

by the rule for in Figure 3. In our example, the

labels and are distinct addresses at runtime,

and so the observation on the last line is simply a no-op. The

rule for facet observation (see in figure 2) splits in the

case that the label being observed is different than the one

guarding the facet, and both branches (TAILS and �) are base

values—which are simply returned when observed. The final

result is the same facet that was originally being observed:

〈 � ? TAILS � � 〉. Similarly, (C2) shows a concrete execution

of . As control steps to the facet creation form,

will become bound to a faceted value representing Alice’s bet.

Facet creation in the final expression will then create a facet

with Bob’s label, guarding , and canonicalization will

reorder the labels. The result is a tree of facets placing the

result TAILS under the branch {+� ,+� }. Canonicalization

ensures that labels appear in some sorted order, so Alice’s

label will appear higher than Bob’s in the tree.

Below each concrete execution we demonstrate a trace show-

ing the behavior using the proposed abstract interpretation of

the corresponding example using our naïve structural abstrac-

tion. To ensure termination, the abstract semantics conflates

certain values, and in particular must necessarily finitize the

set of labels. A monovariant allocator will generate an abstract

address for each label unique to its program point. In our

concrete semantics, the two distinct calls to generate

two distinct labels � and � . By contrast, a monovariant

semantics generates a single abstract label �̂, based on the

program point in at which the label is created.

As we execute the prologue in an abstract setting,

the first call to returns the label �̂. In the store, this

label maps to a policy closed over the environment { �→ ALICE}.
Upon executing the third line of the example, is called

again, extending �̂ so that its policy also closes over { �→ BOB}.
At this point, the abstract semantics cannot differentiate

between what would have been (in the concrete semantics)

� and � . Therefore, when control reaches the form in

, instead of splitting on � (as would have been done in the

concrete semantics), the abstract label for Bob’s bet is now the

same as the label on Alice’s bet being observed. This could

result in the facet protecting Alice’s value to be removed, as

shown in (U1), and yielding the abstract value {T̂AILS, �̂}.
Two Broken Interpretations for Abstract Facets. There

are two naïve ways we may interpret {T̂AILS, �̂}. First, we

might interpret the abstract value {T̂AILS, �̂} as simply the set

of concrete values {TAILS, �}. In other words, we may take the

view that an abstract base-value is definitely not faceted, and

that an abstract facet is definitely not a base value. However,

this concretization does not include the faceted layer gener-

ated by the concrete semantics, and thus incorrectly “proves”

(unsoundly) that a base value results from the observation.

Alternatively, we might interpret all abstract values as

possibly faceted or not. If we were to take this approach,

we would achieve a sound result, concretizing {T̂AILS, �̂} as

〈 � ? {TAILS, �} � {TAILS, �} 〉 � {TAILS, �}, (really, under all possi-

ble concrete �) which includes the result in the concrete run.

However, if we interpret abstract values in this manner, we lose

all precision for facet structure (retaining only information

for base values), as we must interpret any faceted value

〈 � ?̂+ � ̂ 〉 as ̂+ �̂ and vice-versa.

An abstract execution of using the proposed semantics is

also an issue. In this case, as shown in (U2), the facet creation

form now acts as a no-op since and share

the abstract label �̂. Instead of creating a decision tree with

two levels, the comparison proceeds to create a single facet

guarded by an abstract label representing the disjunction of

Alice’s label or Bob’s label. If we take the first approach in

interpreting this abstract value, we would view it as definitely

faceted on �̂, over the concretization of each branch (i.e.,

{TAILS, �}), but would not know if it were actually faceted on � ,

� , or both. If we interpret the concretization of abstract labels

disjunctively, Bob’s bet could appear visible to Alice (or the

reverse); if we interpret the concretization conjunctively, Bob’s

bet could appear opaque to himself. In either case our analysis

is unsound. On the other hand, the naïve, sound interpretation

treats any abstract value (explicitly faceted or not) as being

potentially faceted by arbitrary further labels (or not at all),

which is useless for verifying security policies.

In fact, this situation is worse than it first appears: any aspect

of our concrete semantics that compares labels can no longer

be relied on (to be—to any degree—both sound and precise)

in the abstract setting. For example, many the rules in Figure 3

decide whether or not to split based on whether a particular

label is in . In our abstract semantics, this inclusion check

can no longer make such determinations for abstract labels.

Representing an abstract facet 〈 �̂ ?̂+ � ̂ 〉 is sound as long

as �̂ is not an abstraction of multiple concrete labels; once this

happens however, the branches ̂+ and ̂ can no longer be

soundly kept distinct. This necessitates that the negative facet

of one concrete label must be conflated with the positive facet

of the other and vice-versa. We leverage this specific insight to

develop a sound and precise solution to the branch sensitivity
problem in Section IV-D.

B. Toward a Sound Abstract Domain for Facets

As a first step toward sound and precise abstract facets, we

formulate a sound abstraction which is precise for the most

essential aspect of facet structure: the abstract labels that are

associated with a faceted value. A key is to observe that faceted

values are a decision tree, and the problem of representing

the abstract labels that may—and that must—facet the value,

190

exists at each level of this tree. We construe this problem

as orthogonal to branch sensitivity (keeping positive facets

soundly distinct from negative facets) and present an abstract

domain for precisely representing the abstract labels that may

and must exist for a value.

For the moment, we give up on branch sensitivity and

conflate all positive and negative facets. Instead, we represent

faceted values as a label over the join of both branches,

〈̂� ? ̂+ �̂ 〉. Although this abstraction of facets does not

allow us to distinguish branches in faceted values, it still

provides us with a sensible result: is the value reaching a

program point faceted and, if so, what base values are being

faceted. For example, we can envision using this analysis in

an optimizing compiler for faceted programs that drops the

dynamic machinery for performing faceted application in the

case that only base values reach a particular application form.

In defining an abstract domain, we must also define a join

operator (�) for abstract facets. This leads to an immediate

question: how should base values be joined into abstract

facets—in other words, if we represent abstract facets as

〈̂� ? 〉̂, how should we perform the join ̂ � 〈̂� ? 〉̂? It is

natural to simply define � such that ̂ � 〈̂� ? 〉̂ is equal to

〈̂� ? ̂�̂〉 or equal to ̂�̂, but, as we’ve discussed, is

unsound if we want precision for facet structure. Consider the

following example (using monovariant allocation) which leads

to such a conflation:

1
2 1 〈 � ? � 〉
3 2

4 � 2

A concrete execution of this program will result in an error:

the form does not work for faceted values. Because

is called twice, the abstract value for will be the join of

abstractions 〈� ? � 〉 and . If we define � to distribute

inside of the facet, the abstraction of will be a faceted value

〈� ? �〉 (as we use a flat lattice to abstract constants, the join

of two different constants is �). Instead, we generalize our

domain for abstract values to be product of base values and

faceted value (see ̂ in figure 5). This allows us to directly

represent values which must be a base value (̂ × ⊥), must

be faceted (⊥ × ̂), or could be either (̂ × ̂). With this

encoding, the abstraction for in the above example can be

represented: × 〈 ? �〉.
There is one last subtlety in defining �, which relates how

to merge facets with different labels. We might be tempted to

merge faceted values using canonicalization. To see why this

is incorrect, consider the following example:

1 −
2 〈 − ? � 〉
3 〈 − ? � 〉

In a concrete execution, the first call to returns a

base value, while the second returns a faceted value. How-

ever, if we use a canonicalizing join, the abstract execution

merges the two facets 〈 �̂B ? X � Y 〉 and 〈 �̂A ? X � Y 〉 to

produce 〈 �̂A ? 〈 �̂B ? X � X � Y 〉 � 〈 �̂B ? Y � X � Y 〉 〉. As a

result, both calls to produce a facet guarded by �̂B, incorrectly

“proving” that the first call to returns a facet.

We could avoid both of these issues by identifying facets

with base values, essentially interpreting 〈̂� ? ̂+ �̂ 〉 aŝ+ �̂ . However, we believe this would significantly hinder

the usefulness of our analysis, as we could no longer use the

analysis to tell us whether any given value was a facet or a

base value representing the join of its branches.

A Branch-insensitive Abstraction for Facets. Our

complete abstraction for branch-insensitive abstract facets is

presented in the top right of Figure 5. For base values we

assume a standard join, which can be tuned alongside the

abstraction for base values to recover the desired precision. We

also assume an injector � � for base values that takes concrete

values and injects them into an abstract representation, ̂.

Abstract faceted values are represented by ,̂ and comprise

a pair of a ̂ ∈ ̂ and a ̂ ∈ ̂ —necessary

to avoid the unsoundness of conflating facets and base values.

We represent abstract facets with a partial map (̂),

as opposed to a pair of label and underlying value, to avoid

the issues disjoining abstract faceted values with different

abstract labels. This map generalizes a single facet (with

a single collapsed branch) disjunctively to a set of labels

and their associated collapsed branches. That is, 〈̂� ? 〉̂
would be represented by {̂� �→ }̂ and 〈̂� ? ̂ 〉 � 〈̂� ? ̂ 〉 by

{(̂� �→̂), (̂� �→̂)}.
To accommodate our abstract domain for branch-insensitive

facets, we must make corresponding updates to the metafunc-

tions that interact with facets. First, facet creation (〈〈· ? ·〉〉)—
which only takes one branch in our coarse abstract domain—

must be updated to form abstract facets via maps.

Store read separately considers the addresses contained in

the base-value component, the labels in p̂c, and the facets in

the map. For each �̂ ∈ pc, unfacets �̂ from the facet map

by projecting it, calling read again to push one level down

in the facet map, and rebuilds the result as a facet. This may

seem surprising at first, as our concrete semantics unfacets

labels in pc. However, this is crucial to retain soundness, as we

must remember that � could concretize to an facet of arbitrary

depth. Separately, unwraps each label in the facet map

to perform a and rebuilds the results as a facet map.

The rule for store write is similar, separately considering the

set of base values and faceted values contained the abstract

value. Last, joins both the projection of � and a facet map

containing its projection (along with the rest of the values in

the facet map). That includes both the projection and a a

facet of the projection is crucial to soundness, again because

abstract depth does not predict concrete depth.

Finally, we define � on abstract values. Join for abstract

values distributes pointwise both for values and for facet maps

(the domain of two facet maps is joined by set union); e.g.:

〈̂1, {̂�A �→ v̂1}〉 � 〈̂2, {̂�B �→ v̂2}〉 = 〈̂1 � ̂2, {̂�A �→
v̂1, �̂B �→ v̂2}〉 but 〈̂1, {̂�A �→ v̂1}〉 � 〈b̂v2, {̂�A �→ v̂2}〉 =
〈̂1 �̂2, {̂�A �→ v̂1 � v̂2}〉. We present a Galois Connection

for our abstract domain in Section IV-E.

C. An Abstract Interpretation for Faceted Execution

We now present an imprecise but sound abstract interpre-

tation for faceted execution. Our abstract semantics extends

191

α̂ ∈ ̂

�̂ ∈ ̂

κ̂α ∈ ̂κ

r̂ ∈ ̂ � 〈λx. e, ρ̂〉
ẑ ∈ ̂ � ⊥ | �
l̂ ∈ ̂ � ⊥ | c | �

p̂c ∈ ̂ � ℘(̂)

b̂v ∈ ̂ � ̂ × ℘(̂ �̂)

× ℘(̂) × ̂

m̂ ∈ ̂ � ̂ ⇀ ̂
v̂ ∈ ̂ � ̂ × ̂

ρ̂ ∈ ̂ � ⇀ ̂ �̂
σ̂ ∈ ̂ � (̂ ⇀ ̂) � (̂ ⇀ ̂)

� (̂κ ⇀ ℘(̂))

κ̂ ∈ ̂ � f̂ r :: κ̂α

ς̂ ∈ ̂ � E〈̂e, ρ̂, p̂c, σ̂, κ̂α〉 eval
| A〈̂v, v̂, p̂c, σ̂, κ̂α〉 apply
| T 〈̂v, σ̂, κ̂α〉 return

f r ∈ � 〈p̂c ? � � E〈̂e, ρ̂, p̂c〉〉
| 〈 p̂c ? v̂ � �〉
| 〈 p̂c : �〉
| O〈p̂c, �, v̂〉
|

(Parameter) ̂ ∈ (̂ → ̂) � (̂ → ̂) � (̂ → ̂κ)

Â�·� ∈ ×̂ × ̂ ⇀ ̂ ·�· ∈ ̂ × ̂ → ̂ 〈〈· : ·〉〉 ∈ ̂ × ̂ → ̂
̂ ∈̂ × ̂ × ̂ → ̂ ̂ ∈̂ × ̂ × ̂ → ̂ ̂ ∈ ̂ × ̂ × ̂ → ̂

Â�c�(̂ρ, σ̂) � �c� Â�x�(̂ρ, σ̂) � σ̂(̂ρ(x)) Â�λx. e�(̂ρ, σ̂) � �〈λx. e, ρ̂〉�

〈b̂v1, m̂1〉 � 〈b̂v2, m̂2〉 � 〈b̂v1 � b̂v2, m̂〉 where m̂ =
⋃
�̂∈ (m̂1)∪ (m̂2)

{̂� �→ m̂1 (̂�) � m̂2 (̂�)}

〈〈̂� : 〈b̂v, m̂〉〉〉 � 〈⊥, m̂1 � m̂2 � m̂3〉 where

⎧⎪⎪⎨⎪⎪⎩ m̂1 = {̂� �→ 〈b̂v,∅〉 � m̂(̂�)} m̂2 =
⋃
�̂<�̂′∈ (m̂)

{̂�′ �→ m̂(�′)}
m̂3 =

⋃
�̂>�̂′∈ (m̂)

{̂�′ �→ 〈〈̂� : m̂(̂�′)〉〉}

̂(p̂c, σ̂, 〈b̂v, m̂〉) � v̂1 � v̂′1 � v̂′′1 � v̂2 � 〈b̂v
′
, m̂′〉 where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
v̂1 =

⊔
�α̂��b̂v σ̂(α̂)

v̂′1 =
⊔
�̂���b̂vm σ̂(̂�)

v̂′′1 =
⊔
�κ̂α��b̂v σ̂(κ̂α)

v̂2 =
⊔
�̂∈p̂c
̂(p̂c, σ̂, m̂(̂�))

m̂′ =
⋃
�̂∈ (m̂)

{̂� �→̂(p̂c, σ̂, m̂(̂�))}
b̂v
′
= ��� if ��� � b̂v ; ⊥ otherwise

̂ (p̂c, 〈b̂v, m̂〉, v̂) � σ1 � σ2 where

⎧⎪⎪⎨⎪⎪⎩ σ̂1 =
⊔
�α̂��b̂v{α̂ �→ 〈〈 p̂c ? v̂ � σ̂(α̂)〉〉}

σ̂2 =
⊔
�̂∈ (m̂)

̂ (p̂c ∪ {̂�}, m̂(̂�), v̂)

̂ (̂�, v̂, 〈b̂v, m̂〉) � m̂(̂�) � 〈b̂v, m̂1 � m̂2〉 where

⎧⎪⎪⎨⎪⎪⎩ m̂1 = {̂� �→ m̂(�)}
m̂2 =

⋃
�̂′∈ (m̂)

{̂�′ �→̂ (̂�, v̂, m̂(̂�′))}
ς̂� ς̂

E〈a, ρ̂, p̂c, σ̂, κ̂α〉� T 〈̂v, σ̂, κ̂α〉 where v = Â�a�(̂ρ, σ̂)
E〈! a, ρ̂, p̂c, σ̂, κ̂α〉� T 〈̂(p̂c, σ̂, v̂), σ̂, κ̂α〉 where v̂ = Â�a�(̂ρ, σ̂)
E〈a1←a2, ρ̂, p̂c, σ̂, κ̂α〉� T 〈(), σ̂�̂ (p̂c, v̂1, v̂2), κ̂α〉 where v̂i = Â�ai�(̂ρ, σ̂)
E〈a(a), ρ̂, p̂c, σ̂, κ̂α〉� A〈̂v1, v̂2, p̂c, σ̂, κ̂α〉 where v̂i = Â�ai�(̂ρ, σ̂)
E〈 (a), ρ̂, p̂c, σ̂, κ̂α〉

ς̂

� T 〈α̂, p̂c, σ̂�{α̂�→v̂′}, κ̂α〉 where v̂ = Â�a�(̂ρ, σ̂) v̂′ = 〈〈p̂c : v̂ � ���〉〉 α̂ = ̂ (̂ς)

E〈 [x](e), ρ̂, p̂c, σ̂, κ̂α〉
ς̂

� T 〈̂�, σ̂�{̂� �→v̂}, κ̂α〉 where b̂v = �〈λx. e, ρ̂〉� v̂ = 〈〈p̂c : b̂v � ���〉〉 �̂ = ̂ (̂ς)

E〈〈a ? e1 � e2〉, ρ̂, p̂c, σ̂, κ̂α〉
ς̂

� E〈e1, ρ̂, p̂c′′, σ̂′, κ̂α′〉 where
{

v̂ = Â�a�(̂ρ, σ̂) p̂c′′ = p̂c ∪ p̂c′ κ̂ = 〈p̂c′ ? � � E〈̂e2, ρ̂, p̂c〉〉 :: κ̂α
p̂c′ = {̂� | �̂�� � v̂} κ̂α′ = ̂ (̂ς) σ̂′ = σ̂ � {κ̂α′ �→ �̂κ�}

E〈 [a1 a2](a3), ρ̂, p̂c, σ̂, κ̂α〉
ς̂

� A〈̂v, v̂2, p̂c, σ̂′, κ̂α′〉 where
{

v̂i = Â�ai�(̂ρ, σ̂) v̂ =
⊔
̂(p̂c, σ̂, �p̂c′�) κ̂ = O〈p̂c′, �, v̂3〉 :: κ̂α

p̂c′ = {̂� | �̂�� � v̂1} κ̂α′ = ̂ (̂ς) σ̂′ = σ̂ � {κ̂α′ �→ �̂κ�}
A〈〈b̂v, m̂〉, v̂, p̂c, σ̂, κ̂α〉� T 〈���, σ̂, κ̂α〉 where ��� � b̂v
A〈〈b̂v, m̂〉, v̂, p̂c, σ̂, κ̂α〉

ς̂

� E〈e, ρ̂[x �→ α̂], p̂c, σ̂′, κ̂α〉 where �〈λx. e, ρ̂〉� � b̂v σ̂′ = σ̂ � {α̂ �→ v̂} α̂ = ̂ (̂ς)

A〈〈b̂v, {̂� �→v1}�m̂〉, v̂2, p̂c, σ̂, κ̂α〉
ς̂

� A〈̂v1, v̂2, p̂c′, σ̂′, κ̂α′〉 where p̂c′ = p̂c∪{̂�} κ̂α′ = ̂ (̂ς) κ̂ = 〈p̂c′ : �〉::κ̂α σ̂′ = σ̂ � {κ̂α′ �→�̂κ�}

T 〈̂v, σ̂, κ̂α〉
ς̂

� E〈e, ρ̂, p̂c ∪ p̂c′, σ̂′, κ̂α′′〉 where
{〈p̂c′ ? � � E〈e, ρ̂, p̂c〉〉 :: κ̂α′ ∈ σ̂(κ̂α) κ̂ = 〈pc′ ? v̂ � �〉 :: κ̂α′

κ̂α′′ = ̂ (̂ς) σ̂′ = σ̂ � {κ̂α′′ �→ �̂κ�}
T 〈̂v1, σ̂, κ̂α〉� T 〈〈〈p̂c′ : v̂1 � v̂2〉〉, σ̂, κ̂α′〉 where 〈 p̂c′ ? v̂2 � �〉 :: κ̂α′ ∈ σ̂(κ̂α)
T 〈̂v, σ̂, κ̂α〉� T 〈〈〈p̂c′ : v̂〉〉, σ̂, κ̂α′〉 where 〈 p̂c′ : �〉 :: κ̂α′ ∈ σ̂(κ̂α)
T 〈̂v1, σ̂, κ̂α〉� T 〈̂(p̂c′, v̂1, v̂2), σ̂, κ̂α′〉 where O〈p̂c′, �, v̂2〉 :: κ̂α′ ∈ σ̂(κ̂α)

Fig. 5. Coarse Abstract Small-step Syntax, Metafunctions and Semantics

the concrete small-step semantics presented in Section III,

but redirects all sources of infinite structure through the store

in the standard AAM methodology. Crucially, this means all

values are store allocated so that environments are no longer

directly recursive, and that stacks/continuations are likewise

store allocated as a linked list—this permits stack frames to

be conflated at abstract memory locations and for cycles to be

directly represented.

The abstract domains for our machine are shown in Figure 5.

Our abstract machine is parameterized on the choice of an

allocator, determined by the function , and three address

spaces. The first is the abstract address space for values

(used for variable bindings and cells), represented by
̂ . Labels have their own address space, ̂ , so that

label polyvariance is tunable, independent of the choice for

value polyvariance—as we’ll see in the next section, this

tuning is particularly crucial for obtaining precision in a

faceted language. Last, we have a separate address space for

continuations, κ̂ . We achieve perfect call-return matching

(pushdown precision [15], [45]) in our semantics by leveraging

192

the “pushdown for free” (P4F) technique for allocating abstract

continuations precisely [20]. In the P4F approach, continu-

ation addresses are a source expression (e) paired with an

abstract binding environment (̂ρ). This means, each polyvariant

(context sensitive) binding environment and procedure entry

point, has its own set of abstract continuations. That is: two

continuations are only conflated during analysis, if they are the

respective continuations of two dynamic function calls that are

conflated under the current value-space polyvariance (abstract

value-space allocator). P4F achieves optimal precision without

any complexity overhead and permits us to vary analysis

sensitivity without concern for proper call-return matching.

Abstract closures in our semantics are expressions paired

with abstract environments (̂ρ), which map variables to either

value addresses (α̂) or labels (̂�), both of which are permitted

in the domain of the abstract value store σ̂. The store maps

abstract labels and value addresses to abstract values (̂), and

disjointly, maps continuation addresses (κ̂α) to sets of stacks

(i.e., continuations). A continuation is a stack frame paired

with an address referencing the tail of the stack (reaching a

frame terminates execution along that path). Abstract

values use the abstraction developed in Section IV-B.

Specific to faceted execution, our abstract semantics tracks

an abstract program counter, p̂c. Our abstract program counter

p̂c is a set of labels, rather than a set of branches. This reflects

the fact that while we know we have branched on each abstract

label l̂ ∈ p̂c, we do not know whether we are in the positive

or negative branch of any given l̂. As sketched in the previous

section, abstract faceted values are either abstractions of base

values or they are collapsed facets 〈̂l : v̂〉.
Our abstract store, σ̂, maps value addresses (v̂addr) and

labels (l̂abel) to abstract values, and continuation addresses

(κ̂addr) to sets of abstract contexts—pairs of stack frames and

another continuation address.

Atomic-expression evaluation A�·� proceeds similarly to

our concrete semantics, taking an atom, abstract environment

ρ̂, and abstract store σ̂. Base values (including constants,

addresses, labels, and closures) are injected into the abstract

domain via �·�. Variable lookup is redirected through the store.

Last, abstract closures are formed in the expected way, pairing

an expression with the abstract environment.

Figure 5 shows the small-step rules for our abstract seman-

tics. Similar to our concrete semantics, the E frame handles

expression evaluation. All of the rules are largely unchanged

from the concrete small-step semantics, the major difference

being that we join values to form a collapsed facet. The

notation {̂� | �̂�� � v̂} selects the set of abstract labels

from the base-value component of v̂. Because abstract values

now contain sets of labels rather than a single label, the set

{̂� | �̂�� � v̂} is joined with p̂c.

As in the concrete semantics, the A configuration evaluates

the application of possibly-faceted values. The first rule han-

dles application of �̂. The second considers the application of

base values, represented by a set of closures inside b̂v. Applica-

tion is performed by allocating for the argument and jumping

to an E frame. In our abstract semantics, we represent facets

by facet-maps, and so A must be nondeterministic over the

domain of the facet-map. The last rule for A handles this case,

decomposing the facet map into its individual components and

jumping to another A frame, storing a continuation to build the

result. Unlike the corresponding rule in the concrete semantics,

the continuation never needs to evaluate the right side of a

facet, as all facets have been collapsed.

Last, the T configuration inspects the continuation and

handles it appropriately. As continuations will be conflated

in the store, this rule is nondeterministic over the set of

elements at σ̂(κ̂α). The first T rule begins to explore the right

hand side of a facet expression (not to be confused with a

faceted value, all of which have been collapsed in our coarse

abstraction). The second forms a (collapsed) facet from an

already-evaluated left side. The third forms a facet from the

value in the atom position. Last, the O frame performs the

observation via the meta-operation.

D. A Branch-sensitive Abstraction via Singleton-analysis

In section IV-A, we observed several challenges in achieving

both soundness and precision in an abstraction for faceted val-

ues. First, there is the challenge of conflating base values and

facets (i.e., faceted values of differing height). Second, there is

the challenge of conflating facets with different abstract labels

without nesting one under the other as would occur according

to the concrete semantics. Last, there is what we called the

branch sensitivity problem: because abstract labels can be

approximating two (or any number) dynamically generated

concrete labels, we are unable to keep the positive and negative

branches soundly apart.

Our branch-insensitive abstraction for abstract faceted val-

ues overcomes the first two challenges, preserving facet struc-

ture in a sound manner. The third is more difficult, requiring a

more fundamental enhancement to the analysis. The problem

is that if an abstract label �̂ can represent two different dynamic

labels � and � , a branch-sensitive abstract faceted value

approximating 〈� ? + � 〉 � 〈� ? + � 〉 would nec-

essarily be

〈̂� ? ̂+ �̂ �̂+ �̂ � ̂+ �̂ �̂+ �̂ 〉
conflating both branches regardless. This is required for sound-

ness because a successful observation of � may be an unsuc-

cessful observation of � and vice-versa. Short of proving all

policies for an abstract label extensionally equivalent, interac-

tions with either branch for � may need to pollute the opposite

branch of � and the converse. If, however, we know that at

a given point in the program, �̂ is a singleton abstraction—

meaning it represents only a single exact concrete label—we

can keep its positive and negative branches distinct, retaining

the precision of branches.

Abstract counting is a technique from Might and Shiv-

ers [32] that augments an abstract interpreter to track a

conservative overapproximation of how many concrete objects

an abstract object is an abstraction of, at a certain point in the

program’s execution. The core idea is to extend the abstract

store so that—for each address α̂ in the abstract store—there

is a corresponding address (α̂) representing how many

times α̂ has been allocated: , , or .

The crucial observation then, as it applies to faceted values,

is that it is sound to represent an abstract facet without merging

193

m̂ ∈ ̂ � ̂ ⇀ ̂ � ̂ × ̂
b̂ ∈ ̂ � +�̂ | −�̂ | ±�̂

p̂c ∈̂ � ℘(̂)

n̂ ∈ Ĉ � | |
σ̂ ∈ ̂ � (̂ ⇀ ̂) � (̂ ⇀ ̂ × Ĉ)

Fig. 6. A More Precise Abstraction via Counting

η ∈ → ̂ α ∈ ℘()→ ̂ γ ∈ ̂ → ℘()

η(bv) � 〈η(bv),∅〉
η(〈� ? v1 � v2〉) �

{〈〈η(�) : η(v1) � η(v2)〉〉 where |γ(η(�))| > 1
〈〈η(�) ? η(v1) � η(v2)〉〉 where |γ(η(�))| = 1

α(V) �
⊔

v∈V η(v) γ(̂v) � {v | η(v) � v̂}

Fig. 7. Galois Connection for our Abstract Facet Domain

its branches as long as its label has abstract count of .

This is because—as long as we know an abstract label is

an abstraction of only a single dynamic label—the equality

checks on abstract labels in our semantics can be both sound

and precise.

Figure 6 shows how we expand our abstract domain to

account for precise facets. The idea is to represent abstract

facets as branch-insensitive facets 〈̂� ? 〉̂ when �̂’s count is

and branch-sensitive facets 〈̂� ? +̂ � ̂〉 otherwise. Instead

of placing labels inside of ̂ (as in Sections IV-A and IV-C),

we add branches +�̂ and �̂ when �̂ is singleton and ±�̂
otherwise to represent that we must treat �̂ as non-singleton.

Our metafunctions for store read, write, and update include

all of the same functionality as they did in our coarse domain,

but additionally exploit abstract counting for branch-sensitive

facets. For example, observation of branch-sensitive facets

simply projects the correct branch, rather than losing precision

and reforming a facet (as in Section IV-B). Recall that for

branch-insensitive facets, we had to reform facets alongside

their projections, as abstract depth for branch-insensitive facets

does not correspond to concrete depth.

We change the codomain of facet maps to a disjoint union of̂ and ̂ × ̂ , with the first representing branch-insensitive

facets and the second representing branch-sensitive facets.

We must maintain the invariant that—whenever ̂ (̂�) is a

product, �̂’s count is . To do this, we assume that the label

allocator performs eager count-based facet collapse: whenever

a label’s count grows to , the store is traversed to collapse

facets whose labels are no longer singleton. As discussed in

section V, our implementation artifact uses a more involved

lazy fixing approach that we eschew here for simplicity of

presentation and soundness proofs.

We show updates to the metafunctions in the Figure 6. In

particular the join operator � changes to perform the join

of maps at each point �̂ such that �̂ is non-singleton, and

distributes across the pair in the same manner in the case that

�̂ is singleton.

E. Correctness via Galois Connections

We formalize the correctness of our precise abstract domain

by constructing a Galois connection between concrete faceted

values and abstract faceted values. We then use this Galois

connection to state and prove several soundness lemmas. Our

Galois connection for abstract facets is shown in Figure 7. The

abstraction side of our Galois connection is given in η-form,

which necessarily induces α as the join over η. We induce the

concretization function γ from η as well—this construction is

standard, and allows the construction of any adjoint maps α
and γ from any η [36].

The abstraction function η abstracts concrete facets to a

single-branch facet when there may be other concrete facets

which abstract to the same label, written |γ(η(�))|. When the

concrete label is the only one contained in its abstraction, a

precise double-branch facet is created. The Galois connection

uses the abstract canonicalization metafunctions 〈〈· : ·〉〉 and

〈〈· ? · � ·〉〉 in its definition. Abstract canonicalization is

therefore not sound per-se—rather it is part of the specification

for soundness.

The join operator · � · for abstract facets is used explicitly

in the definition of α, and implicitly in the definition of γ, in

that the partial order for facets is induced by the join. The

join is trivially sound, as it is used in the definition of the

Galois connection. However, we still must show it is a proper

join operator, that is, associative, commutative, and idempotent.

This is done in Appendix A.

Finally, we use these lemmas to prove soundness of the

abstract interpretation. The formalization follows from the

standard recipe for soundness via AAM and is sketched in

Appendix A. As our precise domain (Section IV-D) degrades

gracefully to the coarse abstract domain (Section IV-B) in the

absence of abstract counting, we present only a formalization

of the precise abstract domain.

V. Implementation and Evaluation

We have evaluated our ideas in several ways. First, we

have implemented both concrete and abstract interpreters for

λFE. Our implementation mirrors (where possible) the coarse

abstract domain presented in Section IV-C, however it adds

several features useful for writing more realistic programs

(such as k-ary lambdas, builtins, binding, and condition-

als). Our abstract interpreter also uses global store-widening

(developed for CFA by [41]) to avoid the exponential blowup

incurred with per-state stores, and is roughly 1,600 lines

of Racket source. Global store-widening moves the store

from being a component of configurations to instead being

a top-level component of the fixpoint. We have evaluated

our abstract interpreter on five small example programs that

make use of facets. Last, we briefly present an example of

how our fine-grained abstract domain may be used to verify

noninterference.

Evaluation Programs We wrote five small but emblematic

benchmark programs. Each of these example programs uses

facets in a slightly different way. The programs are listed

on the left hand side of in Table I, with their corresponding

line count (LOC) directly to the right. We implemented two

benchmarks, and , which test basic

reasoning about information flow. The next three benchmarks

use facets to design a secure auction (securing bids), a grading

system (securing submissions), and our Battleship example.

Each of our benchmark programs includes one use .

194

TABLE I
Details of our benchmark programs

Program LOC # States
Analysis

Time (ms)
Obs

Elim?

noninterf1 8 72 12 �
noninterf2 8 82 18 �

auction 31 876 747 �
grades 32 327 447 �

battleship 56 514 743 �

Performance of the coarse-grained domain We ran our

abstract interpreter on each benchmark program and report

the number of states and time (in milliseconds) taken by

the analysis in the center columns of Table I. For each of

the benchmarks, we verified our abstract interpreter produced

sound results via manual inspection of the state space assisted

via a visualization tool we built for the task.

To assess the precision of our coarse domain, we looked at

the results of the analysis for each benchmark and determined

whether we could statically eliminate the forms included

in each. The right side of Table I indicates a check (�)

whenever we can either statically determine that both sides of

an observed facet are equal (which we can do in benchmark

) or whenever we know that one a single side

of the facet will be observed (as we can do in benchmarks

and). We observed that, even though our

coarse domain does not reason precisely about the contents of

facets, it was still able to eliminate checks in three of our

benchmarks. The other two were not able to be eliminated

because our coarse analysis loses precision. For example,

branches on a facet to create another facet, which

ends up merging branches and losing the precision necessary

to eliminate the form.

Worked Example: Verifying Information Flow We now

demonstrate how our precise abstract domain offers a basis

for verification of information flow properties. We illustrate

this by showing how we can check noninterference for the

following example:

1
2
3 ← ← −
4 ← ←
5 ← ←
6

In this example, the call to leaks (the zeroness of)

the secret variable through the variable , while the variable

is safe. To check this, we treat the call to as creating

a facet over some arbitrary “secret” label �, and returning a

facet 〈� ? � � �〉. This has the effect of using the analysis to

explore all possible pairs of program paths (as is traditional

in checking noninterference) by leveraging the semantics of

faceted execution to pull the branching from the state space

into the value space. Checking noninterference is then reduced

to checking whether both branches of each of the facets for

and are equal once they reach the call to . When

analyzed using a path-sensitive abstraction and the constant

propagation value lattice, our precise domain is able to keep

the facet in precise, allowing us to derive a counterexample

wherein contains a reference to the facet 〈� ? 1 � 2〉, while

always contains a reference to the facet 〈� ? 1 � 1〉.

VI. RelatedWork

To our knowledge, we are the first to present an abstract

interpretation for faceted execution. There are several threads

of related work in dynamic information flow, static analysis

thereof, and programming paradigms for information flow.

Information-flow was first formalized by Denning [13]. In

her seminal work on a lattice model for information flow,

she outlined challenges and solutions to static information-

flow checking. Subsequently, Goguen and Meseguer [21]

defined noninterference, formalizing the idea that privileged

data should not influence public outputs. Clarkson and Schnei-

der [9] later recognized that information-flow properties could

not be characterized by a single trace of a program, but rather

a set of traces, and called these hyperproperties.

Since their original definitions, there has been much work on

statically checking information-flow properties. Barthe’s work

on self-composition copies the program twice and asserts a

relational property to check noninterference [6]. This idea was

later extended to what the authors call product programs, and

certified using a relational program logic [5]. Other work has

used model checking to check noninterference [28] along with

more general hyperproperties [10].

Of the mechanisms for static information flow, security

type systems have gained the most use. First introduced by

Volpano and Smith [46], these type systems augment the

binding environment to track privilege of variables and prevent

writes that would violate noninterference. Myers leveraged this

idea to produce Jif, a variant of Java with an information-

flow type system [33]. Security type systems have been sub-

sequently extended to accommodate concurrent programs [49]

and flow sensitivity [23]. Faceted execution does not require

adding type annotations, but at the expense of losing a static

characterization of the program’s security in its type system.

Devriese and Piessens [14] first introduced secure multi-

execution as a dynamic enforcement technique for information

flow. Secure multi-execution runs 2k copies of a program in

parallel, where each run represents a subset of P(Prin), where

Prin is a set of principals. For example, if the principals are

Alice and Bob, multi-execution executes four copies of the

program: one that replaces all secret inputs by ⊥, one that

replaces Bob’s input by ⊥ but Alice’s input by the true input,

one for Bob’s input, and one with access to all privileged

information. When external effects are made (e.g., writing to

disc), the runtime can select which variant to use. Secure multi-

execution prevents information flow violations at runtime by

ensuring that observations which violate the information-flow

policy receive a view of the data computed without access to

the secret inputs. Secure multi-execution has been extended in

a variety of ways, e.g., scaling to its implementation in web

browsers [7], adding declassification in a granular way [38],

and even preventing side-channel attacks [25].

As the number of principals increases, secure multi-

execution’s overhead increases exponentially, unnecessarily

duplicating work not influenced by secret inputs. Austin et

195

al. introduced faceted execution as an optimization of secure

multi-execution in [3]. Instead of treating the whole program

as a potentially-secret computation, faceted execution realizes

that influence can be tracked and propagated in a granular way

using facets. Notably, Austin et al.’s work does not include

first-class labels, as it was simulating secure multi-execution,

where the principals could not be dynamically generated. More

recently, Schmitz et al. [39] have harmonized both of these

ideas into a unifying framework (Multef) that allows mixing

both faceted and secure multi-execution.

Yang et al. first implemented Jeeves, a language allowing

policy-agnostic programming [47]. Policy-agnostic program-

ming takes the view that programs should be written without

regard to a particular privacy policy, because as the policy

changes, correctly updating program logic is cumbersome

and error-prone. Policy-agnostic programming was first imple-

mented in the domain-specific language Jeeves, using an SMT

solver to decide which view of secret data to reveal based on

a policy. Later, both authors collaborated to implement Jeeves

using faceted execution. [4]. This formulation includes first-

class labels, and is the basis for our concrete semantics. This

semantics was the motivation for Micinski et al.’s recent work

on implementing faceted execution via an expressive macro

system [29]. We envision that our analysis of faceted execution

might enable future languages based on facets by allowing

more optimal compilation and static checking of facets.

Several other efforts into dynamic analysis for information

flow are worth noting. Stefan et al [42] first presented —a

monad (with implementation in Haskell) that tracks privilege

of the current program counter and forbids effects that would

violate the security policy. It might be surprising that

works well for Haskell programs, given that faceted execution

is more precise than —allowing values to become faceted

rather than halting the program. One key difference is that

Haskell programs emphasize purity while languages such as

JavaScript (the original target of faceted execution) does not,

so much of the machinery for faceted execution’s effect on

the store is less interesting. Several authors have implemented

related systems to , including variants of faceted execution

[40] and variants of that extend its power to arbitrary

monad transformers [37]. We believe that it would be possible

to implement a variant of our technique that would give similar

insights to programs using , though much of the interesting

machinery for handling state may be unnecessary.

Our precise abstract domain for facets relies upon cardi-

nality analysis. Hudak first proposed an abstract domain for

approximating a value’s reference count in the presence of

sharing [22]. This reference count abstraction is useful for

understanding when destructive updates can be performed

statically. Cardinality analysis was a direct inspiration for

Might and Shivers [32] to produce the abstract counting ap-

proach we build on. Independently, Jagannathan [24] presented

an analysis for higher-order languages that tracks whether

abstract locations are singletons, which enables a number

of optimizations such as lightweight closure-conversion and

strong updates on reference cells.

Last, there have been several exciting recent efforts in

the development of static analyses for hyperproperties and

information flow. Assaf et al. [1] disuss how correct-by-

construction dynamic security monitors using a technique

based on abstract interpretation. In a similar direction, Assaf

et al. [2] explored “hypercollecting semantics” and abstract

interpretation for hyperproperties via a set of sets transformer

which allows using Galois connections for hyperproperties

alongside a traditional trace-based semantics. Mastroeni and

Pasqua [26], [27] study abstract interpretation for subset-
closed hyperproperties. Giacobazzi et al. [17], [18] present ab-

stract non-interference, developing a framework which allows

extremely flexible specification of information flow properties

parameterized on observations, principals, and the observa-

tional abilities of external observers. Chudnov et al. [8] study

how relational logic properties can be checked by way of inter-

preting a dynamic monitor’s state as an abstract interpretation

over sets of program executions.

VII. Conclusion

We have presented the first sound and precise abstraction for

faceted execution in the presence of first-class security policies.

This required formulating two abstractions: a precise abstract

domain that preserves facet structure, and a coarse domain

(to which the fine-grained domain gracefully degrades) that

collapses the branches of facets but still allows reasoning about

facet structure (differentiating between faceted and unfaceted

values). We see this as a central challenge in the verification

and optimization of policy-agnostic programs.
Faceted execution, along with other dynamic information-

flow monitors, present exciting opportunities, but there are

many questions about how we may use these techniques to

design languages and systems. We believe that one particularly

promising use of dynamic information flow is in its piecemeal

application to potentially-insecure pieces of programs, with

powerful static analyses to verify when heavyweight machin-

ery may be elided. We believe that powerful static analysis for

dynamic information-flow monitors will be useful not just for

efficiency, but also so that programmers may gain confidence

that security checks will not fail in unexpected ways at runtime.

We see this work as a foundational step toward that goal

in enhancing our understanding of systems utilizing faceted

execution.

Acknowledgments

We thank the reviewers for their valuable feedback in

improving this paper. This work was suppored in part by

ODNI IARPA via 2019-1902070008, and NSF award CCF-

1901278. The views, opinions and/or findings expresses are

those of the authors and should not be interpreted as repre-

senting the official views or policies of any US Government

agency. The US Government is authorized to reproduce and

distribute reprints for Governmental purposes notwithstanding

any copyright annotation therein.

References

[1] Assaf, M., Naumann, D.A.: Calculational design of information
flow monitors. In: 2016 IEEE 29th Computer Security Founda-
tions Symposium (CSF). pp. 210–224. IEEE Computer Society, Los
Alamitos, CA, USA (jul 2016). https://doi.org/10.1109/CSF.2016.22,

196

[2] Assaf, M., Naumann, D.A., Signoles, J., Totel, E., Tronel, F.: Hypercol-
lecting semantics and its application to static analysis of information
flow. In: Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages. pp. 874–887. POPL 2017, ACM,
New York, NY, USA (2017). https://doi.org/10.1145/3009837.3009889,

[3] Austin, T.H., Flanagan, C.: Multiple facets for dynamic
information flow. In: Proceedings of the 39th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 165–178. POPL ’12, ACM, New York,
NY, USA (2012). https://doi.org/10.1145/2103656.2103677,

[4] Austin, T.H., Yang, J., Flanagan, C., Solar-Lezama, A.: Faceted
execution of policy-agnostic programs. In: Proceedings of the
Eighth ACM SIGPLAN Workshop on Programming Languages
and Analysis for Security. pp. 15–26. PLAS ’13, ACM, New
York, NY, USA (2013). https://doi.org/10.1145/2465106.2465121,

[5] Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product
programs. In: Proceedings of the 17th International Conference on For-
mal Methods. pp. 200–214. FM’11, Springer-Verlag, Berlin, Heidelberg
(2011),

[6] Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-
composition. In: Proceedings of the 17th IEEE Workshop on Computer
Security Foundations. pp. 100–114. CSFW ’04, IEEE Computer Society,
Washington, DC, USA (2004). https://doi.org/10.1109/CSFW.2004.17,

[7] Bielova, N., Devriese, D., Massacci, F., Piessens, F.: Reactive non-
interference for a browser model. In: 2011 5th International Conference
on Network and System Security. pp. 97–104. IEEE (Sept 2011).
https://doi.org/10.1109/ICNSS.2011.6059965

[8] Chudnov, A., Kuan, G., Naumann, D.A.: Information flow monitoring as
abstract interpretation for relational logic. In: 2014 IEEE 27th Computer
Security Foundations Symposium. pp. 48–62 (2014)

[9] Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: 2008 21st IEEE
Computer Security Foundations Symposium. pp. 51–65. IEEE (June
2008). https://doi.org/10.1109/CSF.2008.7

[10] Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N.,
Sánchez, C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer,
S. (eds.) Principles of Security and Trust. pp. 265–284. Springer Berlin
Heidelberg, Berlin, Heidelberg (2014)

[11] Cousot, P., Cousot, R.: Abstract interpretation: A unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In: Proceedings of the 4th
ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages. pp. 238–252. POPL ’77, ACM, New
York, NY, USA (1977). https://doi.org/10.1145/512950.512973,

[12] Cousot, P., Cousot, R.: Abstract interpretation frameworks. Journal of
logic and computation 2(4), 511–547 (1992)

[13] Denning, D.E.: A lattice model of secure information flow. Commun.
ACM 19(5), 236–243 (May 1976)

[14] Devriese, D., Piessens, F.: Noninterference through secure multi-
execution. In: 2010 IEEE Symposium on Security and Privacy. pp. 109–
124. Oakland ’10 (May 2010). https://doi.org/10.1109/SP.2010.15

[15] Earl, C., Sergey, I., Might, M., Van Horn, D.: Introspective pushdown
analysis of higher-order programs. In: International Conference on
Functional Programming. pp. 177–188 (September 2012)

[16] Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence
of compiling with continuations. In: Proceedings of the ACM
SIGPLAN 1993 Conference on Programming Language Design
and Implementation. pp. 237–247. PLDI ’93, ACM, New
York, NY, USA (1993). https://doi.org/10.1145/155090.155113,

[17] Giacobazzi, R., Mastroeni, I.: Abstract non-interference: Parameterizing
non-interference by abstract interpretation. In: Proceedings of the 31st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 186–197. POPL ’04, Association for Computing Machin-
ery, New York, NY, USA (2004). https://doi.org/10.1145/964001.964017,

[18] Giacobazzi, R., Mastroeni, I.: Abstract non-interference: A
unifying framework for weakening information-flow. ACM Trans.
Priv. Secur. 21(2) (Feb 2018). https://doi.org/10.1145/3175660,

[19] Gilray, T., Adams, M.D., Might, M.: Allocation characterizes poly-
variance: A unified methodology for polyvariant control-flow analy-
sis. In: Proceedings of the 21st ACM SIGPLAN International Con-

ference on Functional Programming. pp. 407–420. ICFP ’16, ACM,
New York, NY, USA (2016). https://doi.org/10.1145/2951913.2951936,

[20] Gilray, T., Lyde, S., Adams, M.D., Might, M., Van Horn, D.:
Pushdown control-flow analysis for free. In: Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. pp. 691–704. POPL ’16, ACM, New
York, NY, USA (2016). https://doi.org/10.1145/2837614.2837631,

[21] Goguen, J.A., Meseguer, J.: Security policies and security models. In:
1982 IEEE Symposium on Security and Privacy. pp. 11–11 (April 1982).
https://doi.org/10.1109/SP.1982.10014

[22] Hudak, P.: A semantic model of reference counting and its abstraction
(detailed summary). In: Proceedings of the 1986 ACM Conference
on LISP and Functional Programming. pp. 351–363. LFP ’86, ACM,
New York, NY, USA (1986). https://doi.org/10.1145/319838.319876,

[23] Hunt, S., Sands, D.: On flow-sensitive security types. In: Confer-
ence Record of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. pp. 79–90. POPL ’06, ACM,
New York, NY, USA (2006). https://doi.org/10.1145/1111037.1111045,

[24] Jagannathan, S., Thiemann, P., Weeks, S., Wright, A.: Single and
loving it: Must-alias analysis for higher-order languages. In: Pro-
ceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages. pp. 329–341. POPL ’98, ACM,
New York, NY, USA (1998). https://doi.org/10.1145/268946.268973,

[25] Kashyap, V., Wiedermann, B., Hardekopf, B.: Timing- and termination-
sensitive secure information flow: Exploring a new approach. In: 2011
IEEE Symposium on Security and Privacy. pp. 413–428. Oakland ’11
(May 2011). https://doi.org/10.1109/SP.2011.19

[26] Mastroeni, I., Pasqua, M.: Verifying bounded subset-closed hyperprop-
erties. In: Podelski, A. (ed.) Static Analysis. pp. 263–283. Springer
International Publishing, Cham (2018)

[27] Mastroeni, I., Pasqua, M.: Statically analyzing information flows: An
abstract interpretation-based hyperanalysis for non-interference. In: Pro-
ceedings of the 34th ACM/SIGAPP Symposium on Applied Comput-
ing. pp. 2215–2223. SAC ’19, Association for Computing Machinery,
New York, NY, USA (2019). https://doi.org/10.1145/3297280.3297498,

[28] van der Meyden, R., Zhang, C.: Algorithmic verification of noninterfer-
ence properties. Electronic Notes in Theoretical Computer Science 168,
61 – 75 (2007), proceedings of the Second International Workshop on
Views on Designing Complex Architectures

[29] Micinski, K., Wang, Z., Gilray, T.: Racets: Faceted execution in racket.
In: ACM Workshop on Scheme and Functional Programming (Scheme)
’18 (2018),

[30] Micinski, Kristopher and Darais, David and Gilray, Thomas: Abstracting
Faceted Execution (Tech Report). Tech. rep., ArXiV (2020)

[31] Might, M.: Abstract interpreters for free. In: International Static Analysis
Symposium. pp. 407–421. SAS ’10, Springer (2010)

[32] Might, M., Shivers, O.: Improving flow analyses via ΓCFA: abstract
garbage collection and counting. In: ACM SIGPLAN Notices. vol. 41,
pp. 13–25. ACM (2006)

[33] Myers, A.C.: Jflow: Practical mostly-static information flow control.
In: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. pp. 228–241. POPL ’99, ACM,
New York, NY, USA (1999). https://doi.org/10.1145/292540.292561,

[34] Myers, A.C., Liskov, B.: Protecting privacy using the
decentralized label model. ACM Transactions on Software
Engineering and Methodology 9(4), 410–442 (October 2000),

[35] Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif 3.0:
Java information flow (July 2006),

[36] Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis.
Springer-Verlag, Berlin, Heidelberg (1999)

[37] Parker, J.: LMonad: Information Flow Control for Haskell Web Applica-
tions. Master’s thesis, University of Maryland, College Park, Maryland
(2014)

[38] Rafnsson, W., Sabelfeld, A.: Secure multi-execution: Fine-grained,
declassification-aware, and transparent. In: 2013 IEEE 26th Computer
Security Foundations Symposium. pp. 33–48 (June 2013)

[39] Schmitz, T., Algehed, M., Flanagan, C., Russo, A.: Faceted se-
cure multi execution. In: Proceedings of the 2018 ACM SIGSAC

197

Conference on Computer and Communications Security. pp. 1617–
1634. CCS ’18, Association for Computing Machinery, New
York, NY, USA (2018). https://doi.org/10.1145/3243734.3243806,

[40] Schmitz, T., Rhodes, D., Austin, T.H., Knowles, K., Flanagan, C.:
Faceted dynamic information flow via control and data monads. In:
Proceedings of the 5th International Conference on Principles of Security
and Trust - Volume 9635. pp. 3–23. POST ’16, Springer-Verlag New
York, Inc., New York, NY, USA (2016)

[41] Shivers, O.G.: Control-flow Analysis of Higher-order Languages of
Taming Lambda. Ph.D. thesis, Carnegie Mellon University, Pittsburgh,
PA, USA (1991), uMI Order No. GAX91-26964

[42] Stefan, D., Russo, A., Mitchell, J.C., Mazières, D.: Flexible dy-
namic information flow control in haskell. In: Proceedings of the
4th ACM Symposium on Haskell. pp. 95–106. Haskell ’11, ACM,
New York, NY, USA (2011). https://doi.org/10.1145/2034675.2034688,

[43] Van Horn, D., Might, M.: Abstracting abstract machines. In:
Proceedings of the 15th ACM SIGPLAN International Confer-
ence on Functional Programming. pp. 51–62. ICFP ’10, ACM,
New York, NY, USA (2010). https://doi.org/10.1145/1863543.1863553,

[44] Van Horn, D., Might, M.: Abstracting abstract machines. In:
Proceedings of the 15th ACM SIGPLAN International Confer-
ence on Functional Programming. pp. 51–62. ICFP ’10, ACM,
New York, NY, USA (2010). https://doi.org/10.1145/1863543.1863553,

[45] Vardoulakis, D., Shivers, O.: CFA2: a context-free approach to control-
flow analysis. In: Proceedings of the European Symposium on Program-
ming. ESOP ’10, vol. 6012, LNCS, pp. 570–589 (2010)

[46] Volpano, D.M., Smith, G.: A type-based approach to program se-
curity. In: Proceedings of the 7th International Joint Conference
CAAP/FASE on Theory and Practice of Software Development. pp.
607–621. TAPSOFT ’97, Springer-Verlag, London, UK, UK (1997),

[47] Yang, J., Yessenov, K., Solar-Lezama, A.: A language for au-
tomatically enforcing privacy policies. In: Proceedings of the
39th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. pp. 85–96. POPL ’12, ACM, New
York, NY, USA (2012). https://doi.org/10.1145/2103656.2103669,

[48] Yang, J., et al.: Preventing information leaks with policy-agnostic pro-
gramming. Ph.D. thesis, Massachusetts Institute of Technology (2015)

[49] Zdancewic, S., Myers, A.C.: Observational determinism for
concurrent program security. In: 16th IEEE Computer Security
Foundations Workshop, 2003. pp. 29–43. CSF ’13 (June 2003).
https://doi.org/10.1109/CSFW.2003.1212703

Appendix

Proofs of Correctness via Galois Connections

We now sketch several lemmas necessary to prove the

soundness of our abstract interpretation. We first show that

our abstract join is a proper join operator. Next, we justify

the soundness of our meta-operations. Last, we demonstrate

how these can be used to show the soundness of our abstract

interpretation from Section IV.

Lemma A.1 (Abstract Facet Join Proper). The join operation
·�· is associative (̂v1� (̂v2� v̂3) = (̂v1� v̂2)� v̂3)) commutative
(̂v1 � v̂2 = v̂2 � v̂1) and idempotent v̂ � v̂ = v̂.

Proof. A simple calculation. Most of the functionality of · � ·
are operations either on the lattice of underlying base values

(for which these properties hold) or by joining finite maps, for

which these properties also hold. �

We turn next to the meta-operations , and ,

which implement the functionality of slicing some operation

through a tree of facets. These operations are sound when the

concrete interpretations are contained in the concretization of

the abstract interpretations.

Lemma A.2 (Abstract Meta-operators Soundness).
1) (pc, σ, v) ∈ γ(̂ (η(pc), η(σ), η(v))),
2) (pc, σ, v1, v2) ∈ γ(η(σ)�̂ (η(pc), η(v1), η(v2)))
3) (�, b, v) ∈ γ(̂(η(l), η(b), η(v))).

Proof. The proof for each of (1–3) are similar; we only sketch

the proof for (2). It suffices to show η((pc, σ, v1, v2)) �
η(σ) � ̂ (η(pc), η(v1), η(v2)). By induction on v1, which

is either a base value or a facet. In the case it is a base value,

we have:
η((pc, σ, α, v))
= η(σ[α �→ 〈〈pc ? v � σ(α)〉〉])
� η(σ) � {η(α) �→ 〈〈η(pc) ? η(v) � η(σ)(η(α))〉〉
= η(σ) � ̂ (η(pc), η(α), η(v))

When it is a faceted value and |γ(η(�))| > 1:

η((pc, σ, 〈〈� ? v+1 � v−1〉〉, v2)
= η((pc ∪ {−�}, (pc ∪ {+�}, σ, v+1 , v2), v−1 , v2))
� Induction Hypothesis 	

� η(σ) � ̂ (η(pc) ∪ {η(+�)}, v+1 , η(v2))
� ̂ (η(pc) ∪ {η(−�},�v−1 , η(v2))

� η(σ) � ̂ (η(pc) ∪ {η(�)}, v+1 � v−1 , η(v2))
= η(σ) � ̂ (η(pc), η(α), η(v))

�

Finally, we turn to the abstract small-step semantics for λFE.

The transition rules are a straightforward structural abstraction,

following the abstracting abstract machines methodology. As

a consequence, we prove an abstraction theorem, which uses

the prior lemma. Before we present the proof, we posit an

alternative presentation of the concrete small-step semantics

which store-allocates arguments to functions in the obvious

way, and simulates the non-allocating concrete semantics. The

proof is then a direct application of the AAM proof recipe:

composition of step-wise abstraction of the store-allocating

concrete semantics with simulation of the natural concrete

semantics by the store-allocating one. We notate transitions

in the store-allocating semantics ς �σ ς, and the natural

semantics ς�σ ς. Because the AAM recipe is straightforward

and standard, we omit a detailed proof.

Theorem A.3 (Abstract Semantics Soundness).
ς�σς′ ⇒ ∃ς̂′ � η(ς′). η(ς)� ς̂′ .

Simulation of Big-step by Small-step (Definitions)

Our companion tech report includes 9 more figures which

show the full syntax and semantics for both the direct-

style/big-step model, as well as the A-normal-form/small-step

model [30]. Following the figures is a proof of simulation

between the two semantics for A-normal-form terms.

198

