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Abstract—In voting, disputes arise when a voter claims that
the voting authority is dishonest and did not correctly process his
ballot while the authority claims to have followed the protocol.
A dispute can be resolved if any third party can unambigu-
ously determine who is right. We systematically characterize
all relevant disputes for a generic, practically relevant, class of
voting protocols. Based on our characterization, we propose a
new definition of dispute resolution for voting that accounts for
the possibility that both voters and the voting authority can make
false claims and that voters may abstain from voting.

A central aspect of our work is timeliness: a voter should
possess the evidence required to resolve disputes no later than the
election’s end. We characterize what assumptions are necessary
and sufficient for timeliness in terms of a communication topology
for our voting protocol class. We formalize the dispute resolution
properties and communication topologies symbolically. This pro-
vides the basis for verification of dispute resolution for a broad
class of protocols. To demonstrate the utility of our model, we
analyze a mixnet-based voting protocol and prove that it satisfies
dispute resolution as well as verifiability and receipt-freeness.
To prove our claims, we combine machine-checked proofs with
traditional pen-and-paper proofs.

I. INTRODUCTION

For a society to accept a voting procedure, the public must

believe that the system implementing it works as intended,

that is, the system must be trustworthy. This is essential as

elections involve participants from opposing political parties

that may neither trust each other nor the election authority.

Nevertheless, there must be a consensus on the final outcome,

including whether the election is valid. This requires that

voters and auditors can verify that the protocol proceeds

as specified and detect any manipulations, even if they do

not trust the authority running the election. To achieve this,

the information relevant for checking verifiability may be

published in a publicly accessible database, known as the

bulletin board.
a) The need for dispute resolution: Ballots are cast

privately in elections. Thus only the voters themselves know

if and how they voted. If a voter claims that his ballot is

incorrectly recorded or that he was hindered in recording his

ballot, no other party can know, a priori, whether the voter is

lying or if there was a problem for which the voting authority

is responsible. We call such unresolved situations disputes.
When a dispute occurs, the honest parties must be protected.

That is, an honest voter who detects some manipulation must

be able to convince third parties that the authority was dishon-

est.1 In particular, when a voter checks whether his cast ballot

is correctly recorded, then either this is the case (respectively,

no ballot is recorded when he abstained from voting) or he

can convince others that the authority was dishonest. Another

problem is when a voter cannot even proceed in the protocol

to perform such checks, for instance when he is not provided

with a necessary confirmation. Hence, a timeliness guarantee

must ensure by the election’s end that an honest voter’s ballot

is correctly recorded or there is evidence that proves to any

third party that the authority is dishonest. Finally, in addition

to protecting the honest voters from a dishonest authority, the

honest authority must be protected from voters making false

accusations. That is, when the authority is honest, no one

should be able to convince others of the contrary.

b) State of the art: The vast majority of formal analyses

of remote e-voting protocols do not consider dispute resolution

at all, e.g., [1], [13], [15], [16]. Works that recognize the

importance of dispute resolution [7], [2] or that take aspects

of it into account when proposing poll-site [8], [11], [12],

[14], [17], [22], [36] or remote [37] voting protocols, reason

about it only informally. The most closely related prior works

define different notions of accountability [10], [25], [26] that

formalize which agents should be held accountable when a

protocol fails to satisfy some properties. These definitions are

very general, but have been instantiated for selected voting

protocols [10], [26], [27], [28]. The accountability properties

satisfied by these protocols do not guarantee the resolution of

all disputes considered by our dispute resolution properties.

We provide a detailed comparison of accountability and our

properties in Section VII.

c) Contributions: Our work provides a new foundation

for characterizing, reasoning about, and establishing dispute

resolution in voting. First, we systematically reason about

what disputes can arise in voting for a generic, practically

relevant, class of voting protocols. Our class comprises both

remote and poll-site voting protocols that can be electronic

or paper-based. We then focus on disputes regarding whether

the published recorded ballots correctly represent the ballots

cast by the voters. Based on our classification, we formally

define dispute resolution properties in a symbolic formal-

ism amenable to automated verification using the Tamarin

tool [30], [34]. This enables the analysis of a broad class

1Here dishonesty includes all deviations of the authority from the protocol
specification, both due to corruption or to errors.
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of protocols with respect to dispute resolution. Moreover, we

identify an important new property, which we call timeliness,
requiring that when a voter’s ballot is recorded incorrectly he

has convincing evidence of this by the election’s end. This

property ensures the resolution of disputes that could not be

resolved unambiguously in prior work.

Second, we demonstrate that timeliness can only be guaran-

teed under strong assumptions (for example, some messages

must not be lost on the network) by systematically analyz-

ing what communication channels and trust assumptions are

necessary and sufficient to satisfy this property. The result

is a complete characterization of all topologies in our voting

protocol class for which timeliness holds for some protocol.

Such a characterization can guide the design of new voting

protocols where timeliness should hold, e.g., by identifying

and thereby eliminating settings where timeliness is impossi-

ble. We formally verify the claimed properties using proofs

constructed by Tamarin and pen-and-paper proofs.

Finally, to simplify establishing dispute resolution in prac-

tice, we introduce a property, called Uniqueness, that can

be checked by everyone and guarantees that each recorded

ballot was cast by a unique voter. We prove for protocols

where voters can cast at most one ballot that Uniqueness
implies guarantees for voters who abstain from voting. This

has the practical consequence that in many protocols, the

corresponding guarantees can be proven more easily. We then

present as a case study a mixnet-based voting protocol with

dispute resolution and prove that our introduced properties

hold, as well as standard voting properties such as verifiability

and receipt-freeness.

Overall, our results can be used as follows. In addition to

specifying what messages are exchanged between the different

agents, a voting protocol in our class specifies (i) how the

election’s result is computed, (ii) which verification steps are

performed, and (iii) when the authority conducting the election

is considered to have behaved dishonestly. For (i), it is required

that each protocol specifies a function Tally. For (ii), as voters

must be able to check that no ballots were wrongly recorded

for them, a function castBy must map each ballot to the voter

that has (presumably) cast it. Only if this is defined can a

voter notice when a ballot was recorded for him that he has

not cast. Finally, dispute resolution requires that a protocol

defines a dispute resolution procedure such that everyone can

agree on (iii). For this purpose, a protocol may specify a

set of executions Faulty where the authority is considered to

have behaved dishonestly and which only depends on public

information and can therefore be evaluated by everyone.

Given a protocol with a dispute resolution procedure and a

communication topology, our topology characterization can be

used to quickly conclude if the given topology is insufficient

to achieve the timeliness aspect of dispute resolution. When

this is the case, one can immediately conclude that not all

dispute resolution properties can be satisfied. When this is not

the case, our formal definitions can be used to analyze whether

all dispute resolution properties indeed hold in the protocol.

Thereby, in protocols where voters can cast at most one

ballot, the guarantees for voters who abstain can be established

directly or by showing Uniqueness and inferring them by our

results.

d) Organization: We describe our protocol model in

Section II and the class of voting protocols for which we

define our properties in Section III. In Section IV, we classify

disputes and define our dispute resolution properties. We then

analyze in Section V the communication topologies where

timeliness can be achieved. In Section VI, we show how

dispute resolution can be established in practice, introduce

Uniqueness, and present our case study. Finally, we discuss

related work in Section VII and conclude in Section VIII.

II. PROTOCOL MODEL AND SYSTEM SETUP

As is standard in model-checking, we model the protocol

and adversary as a (global) transition system. Concretely, we

use a formalism that also serves as the input language to the

Tamarin tool [30]. Our model uses abstractions that ease the

specification of communication channels with security prop-

erties and trust assumptions. These kinds of abstractions are

now fairly standard in protocol specifications. We complement

existing abstractions [4] (e.g., authentic and secure channels

and parties that satisfy different kinds of trust assumptions)

with new abstractions that are relevant for dispute resolution

(e.g., reliable channels described in Section II-E2). Our proto-

col model is inspired by the model in [5] used for e-voting. We

first introduce some terminology relevant for voting protocols

and then our protocol model.

a) Terminology: We distinguish between votes and bal-
lots. Whereas a vote is a voter’s choice in plain text, a ballot

contains the vote and possibly additional information. The

ballots’ exact design depends on the voting protocol, but it

usually consists of the vote cryptographically transformed to

ensure the vote’s authenticity or confidentiality. When a ballot

is sent by the voter, we say it is cast. We denote by the (voting)
authority the entity responsible for collecting and tallying

all voters’ ballots. Usually, both the list of collected ballots,

called the recorded ballots, and the votes in the final tally are

published on a public bulletin board that can be accessed by

voters and auditors to verify the election’s result.

A. Notation and term algebra

We write [xi]i∈{1,...,n} to denote a list of n messages of the

same kind. Similarly, we write [f(xi, yi)]i∈{1,...,n} for a list

whose elements have the same form, but may have different

values. When the index set is clear from context, we omit the

indices, e.g., we write [x] and [f(x, y)] for the above lists,

and we write [x]i and [f(x, y)]i for the ith element in the

lists. Also, we write x := y for the assignment of y to x.
Our model is based on a term algebra T that is generated

from the application of functions in a signature Σ to a set of

names N and variables V . We use the standard notation and

equational theory, given in [4, Appendix A]. The symbols we

use here are 〈p1, p2〉 for pairing two terms p1 and p2, fst(p) and

snd(p) for the first and second projection of the pair p, pk(x)
for the public key (or the verification key) associated with a
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private key (or signing key) x, and {m}sk for a message m
signed with the signing key sk. The equational theory contains

standard equations, for example pairing and projection obey

fst(〈p1, p2〉) = p1 and snd(〈p1, p2〉) = p2. We sometimes omit

the brackets 〈〉 when tupling is clear from the context.

We extend the term algebra from [4] with the following

function symbols and equations. We use ver(s, k) for signature

verification, where s is a signed message and k the verification

key. When the signature in s is verified with the (matching)

verification key k, the function returns the underlying signed

message m and otherwise it returns a default value ⊥. This

is modeled by the equations ver(s, k) = m, if s = {m}sk and

k = pk(sk), and ver(s, k) =⊥ otherwise.

Moreover, we use the function Tally to model the tallying

process in voting. Given a list of ballots [b], Tally([b]) denotes

the computation of the votes [v] in the final tally, possibly

including pre-processing steps such as filtering out invalid

ballots. The exact definition of Tally depends on the protocol.

Finally, castBy(b) denotes the voter who is considered to

be the sender of a ballot b. As with Tally, castBy(b) depends

on the protocol, in particular on the ballots’ design. For

example, in a voting protocol where a ballot b contains a

voter’s identifier (e.g., a code or pseudonym), castBy(b) maps

the ballot b to the voter with the identifier included in b. In

contrast, in a voting protocol where ballots contain a signature

associated with a voter, castBy(b) maps each ballot to the voter

associated with the signature contained in b.
As Tally and castBy are protocol dependent, each concrete

protocol specification must define the equations that they

satisfy, i.e., extend the term algebra’s equational theory with

equations characterizing their properties. Note that the func-

tions may not be publicly computable. For example, if only a

voter H knows which identifier or signature belongs to him,

then other parties are not able to conclude that castBy(b) = H .

B. Protocol specification

A protocol consists of multiple (role) specifications that

define the behavior of the different communicating roles.

We model protocols as transition systems that give rise to a

trace semantics. Each role specification defines the role’s sent

and received messages and signals that are recorded, ordered

sequentially. A signal is a term with a distinguished top-

most function symbol. Signals have no effect on a protocol’s

execution. They merely label events in executions to facilitate

specifying the protocol’s security properties. We distinguish

explicit signals that are defined in the specification and implicit
signals that are recorded during the protocol execution but are

not explicitly included in the specification. We explain how we

depict protocols as message sequence charts in Section VI-D2.

Roles may possess terms in their initial knowledge, which

is denoted by the explicit signal knows. We require that in a

specified role R, any message sent by R must either occur

in R’s initial knowledge or be deducible from the messages

that R initially knows or received in a previous protocol step.

Deducibility is defined by the equational theory introduced

above. As is standard, whenever R is specified to receive

a term that it already has in its knowledge, an agent who

instantiates this role will compare the two terms and proceed

with the protocol only when they are equal.

C. Adversary model and communication topology

We depict the system setup as a topology graph G = (V,E),
where the set of vertices V denotes the roles and the set

of (directed) edges E ⊆ (V × V ) describes the available

communication channels between roles (see e.g. Figure 1). For

two graphs G1 = (V1, E1) and G2 = (V2, E2), we define the

standard subgraph relation G1 ⊆G G2 as V1 ⊆ V2∧E1 ⊆ E2.

By default, we consider a Dolev-Yao adversary [19] who has

full control over the network, learns all messages sent over the

network, and can construct and send messages herself. Addi-

tionally, the adversary can compromise participating agents to

learn their secrets and control their behavior. In a concrete

system model, we limit the adversary by trust and channel

assumptions. A (communication) topology [4] T = (V,E, t, c)
specifies the system setup by a graph G(T ) = (V,E), trust

assumptions by a function t : V �→ trustType mapping

vertices to trust types, and channel assumptions by a function

c : E �→ chanType mapping edges to channel types, which

denote a channel with certain properties. The types trustType
and chanType are specified in Section II-E, after the execution

model. When c is applied to an edge (A,B), we omit duplicate

brackets and write c(A,B) instead of c((A,B)).

D. Execution model, signals, properties, and assumptions

During protocol execution, roles are instantiated by agents

(i.e., the parties involved in the protocol) and we consider

all possible interleavings of agents’ runs in parallel with the

adversary. A trace tr is a finite sequence of multisets of the

signals associated with an interleaved execution. We denote by

TR(Pr, T ) the set of all traces of a protocol Pr that is run in
the topology T , i.e., run in parallel with the adversary defined

by the topology T .2 We write tr1 · tr2 for the concatenation

of two traces tr1 and tr2.
As previously explained, a trace may contain implicit sig-

nals, which are recorded during execution but omitted from

the protocol specification for readability, and explicit signals

(containing auxiliary information) that we explicitly add to

the protocol specification. Implicitly, when an agent A sends

a message m (presumably) to B, the signal send(A,B,m) is

recorded in the trace. Similarly, when an agent B receives m
(presumably) from A, rec(A,B,m) is recorded. Furthermore,

the signal K(m) denotes the adversary’s knowledge and is

recorded whenever the adversary learns a term m and hon(A)
is recorded when an honest agent A instantiates a role.

Furthermore, we use the explicit signal verifyC(H, b) to

indicate that an honest agent checks whether the ballot b,
which was cast by the honest voter H , is recorded correctly

(C stands for cast and indicates that H cast a ballot). In

protocols where voters can cast multiple ballots, this signal

2T may specify channels that are never used by Pr. Also, Pr may specify
channels that are not available in T . In the latter case, the corresponding
protocol steps cannot be executed and will not occur in the execution.
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can occur multiple times for the same voter. Moreover, the

signal verifyA(H, bH) is recorded when an honest agent checks

for an honest voter H who has cast the set of ballots bH , that

no ballots other than those in bH are recorded for H . When

this check is done for H who abstained, then bH = ∅ (A
stands for the fact that H abstained from voting). verifyC and

verifyA may be defined such that they can be computed by

a machine but not by a human voter, e.g., when they require

cryptographic computations. We thus leave it open whether

they are performed by the voter H or by another agent such

as a helper device.

The explicit signal knows(A, x) is recorded when an agent

A has a term x in its initial knowledge. The explicit signals

Vote(H, v) and Ballot(H, b) respectively record an honest

voter H’s vote v and cast ballot b. The former is recorded

when H decides what to vote for and the latter is recorded

when H casts his ballot. Finally, the explicit signal BB(m)
denotes that a message m is published on the bulletin board.

We use subscripts to distinguish the signals recorded when

different messages are published on the bulletin board. For

example, the signals BBrec([b]) and BBtal([v]) denote that the

recorded ballots [b] and the votes in the final tally [v] are

published. We will introduce further signals as we need them.

We next define two kinds of trace properties. The first are

classical security properties, which are specified as sets of

traces. A protocol Pr run in the topology T , satisfies a security

property SS , if TR(Pr, T ) ⊆ SS . To reason about functional

requirements, we additionally define functional properties. For
example, the empty protocol satisfies many security properties

but it is useless for voting because, even in the absence of

the adversary, a voter’s ballot is never recorded. We will thus

require a functional property stating that a protocol must at

least have one execution where a voter’s ballot is correctly

recorded. We describe a functional property by a set of traces

SF , for example containing all traces where a voter’s ballot is

recorded. We then define that a protocol Pr run in the topology

T satisfies the property SF if TR(Pr, T ) ∩ SF �= ∅. Finally,

we define protocol assumptions as sets of traces. That is, we

define so-called (trace) restrictions by giving a set of traces

and then only consider the traces in the intersection of this set

and TR(Pr, T ) (see e.g. Section II-E2).

E. Trust and channel types

1) Trust types: In the topologies, we consider four types of

trust on roles that reflect the honesty of the agents that execute

the role. A trusted role means we assume that the agents

who instantiate this role are always honest and thus strictly

follow their role specification. In contrast, an untrusted role

can be instantiated by dishonest agents (i.e., compromised by

the adversary) who behave arbitrarily. Dishonest agents model

both corrupt entities and entities that unintentionally deviate

from their specification, for example due to software errors.

We model dishonest agents by sending all their secrets to the

adversary and by modeling all their incoming and outgoing

channels as insecure (see the channel types below).

In addition, we consider the types trustFwd and trustRpl,
which assume partial trust. The agents who instantiate a

role of type trustFwd or trustRpl do not strictly follow their

role specification but, respectively, always correctly forward

messages or reply upon receiving correct messages. Such

assumptions turn out to often be necessary for the timeliness

property that we introduce shortly, as otherwise dishonest

agents that are expected to forward or answer certain messages

can fail to do so and thereby block other protocol participants.

Thus, these trust types enable fine grained distinctions to

be made about which assumptions are necessary for certain

properties to hold.

In summary, we consider the set of trust types trustType :=
{trusted, trustFwd, trustRpl, untrusted}. In the topologies, we

denote trusted roles by nodes that are circled twice (see e.g.,

BB in Figure 3a, p. 11) and the partial trust types trustFwd and

trustRpl by two dashed circles (see e.g., P in Figure 3a). In

our protocol class, there is no role that can be mapped both to

type trustFwd and to type trustRpl; thus the interpretation will

always be unambiguous. All remaining roles are untrusted.

2) Channel types: In addition to the trust assumptions, a

communication topology states channel assumptions. Chan-

nels, which are the edges in the topology graph, denote which

parties can communicate with each other. Also, channels

define assumptions, for example that limit the adversary by

stating who can change or learn the messages sent over a

given channel. Following Maurer and Schmid [29], we use

the notation A ◦−→◦ B, A •−→◦ B, A ◦−→• B, and A •−→• B
to denote a channel from (instances of) role A to role B that is

respectively insecure, authentic, confidential, and secure. For

a formal semantics for these channels, see [4].

We introduce two additional channel assumptions that are

useful for dispute resolution. These assumptions concern

whether a channel reliably delivers messages and whether

external observers can see the communication on a channel.

Usually, it is assumed that the above channels are unreliable
in that the adversary can drop messages sent. We make such

assumptions explicit and also allow for reliable variants of

channels. On a reliable channel, the adversary cannot drop

messages and thus all messages sent are received by the

intended recipient. We will see in Section V that such channels

are needed to achieve timeliness properties.

For dispute resolution, it is sometimes required that external

observers can witness the communication an agent is involved

in to later judge whether this agent is telling the truth. For

example, it may be required that witnesses can observe when

a voter casts his physical ballot by placing it into a voting

box. Such communication cannot later be denied, e.g. when

others witness that the voter has cast his ballot then the voter

cannot later deny this. Whereas it is in reality sufficient if

several witnesses, e.g., a subset of all voters, can observe such

communication, we model this by channels that specify that

any honest agent can observe such communication. Similarly,

we will also model the fact that sufficiently many parties can

decide who is right in a dispute by specifying that any party

can resolve disputes (see Section IV). Concretely, we model
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communication that can be observed by others by undeniable
channels where any honest agent C /∈ {A,B} learns the

communication between A and B. This is in contrast to the

default deniable channels, where an honest agent C /∈ {A,B}
cannot determine that A and B are communicating with each

other.

A channel type can be built from any combination of the

three channel assumptions introduced above. For example,

on an insecure reliable channel, the adversary can learn all

messages and write messages herself, but she cannot drop

messages sent from A to B. However, for dispute resolution

not all combinations are useful. In particular, an undeniable

channel provides evidence that a message was sent, but this is

only useful together with the guarantee that the message is also

received. Hence, we only consider undeniable channels that

are also reliable. We thus distinguish the following channel

types, named after their most significant property: The default
channels ◦ d−→◦, • d−→◦, ◦ d−→•, • d−→•, which are neither reliable

nor undeniable, the reliable channels ◦ r−→◦, • r−→◦, ◦ r−→•, • r−→•,
which are reliable but not undeniable, and the undeniable
channels ◦ u−→◦, • u−→◦, ◦ u−→•, • u−→•, which are both reliable and

undeniable.

We model the guarantees for senders and receivers that use

a reliable or undeniable channel by stating that each message

sent on such a channel is also received. We only require this

property when both the sender and the receiver of a message

are trusted or partially trusted and formally express it by the

following restriction.

{tr |∀A,B,m. t(A), t(B) ∈ {trusted, trustFwd, trustRpl}
∧ c(A,B) ∈ {◦ r−→◦, • r−→◦, ◦ r−→•, • r−→•, ◦ u−→◦, • u−→◦, ◦ u−→•, • u−→•}

∧ send(A,B,m) ∈ tr =⇒ rec(A,B,m) ∈ tr}.

To model the additional guarantee that undeniable channels

provide, additional signals are recorded in the trace when

agents communicate over such channels. That is, whenever an

agent A sends a message m to B over an undeniable channel,

in addition to the signals send(A,B,m) and rec(A,B,m),
the signal Pub(A,B,m) is recorded. We formalize this by the

following restriction.

{tr |∀A,B,m. c(A,B) ∈ {◦ u−→◦, • u−→◦, ◦ u−→•, • u−→•}∧
(send(A,B,m) ∈ tr ∨ rec(A,B,m) ∈ tr)

=⇒ Pub(A,B,m) ∈ tr}.

In the rest of this paper, these two restrictions are always

stipulated. That is, whenever we use TR(Pr, T ) to refer to all

traces of the protocol Pr run in the topology T , we actually

mean all traces in the intersection of TR(Pr, T ) and the above

two sets of trace restrictions.

III. CLASS OF VOTING PROTOCOLS

Formal reasoning about dispute resolution in voting requires

a language for specifying voting protocols and their properties.

We provide such a language by presenting a class of voting

protocols for which we subsequently define dispute resolution

HD P Auth

BBA
,

HD Auth

A BB

Fig. 1: The topology graphs GS (left) and GU (right). We

allow for any topology where G(T ) ⊆G GS or G(T ) ⊆G GU .

properties. Our class comprises both remote and poll-site vot-

ing protocols that can be electronic or paper-based. However,

we require a public bulletin board, which is, most of the time,

realized by digital means. We define the class by stating natural

restrictions that communication topologies and protocols must

satisfy to be in our class. Afterwards, we show that many

well-known voting protocols belong to this class.

A. Communication topologies considered

1) Topology graph: The topology graphs in Figure 1 depict

all possible roles and communication channels that we con-

sider. That is, we allow for any topology T whose G(T ) is

a subgraph of GS or GU in Figure 1. The node H describes

two roles for the human voters, one for voters who vote and

one for those voters who abstain. Also, there are roles for the

devices D and P, the voting authority Auth, a public bulletin

board BB, and the auditor A. In a concrete protocol, each role,

except for Auth and BB, can be instantiated by multiple agents.

We consider two kinds of setups, GS and GU in Figure 1,

for two kinds of protocols that differ in how ballots are cast.

GS provides the necessary channels for protocols where each

voter H knows his ballot and sends it to Auth using a platform

P. It models remote and poll-site voting. In the former case

P could be the voter’s personal computer, and in the latter

case P could be a ballot box, or an optical scanner that

forwards H’s ballot b to the authority for tallying. GU models

setups for protocols where a trusted platform P computes (e.g.,

encrypts) and casts the ballot for H . Often, such protocols do

not distinguish between H and P and P operates “in the name

of H”. Therefore, we model the setup of such protocols by

unifying the roles H and P into a single role voter H .

In some protocols, voters also have a personal off-line

device D. In contrast to P, D has limited capabilities and is not

connected to the authority. This models, for example, off-line

trusted digital devices or letters containing codes that may be

used to compute ballots.

Auth denotes the authority that is responsible for setting up

elections and collecting and tallying the ballots. Even though

some voting protocols describe the authority in terms of

several distinct roles, we collectively describe all these relevant

functionalities in a single role, except for the publication of

information, which is described by the bulletin board role

BB. We then also consider just one agent in the role Auth.
We will argue in Section IV that this is sufficient for our

dispute resolution properties. As depicted in Figure 1, Auth can

publish information on BB, which can be read by the auditors

and voters. An auditor performs checks on the published
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information to ensure that the election proceeded correctly.

By modeling the auditor as a separate role, this role can be

instantiated by anyone, including the voters.

2) Topology assumptions: We further restrict the considered

communication topologies by making some minimal channel

and trust assumptions. As is common for many voting proto-

cols [5], [15], [16], [21], we model a secure bulletin board

and consider its realization as a separate problem. Such a

bulletin board can be used to send messages authentically and

consistently from the authority to all voters and auditors. We

thus assume that the roles BB and A exist and are trusted and

that the channels from Auth to BB as well as from BB to H
and A exist and are default authentic channels. Furthermore,

we only use the following partial trust assumptions. Auth can

be trusted to always reply with a confirmation upon receiving

a correct message (type trustRpl) and P can be trusted to

always forward messages correctly (type trustFwd), e.g., a

voting machine can be trusted to forward the entered ballots

to a remote server. The remaining channel and trust types

can respectively be assigned to any channels and roles. Note

that we support protocols using anonymous channels (e.g.

Civitas [15]) since, for the properties we consider, anonymous

channels can be modeled as our default channels.3

For dispute resolution, certain guarantees should hold for

an honest voter H , even with an untrusted or partially trusted

authority and even if all other voters are untrusted. Similarly,

the guarantees for the honest authority should hold even when

all voters are untrusted. We therefore only consider topologies

T where the roles H and Auth are untrusted or partially trusted

and analyze dispute resolution with respect to three variations

of T . We introduce the following notation. We single out a

distinguished voter H for whom the security properties are

analyzed. Given a topology T , T Auth+H+

denotes the same

topology but where the trust assumptions about Auth and the

distinguished H are defined by t(Auth) = trusted and t(H) =
trusted, T Auth+ is as T but with t(Auth) = trusted, and TH+

is

as T but with t(H) = trusted. Note that in all variations, the

trust assumptions about the voters other than H are as in T .

B. Voting protocols considered

We next define the voting protocols considered in terms of

the protocols’ structure and which equations must be speci-

fied in the term algebra. Our definition allows for protocols

with re-voting, that is, where voters can send several ballots

(e.g., [15]). As explained in Section III-A, we allow protocols

where the voter H knows and casts his ballot or where a

trusted platform P casts the ballot, in which case we unify

the roles H and P .

1) Required functions and equations: A protocol specifica-

tion must define the equation satisfied by Tally([b]), defining

how the election’s result is computed from the list of recorded

ballots [b]. Similarly, a protocol must define the equation

satisfied by castBy(b), which must map each ballot b to a

3Distinguishing between anonymous and default channels is relevant when
analyzing observational equivalence properties such as coercion resistance.
However, for our possibility results, we only consider reachability properties.

voter, thereby specifying that this voter is considered to have

cast the ballot.

2) Protocol’s start and end: We assume that the protocol’s

setup can specify any number of voters and devices and any

relation between them, for example that each voter is associ-

ated with a unique trusted device. Also, at the protocol’s start

some public information may be posted on the bulletin board.

For example, this might be some election parameters or the

list of all eligible voters, denoted by BBH([H]). Furthermore,

some agents may know some terms such that these terms (or

associated terms) are initially published on the bulletin board

or known to other agents. For example, Auth’s public key

pkAuth := pk(skAuth) can be posted on the bulletin board at the

protocol’s start whereby Auth has the corresponding private

key skAuth in its initial knowledge. We require, however, that

at the protocol’s start no honest agent knows a voter H’s ballot

other than the voter himself.

We also assume that an election has two publicly known

deadlines that determine the voting phase’s end, i.e., when

ballots can no longer be cast, and the moment when all relevant
information is published. We denote the latter by the explicit

signal End in the BB role, which is recorded right after the

last message relevant for the election is published.

3) Tallying and publication of results: We assume that

ballots are collected and tallied by the authority Auth and that

the protocol allows voters to abstain from voting. Thus, Auth
starts the tallying process after the voting phase, even if not

all voters have cast a ballot. By the election’s end, all valid

ballots that were received by the authority have been published

on the bulletin board together with the votes in the final tally.

In protocols with re-voting, all ballots are published in the

list of recorded ballots and the tallying process is responsible

for removing duplicates. Finally, we assume that all messages

sent to the bulletin board are immediately published. That

is, whenever BB receives a message m, the signal BB(m) is

recorded in the trace.

C. Examples of protocols in our voting class

Our class comprises well known voting protocols such as

Helios [1], Belenios [16], and Civitas [15]. In these protocols,

voters can abstain from voting, the bulletin board is assumed

to be secure, and the recorded ballots are published on the

bulletin board as they were received by the authority. More-

over, even though these protocols all specify different roles

and setups, they can each be understood as instantiations of

the setups in Figure 1. Belenios and Civitas both have many

authority roles, such as registrars and different trustees, which

can be understood as our role Auth. In Belenios, the Bulletin
Board also performs some checks and computations. Thus, to

cast it in our protocol class, we must additionally interpret

those parts of Belenios’s Bulletin Board as part of our role

Auth and just the published part of Belenios’s Bulletin Board
as our role bulletin board BB.

Note that there are voting protocols, such as Bele-

niosRF [13], where the recorded ballots are re-encrypted be-
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fore being published on the bulletin board to achieve stronger

privacy properties. Such protocols are not in our class.

IV. DISPUTE RESOLUTION

In voting, the authority conducting the election should

behave as expected. That is, if the authority is dishonest, it

must be held accountable for this. For elections that are con-

ducted by multiple parties, we require that it is unambiguously

detectable when any of these parties misbehave, but we do not

require that it is detectable which of these parties misbehave.

This is sufficient to determine when “the system” running the

election does not proceed as expected and to take recovery

measures when this is the case, such as declaring the election

to be invalid. Thus, except for the bulletin board, we model

all of the parties involved in conducting an election as one

role (and agent) authority Auth and require that this agent is

held accountable if it does not behave as expected, i.e. does

not follow its role specification.

In contrast to the authority, we should not and cannot require

that all other parties, notably the voters, behave as expected.

In fact, a well-designed voting protocol should still satisfy its

expected properties for the honest voters, even when other

voters misbehave. We therefore only consider disputes with

respect to claims that the voting authority is dishonest.

We first explain why dispute resolution is needed in elec-

tions and characterize all relevant disputes. Afterwards, to

formalize our dispute resolution properties, we extend our

protocol model with additional signals and functions. We then

motivate the required properties using our classification and

formalize them using the model extensions.

A. Relevant disputes

After an election, all honest participants should agree on

the election’s outcome. A protocol where any manipulation

by the authority can be detected by suitable checks is called

verifiable. For voting, the gold standard is end-to-end veri-
fiability where the final tally consists of the honest voters’

votes, tallied correctly and this can all be checked. Often, this

property is divided into universal and individual verifiability.

Universal verifiability properties denote that some guarantees

hold (e.g., the tally is computed correctly) if an auditor

performs appropriate checks on bulletin-board data. Any voter

or independent third party can serve as an auditor and do such

checks. Therefore, if the universal verifiability checks fail, all

honest protocol participants will agree on this fact and such

checks never give rise to disputes.

Individual verifiability denotes that each voter can verify

that his own ballot has been correctly considered in the list of

recorded ballots. As only the voter knows which ballot he has

cast, this property relies on checks that must (and can only)

be done by each voter himself. Hence, individual verifiability

checks give rise to the following three problems, where a

voter claims that the authority is dishonest while other protocol

participants cannot determine whether the voter is lying.

(1) A voter is hindered from taking the protocol step where

he casts his ballot, in particular he cannot complete one of the

preceding protocols steps. There may be technical as well as

social reasons for this. For example, the voter may fail to be

provided with the necessary credentials in a setup phase or he

cannot access a polling station. For generality, we therefore

consider disputes regarding the inability to cast a ballot as out

of scope of this paper and focus in the following on disputes

concerning whether the recorded ballots correctly reflect the

ballots cast by the voters.

(2) A voter who successfully cast his ballot is hindered from

reaching the verifiability step. For instance, this can happen

when recording a ballot requires receiving a confirmation from

the authority, which is sent to the voter too late or not at all.

(3) A voter’s check whether his ballot is recorded correctly

fails. This can happen when a voter detects that one of his cast

ballots was not recorded correctly or when he detects that there

is a ballot recorded for him that he never sent.

As a result of the above reasoning, based on (3) we

distinguish two possible disputes that must be considered in

voting protocols, which are depicted in Figure 2. In both

disputes, a voter H’s and the authority’s claim about H’s cast

ballot differ, where the authority’s claim is denoted by the

information on the bulletin board. We take the standpoint that

the authority is responsible for setting up a working channel

to the bulletin board. That is, if messages are not on the

bulletin board that should be there, we consider this to be

the authority’s fault. In the dispute D1, a voter H claims that

he cast a ballot b, while the authority Auth claims that H did

not cast b and in the dispute D2 their claims are reversed.

Note that when H claims to have cast b and Auth claims that

H cast b′, this constitutes both a dispute D1 with respect to

the ballot b and a dispute D2 with respect to b′.
We require that when a voter learns that the authority Auth

did not record a ballot that he cast, he can convince the other

honest participants that Auth is dishonest. This is a prerequisite

needed to take recovery measures when such manipulations

occur. The same must hold when a voter learns that Auth
recorded a ballot for him that he did not cast. We respectively

denote these properties by VoterC(Auth) (in dispute D1) and

VoterA(Auth) (in dispute D2).
As explained in (2), it is also a problem when a voter who

casts a ballot is hindered from reaching his verifiability check

in due time. We thus require that a voter who casts a ballot

has some timeliness guarantees, namely that by the election’s

end either his ballot is correctly recorded or he has evidence

to convince others that the authority Auth is dishonest. We

denote this property by TimelyP(Auth).
Finally, it is possible that voters lie. Therefore, we require

that an honest authority Auth is protected from false convic-

tions in any dispute. We denote this by AuthP(Auth).
Some protocols support re-voting, where voters can send a

set of ballots, all of which are recorded on the bulletin board.

In this case, the dispute D1 denotes that H claims that at least

one of his cast ballots is not listed by Auth. We thus require

that VoterC(Auth) and TimelyP(Auth) hold for each cast ballot.

Dispute D2 means that H claims not to have cast some of

the ballots that are recorded for him. In such a dispute, the
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Voter H claims that H Authority Auth claims that H Properties protecting H Properties protecting Auth
D1 cast ballot b did not cast ballot b VoterC(Auth), TimelyP(Auth) AuthP(Auth)
D2 did not cast ballot b cast ballot b VoterA(Auth) AuthP(Auth)

Fig. 2: Possible disputes in voting. The authority’s claim is captured by the information on the bulletin board. The respective

disputes can be resolved when all properties in the third and fourth columns hold.

voter must be able to convince everyone that too many ballots

are recorded for him and that the authority Auth is dishonest.

This guarantee generalizes the property VoterA(Auth), which

we will define so that it covers both situations. As before, the

disputes D1 and D2 can occur simultaneously, for example

when H claims he cast the ballots b1 and b2 and Auth claims

that H cast b2 and b3.

B. Protocol model for dispute resolution

To formalize dispute resolution for our class of voting

protocols, we extend our protocol model from Section II.

It may be required that agents collect evidence to be used

in disputes. We use the signal Ev(b, ev) to model that the

evidence ev concerning the ballot b is collected. We model

the forgery of such evidence by allowing any dishonest agent

to claim that any term in its knowledge is evidence. That is, we

allow the adversary to perform an action that records Ev(b, ev)
for any terms b and ev such that K(〈b, ev〉).

As we have argued that all honest agents should be able to

agree on the outcome of disputes, we do not specify which

agents resolve disputes and how the collected evidence must

be communicated to them to file disputes. We merely define

that a voting protocol can generate evidence such that any
third party who obtains this evidence can, together with public

information, judge whether the authority Auth is dishonest.

Recall that in poll-site settings, undeniable channels are used

to model that sufficiently many witnesses can observe the

relevant communication in practice. In this context, requir-

ing that any third party can judge whether the authority is

dishonest models that sufficiently many parties can decide

this in practice. Abstracting away from these details allows

us to focus on which evidence and observations are required

to resolve disputes, independently of how undeniable channels

are realized in practice.

We thus model the verdict of whether Auth should be

considered dishonest by a publicly verifiable property Faulty,
which can be specified as part of each voting protocol,

independently of any role. Faulty(Auth, b) defines a set of

traces where the agent Auth is considered to have behaved dis-

honestly with respect to the ballot b, i.e., b has presumably not

been processed according to the protocol in these traces. For

example, Faulty(Auth, b) := {tr |∃B, [b]. Pub(Auth, B, b) ∧
BBrec([b]) ∈ tr ∧ b /∈ [b]} specifies that Auth is considered

dishonest in all traces where the ballot b was sent from Auth
to an agent B on an undeniable channel but not included in

the recorded ballots [b] published on the bulletin board.

To ensure that the verdict whether a trace is in the set

Faulty(Auth, b) is publicly verifiable, the specification of

Faulty(Auth, b) must depend just on evidence and public

information. We thus state the following requirement.

Requirement 1. Faulty(Auth, b) may only be defined based on

the signals BB, Ev, and Pub.

Whereas the above example satisfies this requirement, the set

{tr |∃A,B,m, [b]. send(A,B,m) ∧ BBrec([b]) ∈ tr ∧m /∈ [b]}
is not a valid definition of Faulty(Auth, b), as send is not one

of the admissible signals.

As a consequence of the above requirement, not all signals

in a trace tr are relevant for evaluating whether tr satisfies

a given Faulty definition. In particular, let pubtr(tr) be a

projection that maps a trace tr to the signals in tr whose

top-most function symbol is one of BB, Ev, or Pub, while

maintaining the order of these signals. Then, it follows from

Requirement 1 that for all traces tr1 and tr2 such that

pubtr(tr1) = pubtr(tr2), it holds that tr1 ∈ Faulty(Auth, b)
iff tr2 ∈ Faulty(Auth, b).

C. Formal dispute resolution properties

We now use our extended model to define the dispute

resolution properties for our class of voting protocols. We

formalize each property from Figure 2 as a set of traces.

First, we consider the property VoterC(Auth) that protects

an honest voter who detects that one of his cast ballots is not

recorded correctly by the authority Auth. Intuitively, we require

that if this happens, the voter can then convince others that

the authority is dishonest. Specifically, the property states that

whenever an honest voter H (or one of his devices) reaches

the step where he believes that one of his ballots b should be

recorded on BB, then either this ballot is correctly included in

the list of recorded ballots on BB or everyone can conclude

that the authority Auth is dishonest. We define VoterC(Auth)
as follows (C denotes that a ballot has been cast).

Definition 1.

VoterC(Auth) := {tr | verifyC(H, b) ∈ tr

=⇒ (∃[b]. BBrec([b]) ∈ tr ∧ b ∈ [b]) ∨ tr ∈ Faulty(Auth, b)}.

Note that, for notational simplicity, here and in the rest

of the paper, when using set comprehension notation like

{x|F (x, ȳ)}, all free variables ȳ different from x are univer-

sally quantified, i.e., {x|∀ȳ. F (x, ȳ)}.
The next property, TimelyP(Auth), states that an honest voter

H who casts a ballot b cannot be prevented from proceeding

in the protocol such that his ballot is recorded or, if he is

prevented, then he can convince others that the authority Auth
is dishonest. In particular, a voter’s ballot must be recorded or

there must exist evidence that the authority is dishonest within
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a useful time period, i.e., by the election’s end, as indicated

by the last disjunct in the following definition.

Definition 2.

TimelyP(Auth) := {tr | ∃tr ′, tr ′′. tr = tr ′· tr ′′

∧Ballot(H, b) ∈ tr ′ ∧ End ∈ tr ′′

=⇒ (∃[b].BBrec([b]) ∈ tr ′ ∧ b ∈ [b]) ∨ tr ∈ Faulty(Auth, b)}.

The difference to VoterC(Auth) (Definition 1) is that we not

only require the property when a verifiability check is reached,

but whenever all the relevant information is published on the

bulletin board (indicated by End) and a voter’s ballot was

cast before this deadline. We illustrate this difference on an

example in Section VI-D3.

For abstaining voters we define VoterA(Auth). It states that

when an honest voter H who abstains from voting, or one

of H’s devices, checks that no ballot is recorded for H , then

either this is the case or everyone can be convinced that the

authority Auth is dishonest. We define this property such that it

can also be used in protocols with re-voting, where a voter who

cast a set of ballots bH checks that no additional ballots are

wrongly recorded for him. We define VoterA(Auth) as follows.

Definition 3.

VoterA(Auth) := {tr | verifyA(H, bH) ∈ tr

=⇒ ¬(∃[b], b. BBrec([b]) ∈ tr ∧ b ∈ [b] ∧ castBy(b) = H

∧ b /∈ bH) ∨ ∃b. tr ∈ Faulty(Auth, b)}.

Note that castBy is just a claim that H has cast a ballot and

does not imply that H has actually cast it. For example, in a

protocol where ballots contain a voter’s identity in plain text

and castBy(b) is defined to map each ballot to the voter whose

identity it contains, everyone can construct a ballot b such that

H = castBy(b), even when H has not cast it.

It is possible, of course, that a voter who claims that the

authority is dishonest is lying. Thus, for dispute resolution

to be fair, it must not only protect the honest voters but

also an honest authority. We formalize by AuthP(Auth) that

traces where the authority Auth is honest should not be in

Faulty(Auth, b) for any ballot b.

Definition 4.

AuthP(Auth) := {tr | hon(Auth) ∈ tr

=⇒ ∀b. tr /∈ Faulty(Auth, b)}.

Even though the above properties are stated independently

of any adversary model, VoterC(Auth), TimelyP(Auth), and

VoterA(Auth) are guarantees for an honest voter H and must

hold even when the authority Auth and other voters are dis-

honest. Similarly, AuthP(Auth) constitutes a guarantee for Auth
and must hold even if all voters are dishonest. Therefore, we

define a dispute resolution property by stating what property

must be satisfied by a protocol (1) for the honest voter H , i.e.,

when the protocol is run in a topology where H is honest, and

(2) for the honest authority Auth. Additionally, it is usually

required that a protocol satisfies some functional requirement

when the agents are honest. Thus a dispute resolution property

also specifies (3) which functional requirement must hold

when both Auth and the voter H are honest.

Definition 5. Let pH and pAuth be two security properties that

must hold respectively for an honest voter H and the honest

authority Auth and let pf be a functional property that must

hold when both agents are honest. A protocol Pr, executed

in a topology T , satisfies the dispute resolution property

DR(Pr, T, pH , pAuth, pf ) iff

TR(Pr, T Auth+H+

) ⊆ pH ∩ pAuth ∧ TR(Pr, TH+

) ⊆ pH

∧TR(Pr, T Auth+) ⊆ pAuth ∧ TR(Pr, T Auth+H+

) ∩ pf �= ∅.
For example, DR(Pr, T,VoterC(Auth) ∩ TimelyP(Auth) ∩
VoterA(Auth),AuthP(Auth), f) denotes that the protocol Pr
run in the topology T satisfies all previously introduced

properties in the required adversary models. That is, it satisfies

the properties VoterC(Auth), TimelyP(Auth), and VoterA(Auth)
for an honest voter H , the property AuthP(Auth) for an

honest authority Auth, and the functional property f for an

honest voter and the honest authority (see the next section

for an example of a functional property). Another dispute

resolution property that we consider in the next Section is

DR(Pr, T, TimelyP(Auth),AuthP(Auth), f), which states that

the timeliness property TimelyP(Auth) should hold for an

honest voter H while AuthP(Auth) is preserved for the honest

authority Auth.

V. COMMUNICATION TOPOLOGIES AND TIMELINESS

For TimelyP(Auth), it is a problem when messages are

lost as some protocol participants may be waiting for these

messages and thus cannot proceed in the protocol. Intuitively,

timeliness only holds under strong assumptions. We investigate

this next by systematically characterizing the assumptions

needed for TimelyP(Auth) to hold in our protocol class.

A. Problem scope
1) Dispute resolution property: We aim at achieving time-

liness guarantees for the voters while also maintaining the

AuthP(Auth) property for the authority Auth. Furthermore, we

are only interested in protocols where a voter’s ballot can

actually be recorded. To express the third requirement, we

formalize a functional property stating that for a given protocol

and topology, there must be an execution where an honest

voter H casts a ballot b and where this ballot is published

in the list of recorded ballots [b] on the bulletin board before

the last relevant information is published (indicated by End).
Moreover, this property must hold when all agents and the

network behave honestly. We denote by honestNetw the set of

traces where all agents follow the protocol and messages are

forwarded on all channels unchanged. The required functional

property is defined as the following set of traces.

Definition 6.

Func := {tr | ∃tr ′, tr ′′,H, b, [b]. tr = tr ′· tr ′′∧
Ballot(H, b) ∈ tr ′ ∧ BBrec([b]) ∈ tr ′ ∧ b ∈ [b] ∧ End ∈ tr ′′

∧ tr ∈ honestNetw}.
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Given a protocol Pr and a topology T ,

we would like the dispute resolution property

DR(Pr, T, TimelyP(Auth), AuthP(Auth),Func), which we

write for conciseness as TimelyDR(Pr, T ).
2) Additional assumptions: In standard protocol models,

honest agents can stop executing their role at any time. For

timeliness, this might be a problem as other agents may wait

for their messages and cannot proceed in the protocol. We thus

state the additional assumption that honest agents do not abort

the protocol execution prematurely. Similarly, we assume that

partially trusted agents execute the required action once they

can. Note that agents can still be blocked, e.g., when waiting

for messages that are dropped on the network.

Assumption 1. Honest agents always execute all protocol steps

possible and agents who instantiate a role that is trusted to

forward or answer messages, i.e., partially trusted, perform

this respective action once they can.

The assumption implies, for example, that when a role speci-

fies a send event after a receive event, the agent instantiating

the role will always perform the second step right after the

first one. However, an agent can also be blocked between two

consecutive protocol steps, for example when multiple receive

events are specified after each other and the agent must wait

for all of them.
Under the above assumption, we characterize all topologies

from our protocol class for which there exists a protocol that

satisfies TimelyDR, i.e., the set {T |∃Pr. TimelyDR(Pr, T )}.
As others [4], we introduce a partial order on topologies such

that a possibility result (i.e., the existence of a protocol such

that TimelyDR(Pr, T ) holds) for a weaker topology implies a

possibility result for a stronger topology. We then characterize

the above set by providing the “boundary” topologies, i.e., the

minimal topologies satisfying TimelyDR.

B. Communication topology hierarchy
We define a partial order on topologies that, given two

topologies, orders them with respect to their trust and system

assumptions. We first define a partial order on our trust and

channel types. For t, t′ ∈ trustType, t′ � t denotes that t is a

stronger assumption than t′. We thus have that untrusted �
trustFwd � trusted and untrusted � trustRpl � trusted.
We also define for two channel types c and c′ that c makes

stronger assumptions than c′. Formally, let �0 be the relation

where ◦ x−→◦�0◦ x−→•�0• x−→• and ◦ x−→◦�0• x−→◦�0• x−→• for all

x ∈ {d, r, u} and
d−→�0

r−→�0
u−→ for all −→∈ {◦−→◦, •−→◦, ◦−→•

, •−→•}. We overload the symbol � and, for channel types, we

write �=�∗
0, i.e., � is the reflexive transitive closure of �0.

Using the above, for two topologies T1 = (V1, E1, t1, c1)
and T2 = (V2, E2, t2, c2) we say that T2 makes at least

as strong assumptions as T1 if T2 uses channel and trust

assumptions that are at least as strong as those in T1 and if

T2’s topology graph includes all the roles and communication

channels that exist in T1:

T1 � T2 := G(T1) ⊆G G(T2) ∧ ∀(va, vb) ∈ E1.

c1(va, vb) � c2(va, vb) ∧ ∀v ∈ V1. t1(v) � t2(v).

We show next that defining the relation this way is useful for

relating possibility results for different topologies. In particu-

lar, if for a topology T it is possible to satisfy TimelyDR(Pr, T )
with some protocol, then for all topologies that make stronger

assumptions, there is also a protocol that satisfies the property.

The lemma is proven in Appendix A1 of the full version of

the paper [6].

Lemma 1. Let TI � TS be topologies in our class.

∃Pr. TimelyDR(Pr, TI) =⇒ ∃Pr′. TimelyDR(Pr′, TS).

C. Characterization of topologies enabling TimelyDR

We next present the minimal topologies satisfying TimelyDR
in our voting protocol class. In combination with the above

hierarchy, this allows us to fully characterize all topologies T
that enable TimelyDR(T,Pr) for some protocol Pr.

The minimal topologies are depicted in Figure 3 and de-

noted by T1, . . . , T7. Recall that the agents BB and A as

well as their incoming and outgoing channels have fixed trust

assumptions. In all topologies, there are roles for H, P and

Auth (respectively for H and Auth in T6 and T7), as this

is required to satisfy the functional property (H must cast

a ballot, P must forward it, and Auth must publish it on

BB). All topologies have a reliable path from H to Auth and

additional trust assumptions, such as (partially) trusted roles

or undeniable channels. We present some possible real-world

interpretations of these topologies in Section VI-A.

We now state the main theorem for our voting protocol

class: The set of topologies for which there exists a protocol

that establishes TimelyDR consists of all topologies that make

at least the assumptions that are made by one of the seven

topologies in Figure 3.

Theorem 1. Let T1, . . . , T7 be the topologies depicted in

Figure 3 and T be a topology in our voting protocol class.

(∃Pr. TimelyDR(Pr, T ))⇔ (∃i ∈ {1, . . . , 7}. Ti � T ).

We only explain the high level idea of the proof here and

refer to [6, Appendix A2] for the details.

Proof Sketch. First, we establish necessary requirements for

topologies to enable TimelyDR, by showing by pen-and-paper

proofs that any topologies that do not meet these requirements

cannot satisfy TimelyDR with any protocol. Next, we show

that these requirements, which are met by the topologies

T1, . . . , T7 in Figure 3 are sufficient. In particular, we prove by

automated proofs in Tamarin (see [33]) that for each topology

Ti ∈ {T1, . . . , T7} there exists a simple protocol Pri for

which TimelyDR(Ti,Pri). Finally, we show (by hand) that

the topologies T1, . . . , T7 in Figure 3 are the only minimal
topologies satisfying the necessary and sufficient requirements.

It follows that all topologies in our class are either stronger

than one of the topologies T1, . . . , T7 and, by Lemma 1, also

also establish TimelyDR with some protocol or they are weaker

than one of the topologies T1, . . . , T7 and thus do not meet

the necessary requirements for TimelyDR.
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(g) Topology T7.

Fig. 3: The minimal topologies for which there exists a protocol such that TimelyDR can be achieved. The channels’ labels

denote whether the channels are default (d), reliable (r), or undeniable (u). The nodes’ lines denote whether the roles are

untrusted (circled once), trusted (circled twice), or partially trusted (dashed circles), where a partially trusted P is of type

trustFwd and a partially trusted Auth is of type trustRpl.

The theorem shows that strong assumptions are indeed

necessary to achieve timeliness for dispute resolution. In

particular, unreliable channels are insufficient. In most cases,

undeniable channels or trusted platforms are required. This can

only be avoided in those topologies where there are reliable

paths both from the voters to the authority and back. Moreover,

TimelyDR cannot hold when the platforms are untrusted. This

generalizes [2], which states that dispute resolution (called

contestability in [2]) cannot hold in poll-site voting protocols

where ballot-marking devices can be corrupted.

Recall that, in our protocol class, we also allow for off-

line devices D. Our analysis shows that D is irrelevant for

the question of whether or not TimelyDR can be achieved.

Also, it is irrelevant whether the channels between the voters

and the authority are authentic, confidential, or secure. In

particular, they can all be insecure. Nevertheless such devices

and channels are needed in voting to satisfy other properties,

for example privacy.

VI. DISPUTE RESOLUTION IN PRACTICE

We now give a practical interpretation of the above results

and illustrate how our formalism can be used.

A. Topologies providing TimelyDR

Consider the topologies T1, . . . , T7 in Figure 3. In T1, there

is an undeniable channel from P to Auth. When the platforms

are physical ballot boxes, this can be interpreted as the

assumption that sufficiently many witnesses see all ballots in

the boxes and observe that they are forwarded and considered

in the tallying process. The undeniable channel between H
and P in T2 could, for example, model that witnesses at each

polling station observe voters’ attempts to cast their ballot,

e.g., by scanning their already encrypted ballot on a voting

machine [31]. The trusted P in T3 models, for example, that

everyone trusts the voting machines used to compute and cast

ballots. In this case, the machines can store a trustworthy

record of what ballots have been cast for dispute resolution.

In topology T4, the paths from H to Auth as well as from

Auth to H are reliable. P and Auth are respectively trusted to

forward and reply. In a remote setting, the reliable channel

from H to P could model that voters can always successfully

enter messages on their platforms, for example on a working

keyboard. The voters could try with several platforms [37]

to cast their ballot remotely and receive a confirmation from

Auth or, in the worst case, go to a physical polling station

to do so. The assumptions then model that the voters can

find a working platform and website (e.g., public platforms in

libraries, polling places, etc.) or they can find a polling station

that issues them with a valid confirmation before the election

closes. In T5 and T6, the undeniable channels could model a

distributed ledger on which everyone can respectively observe

when confirmations are issued or ballots are cast. Finally, T7

could model a remote setting similar to T4, but where ballots

are cast by the trusted platforms.

B. Resolving dispute D2 in protocols without re-voting

In practice, the properties VoterC(Auth) and TimelyP(Auth)
can be established in a protocol that provides evidence that

a ballot was received by Auth. For example, this can be

achieved by an undeniable channel or by a confirmation that

is sent back from Auth to the voter upon a ballot’s receipt.

Faulty(Auth, b) can then be defined as the set of traces where

a ballot b was received by Auth but is not in the set of recorded

ballots on the bulletin board (see Section VI-D for a concrete

example). In contrast, it is often unclear how VoterA(Auth)
can be established as a voter who abstains cannot prove the

absence of a message. To solve this issue, we show that

VoterA(Auth) is, in many cases, entailed by the Uniqueness
property, defined next, that can be achieved using standard

techniques. We prove this for protocols without re-voting and

assume such protocols in the rest of this section.

Uniqueness(Auth) states that whenever any recorded ballots

are published and Auth is not considered dishonest according

to Faulty(Auth, b) for some b �=⊥, then each recorded ballot

b′ has been sent by a unique eligible voter H for which

castBy(b′) = H . Thereby, the ballot can be sent as part of a

larger composed message. To express that a message m′ is a
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subterm of another message m, we write m � m′. As everyone

can evaluate Faulty(Auth, b), the property’s preconditions and

thus Uniqueness(Auth) are verifiable by everyone.

Definition 7. Let the length of the list [b] be n.

Uniqueness(Auth) := {tr | b �=⊥ ∧tr /∈ Faulty(Auth, b)

∧BBrec([b]) ∈ tr ∧ j ∈ {1, . . . , n} ∧ i ∈ {1, . . . , n} =⇒
∃[H], i′, j′, A1, A2,m1,m2. BBH([H]) ∈ tr

∧castBy([b]i) = [H]i′ ∧ castBy([b]j) = [H]j′

∧send([H]i′ , A1,m1) ∈ tr ∧ send([H]j′ , A2,m2) ∈ tr

∧m1 � [b]i ∧m2 � [b]j ∧ (i �= j =⇒ [H]i′ �= [H]j′)}.
The property’s guarantees are similar to eligibility verifiabil-
ity [24] in that both state that each element of a list on the

bulletin board is associated with a unique eligible voter and we

compare the two notions in more detail in [6, Appendix C3].

Note that the property can only hold for protocols where the

list of eligible voters is publicly known.

Intuitively, if a protocol satisfies Uniqueness(Auth), then a

ballot recorded for the voter H implies that H cast it. Thus, for

any ballot that was not cast by H , Auth cannot convincingly

claim the contrary and an honest voter is thus protected in

disputes D2. In particular, the traces in the protocol also

satisfy VoterA(Auth). We prove the following theorem in [6,

Appendix B].

Theorem 2. Let Pr be a protocol in our class without re-voting

and where a voter who abstains does not send any message

and let T be a topology in our class.

∀tr ∈ TR(Pr, T ).

tr ∈ Uniqueness(Auth) =⇒ tr ∈ VoterA(Auth).

The theorem has the practical application that, while it is

often unclear how VoterA(Auth) can be directly realized,

Uniqueness(Auth) can easily be achieved using standard tech-

niques, such as voters signing their ballots. We provide an

example in Section VI-D.

C. How to use our formalism

Given the above results, our formalism can be used to

analyze whether a protocol Pr and topology T in our class

of voting protocols satisfy all dispute resolution properties

introduced in Section IV. If there is no topology T1, . . . , T7 in

Figure 3, such that Ti � T , then we can immediately conclude,

by Theorem 1, that TimelyP(Auth) and AuthP(Auth) cannot

hold while the protocol is also functional. Otherwise, analysis

is required whether the properties are indeed satisfied by Pr.
First, let Pr be a protocol that defines a dispute resolution

procedure, i.e., specifies the set Faulty. Our formalism is

mainly intended for this case and can directly be used to

analyze whether VoterC(Auth), TimelyP(Auth), VoterA(Auth),
and AuthP(Auth) hold in such a protocol. In protocols without

re-voting that satisfy Uniqueness(Auth) and the precondi-

tions of Theorem 2, VoterA(Auth) can also be proven by

proving Uniqueness(Auth) and concluding VoterA(Auth) by

Theorem 2.

If a protocol Pr does not define a dispute resolution pro-

cedure Faulty then our properties are also undefined. Never-

theless, one can still try to define a verdict Faulty using the

protocol’s specified signals BB, Ev, and Pub and the terms

contained in these signals. Our formalism can then be used to

establish for each such Faulty which properties are satisfied.

However, to prove that no definition of Faulty achieves dispute

resolution, all possible combinations and relations of the above

signals and their terms must be considered. Thus, it is in

general not straightforward to efficiently conclude that no

appropriate definition of Faulty exists for a given protocol.

D. A mixnet-based voting protocol with dispute resolution

To demonstrate the applicability of our formalism, we next

analyze MixVote, a standard mixnet-based voting protocol

inspired by [5] with a dispute resolution procedure similar

to [28]. In particular, we show how Faulty is instantiated,

how the properties VoterC(Auth) and TimelyP(Auth) differ in

practice, and that our dispute resolution properties are compat-

ible with standard voting properties, such as verifiability and

receipt-freeness. Due to space constraints, we only describe the

protocol’s main features here, omitting some details such as

the auditor’s role and the precise definition of some functions

and equations in the term algebra. For the detailed protocol

specification, the properties’ formal definitions, and the proofs

we refer to [6, Appendix C].

1) Topology: We consider a topology TMV that is as T4 in

Figure 3d, except that there is also a trusted off-line device D,

which is connected to the voter H by (bidirectional) secure,

default channels. TMV specifies reliable channels between H
and the platform P and between P and the authority Auth.
Also, P and Auth are partially trusted to forward messages

and reply to messages, respectively. Thus, by Theorem 1, it is

possible to achieve TimelyDR in the topology TMV.

2) Protocol: We present the protocol as a message sequence
chart, where each role is depicted by a vertical life line
and where the box on top names the role. A role’s life line

denotes the role’s events, ordered sequentially. A role’s sent

and received messages are depicted on top of arrows that start

at the sender and end at the recipient. Also, we denote explicit

signals by solid squares and the roles’ internal computations

by dashed squares.

MixVote’s simplified specification is depicted in Figure 4.

The protocol’s setup specifies that at each point in time, only

one election takes place (i.e., there are no parallel sessions) and

each voter possesses a unique trusted device D to which he

has exclusive access. All devices are equipped with a unique

signing key skD and the authority with a unique secret key

skAuth. The corresponding verification keys from the devices

[pkD] are known to Auth and Auth’s public key pkAuth is known

to all devices. Moreover, all these public keys are published

on BB (denoted by the signals BBpkD and BBpk, respectively).

Additionally, at the protocol’s start BB knows and publishes

the list of eligible voters [H] (denoted by the signal BBH)

and which verification key corresponds to which voter. The

latter is denoted by the signal Corr([H, pkD]), where each pair
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D H P Auth BB

knows(H, 〈D,P,BB, v〉) knows(Auth, 〈skAuth, [pkD]〉)

knows(BB, 〈Auth, [pkD], pkAuth, [H]〉)knows(D, 〈H,Auth, pkAuth, skD〉) knows(P, 〈H,Auth〉)

Vote(H, v) BBpkD([pkD]),BBpk(pkAuth)
BBH([H]),Corr([H, pkD])

v

b = encrypt v under pkAuth
and sign result with skD

b

Ballot(H, b)
b b

If valid, add b to [b]
{b}skAuth{b}skAuth

Ev(b, {b}skAuth) [v] = Tally([b])
[b], [v]

BBrec([b]),BBtal([v])

End
[b]

verifyC(H, b)

For b =⊥: Faulty(Auth, b) := {}.
For b �=⊥: Faulty(Auth, b) := {tr |(∃[b], pkAuth, c. BBpk(pkAuth) ∈ tr ∧ Ev(b, c) ∈ tr ∧ ver(c, pkAuth) = b ∧ BBrec([b]) ∈ tr ∧ b /∈ [b])

∨(∃[b], [pkD]. BBrec([b]) ∈ tr ∧ BBpkD([pkD]) ∈ tr ∧ not all ballots in [b] contain a signature associated with a unique key in [pkD])}

Fig. 4: Simplified protocol specification for MixVote, without the auditor role and the full function definitions. Here pkD =
pk(skD), pkAuth = pk(skAuth), and castBy(b) = H holds iff ∃pk. ver(b, pk) �=⊥ ∧〈H, pk〉 ∈ [H, pk] ∧ Corr([H, pk]) ∈ tr . The

protocol’s setup specifies a single agent Auth, that each voter H is associated with a unique trusted off-line device D, and

that there is no restriction on the relation between voters H and platforms P . The role for a voter H who abstains consists of

receiving the list of recorded ballots from the bulletin board followed by the signal verifyA(H, ∅).

〈H, pkD〉 in the list denotes that the signing key corresponding

to pkD is installed on H’s device.

To vote, a voter H uses his device D to compute the

ballot as follows: the vote is encrypted under Auth’s public

key and signed by the device. Then, the voter casts his ballot

by entering it on any platform P , which forwards it over the

network to Auth. For each received ballot b, Auth checks b’s
validity, namely whether b contains a signature corresponding

to an eligible voter who has not previously voted. If this is the

case, Auth adds b to the list of recorded ballots [b]. Moreover,

as in other protocols [28], to achieve dispute resolution, Auth
sends back a confirmation to the voter H . The confirmation

consists of H’s ballot b signed by Auth and serves as evidence

that b was indeed received by the authority. The voter keeps

this confirmation as evidence for later disputes (indicated by

the signal Ev).

After the voting phase, Auth computes the tally from the

recorded ballots [b]. For this, a standard mixnet is used to de-

crypt the ballots. This procedure has the properties that no one

can learn the correspondence between the encrypted ballots

and the decrypted votes. Nevertheless, the mixnet produces

evidence, which is published by Auth on the bulletin board,

that allows everyone to verify that the tally was computed

correctly. We describe the detailed functions and equations

modeling the Tally function in [6, Appendix C1]. Also, we

describe there the detailed information that is produced by the

mixnet and published on BB and how an auditor inspects this

information to verify the tally.

Among other information, Auth publishes on BB the

recorded ballots [b] and the votes in the final tally [v], as shown

in Figure 4. This allows a voter to read the recorded ballots

on BB and verify that his ballot is included in this list.

A voter who abstains does not send any messages. After the

results are published, he reads the list of recorded ballots [b] on
BB and believes at that step that no ballot should be recorded

for him, which is denoted by the signal verifyA(H, ∅).
We complete the protocol’s specification with the definitions

of the function castBy and the dispute resolution procedure
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Faulty. castBy specifies that a ballot b is considered to be

cast by the voter H if the ballot’s signature can be verified

with the verification key that is associated with H . Faulty
specifies that Auth is considered dishonest in all traces where

(a) some agent possesses evidence consisting of a ballot b
signed by Auth that is not included in the recorded ballots [b]
on the bulletin board or (b) not all published recorded ballots

[b] contain a signature of a unique eligible voter. castBy is

defined in Figure 4’s caption and the description of Faulty is

given in Figure 4, although we omit here the details of how

we model (b).

3) Dispute resolution: Intuitively, by the channel and trust

assumptions, each voter who casts a ballot b receives, be-

fore the election’s end, a confirmation. As this confirmation

serves as evidence that b must be on BB, VoterC(Auth) and

TimelyP(Auth) hold. Furthermore, since no one can forge

Auth’s signature, for a ballot b that was not actually received by

Auth no one can produce (false) evidence that b should be on

BB. Thus, Auth cannot be falsely convicted and AuthP(Auth)
holds too. Moreover, Uniqueness(Auth) holds because, when

Faulty does not hold in an execution, all recorded ballots are

signed (and thus were sent) by a unique eligible voter. In

particular, Uniqueness(Auth) implies VoterA(Auth) in MixVote.
To understand the difference between VoterC(Auth) and

TimelyP(Auth), take a topology T ′
MV equal to TMV except that

Auth is untrusted. Assume for simplicity that a voter can

interpret whether Auth’s signature on the confirmation is valid.

In reality, this would require an additional protocol step where

the voter uses a device. When the protocol is run in T ′
MV,

it satisfies VoterC(Auth), as a voter only proceeds with his

verifiability check when he has previously received a valid

confirmation that convinces everyone that his ballot must be

recorded. However, TimelyP(Auth) is violated as Auth may

never reply with a valid confirmation and thus block a voter.

Consequently, there is an unresolved dispute where an outside

observer cannot tell whether a voter did not cast a ballot or the

authority did not send a confirmation. In contrast, when the

protocol is run in topology TMV, Auth always sends a timely

response and such disputes do not occur.

4) Standard voting properties: In addition to the dispute

resolution properties, we prove in [6, Appendix C] that

MixVote satisfies end-to-end verifiability, consisting of individ-

ual verifiability and tallied-as-recorded, as well as eligibility
verifiability [24]. Tallied-as-recorded and eligibility verifiabil-

ity are two universal verifiability properties that respectively

denote that an auditor can verify that the recorded ballots

are correctly counted in the final tally and that each vote

in the final tally was cast by a unique eligible voter. We

also prove that MixVote satisfies receipt-freeness [18], which

denotes that a voter cannot prove to the adversary how he

voted, even when he provides the adversary with all secrets

that he knows. Intuitively, receipt-freeness holds because the

adversary cannot access the voter’s device D. Moreover, the

evidence used for disputes only contains the ballot and does

not reveal the underlying (encrypted) vote.

5) Proofs: We prove in [6, Appendix C4] and by the

Tamarin files in [33] that MixVote satisfies all above mentioned

properties when run in the topology TMV. In particular, we

establish most of the properties by automatically proving

them for one voter who casts a ballot in Tamarin and by

proving them for an arbitrary number of voters by pen-

and-paper proofs. The only exceptions are: receipt-freeness,

which we prove by Tamarin’s built in support for observa-

tional equivalence [3]; VoterA(Auth), which we deduce (by

hand) from Uniqueness(Auth) using Theorem 2; and end-to-

end verifiability which we deduce (by hand) from individual

verifiability and tallied-as-recorded.

VII. RELATED WORK

A. Dispute resolution in poll-site voting protocols

The idea of dispute resolution has been informally con-

sidered for poll-site voting protocols. In [17], the property

considered is called non-repudiation and requires that failures

“can not only be detected, but (in most cases) demonstrated”
and that no false convictions can be made. [2] informally

considers the properties contestability and defensibility, which

are similar to our dispute resolution properties in that they also

protect the honest voters and the honest authority. Contesta-

bility requires that some guarantees hold for a voter when he

starts the voting process at a polling station. In contrast, our

properties TimelyP(Auth) and VoterC(Auth) are also suitable

for remote settings and respectively make guarantees once a

voter casts his ballot and believes that it should be recorded.

Moreover, [2]’s definitions are informal and they do not

consider timeliness.

In most poll-site voting protocols that consider dispute

resolution, voters receive a confirmation as evidence that their

ballot was accepted by the authority [8], [11], [12], [14], [17],

[22], [36]. In some protocols [11], [17], this confirmation

contains the authority’s digital signature. In the protocols based

on Scantegrity [12], [14], [22], [36] the confirmation consists

of a code that is (physically) hidden on the ballot by invisible

ink and revealed when a voter marks his choice. A voter’s

knowledge of a valid code serves as evidence that he voted

for a candidate. Thus, when a wrong ballot is recorded, a voter

can prove the authority’s dishonesty by revealing the code.

Compared to remote voting settings, poll-site protocols

profit from the fact that on-site witnesses can observe certain

actions. For example, if voters are repeatedly prevented from

casting their ballots, this is visible to other voters and auditors

in the polling station. Some protocols [22] even explicitly

state that voters should publicly declare some decisions be-

fore entering them on the voting machine to avoid disputes

regarding whether the voting machine correctly followed their

instructions. Our notion of undeniable channels allows one to

formally consider such assumptions during protocol analysis.

B. Dispute resolution in remote voting protocols

Remotegrity [37] is a remote voting protocol based on

Scantegrity, where paper sheets are sent to the voters by

postal mail and ballots are cast over the Internet. As with

14



Scantegrity II and III [12], [14], [36], to achieve dispute

resolution some codes on these sheets are obscured by a

scratch-off surface. If a voter detects a (valid) ballot that is

incorrectly recorded for him, he can show to anyone that he

has not yet scratched off the relevant codes on his sheets and

thus the authority must have falsely recorded this ballot.

[37] discusses several dispute scenarios with respect to

whether a ballot is recorded correctly. However, it is stated

that “The [authority] can always force a denial-of-service [..]
What Remotegrity does not allow is the [authority] to fully
accept (i.e., accept and lock) any ballot the voter did not cast
without the voter being able to dispute it.” Thus, the focus is

on disputes D2 in Figure 2, while timeliness in disputes D1
is not further explored. Moreover, the considered properties

as well as the assumed setting are not specified precisely and

thus the properties cannot be proven. In contrast, our model

enables specifying detailed adversary and system assumptions

and provides definitions of dispute resolution properties that

can be formally analyzed.

C. Accountability

Our dispute resolution properties are closely related to

different notions of accountability [10], [25], [26]. Both ac-

countability and our properties formalize how misbehaving

protocol participants are identified. While the accountability

definitions are generic and allow one to blame different

agents in different situations, we focus on understanding what

disputes and properties are relevant for voting.

Two accountability definitions have been instantiated for

voting protocols. First, accountability due to Küsters et al. [26]
was instantiated for Bingo Voting [9] in [26], for Helios [1]

in [27], and for sElect [28]. These instantiated notions of

accountability state that when a defined goal is violated, then

some (dishonest) agents can be blamed by a judge. A judge

may blame multiple parties. As a result, in [27] accountability

does not guarantee an unambiguous verdict when a voter

claims that his ballot is incorrectly recorded. That is, the

property does not guarantee the resolution of such disputes

even when the voter is honest. The same holds in [26] and [28]

for disputes where a voter claims that he did not receive

a required confirmation. To avoid ambiguous verdicts, [26]

proposes an alternative accountability property where voters’

claims that they did not receive a required confirmation are

just ignored. However, this property does not guarantee that

the authority is blamed in all situations where an (honest)

voter’s ballot is not recorded correctly and dispute resolution

does not hold.

Second, accountability due to Bruni et al. [10] has been

instantiated for Bingo Voting in [10]. In this work, account-
ability tests decide whether a given agent should be blamed.

However, the accountability test takes as input a ballot and a

confirmation that the voter received when casting his ballot.

Thus disputes where a voter claims that he cannot receive a

confirmation are not considered at all.

In contrast to these two accountability notions, we also

consider and resolve disputes where a voter claims that he

did not receive a required response from Auth after casting

the ballot by the property TimelyP(Auth). Moreover, our

topology characterization allows us to quickly assess when

given assumptions are insufficient to satisfy TimelyP(Auth).

D. Other related properties

Collection accountability [7] states that when a vote is in-

correctly collected, the voter should be provided with evidence

to convince an “independent party” that this is the case, but

it has neither been formally defined nor analyzed. Dispute
freeness [32] states that there is never a dispute. This property

is considered in voting protocols where voters are modeled

as machines that conduct an election by engaging in a multi-

party protocol [35], [23] and is thus inappropriate for large

scale elections where voters must be assumed to have limited

computational capabilities. Finally, the FOO protocol [20]

allows voters to claim that something went wrong. However,

without additional assumptions, FOO does not satisfy our

dispute resolution properties. In particular, the signed ballot

a voter receives does not prove that the counter, who is

responsible for tallying, has received the ballot.

VIII. CONCLUSION

Dispute resolution is an essential ingredient for trustworthy

elections and worthy of a careful, formal treatment. Based

on a systematic analysis of disputes, we proposed new dis-

pute resolution properties and introduced timeliness as an

important aspect thereof. We fully characterized all topologies

that achieve timeliness. This provides a formal account for

the intuition that timeliness requires strong assumptions. For

example, it is not achievable in standard remote voting settings

where a network adversary can simply drop messages.

While we have focused on necessary assumptions for dis-

pute resolution, in real elections there are other properties,

notably privacy, which may require other assumptions. As

future work, we would like to investigate how our topology

hierarchy must be adapted for these properties and to char-

acterize the required assumptions for them. The combination

of such results with our characterization could lead to new

insights about the possibility of achieving different properties

simultaneously. Furthermore, such combined results could be a

starting point to identify the topologies enabling all properties

required in voting; this would help in election design to

quickly assess the minimal required setups.
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