
Reconciling progress-insensitive noninterference and
declassification

Johan Bay
Aarhus University

bay@cs.au.dk

Aslan Askarov
Aarhus University

aslan@cs.au.dk

Abstract—Practitioners of secure information flow often face a
design challenge: what is the right semantic treatment of leaks
via termination? On the one hand, the potential harm of un-
trusted code calls for strong progress-sensitive security. On the
other hand, when the code is trusted to not aggressively exploit
termination channels, practical concerns, such as permissiveness
of the enforcement, make a case for settling for weaker, progress-
insensitive security. This binary situation, however, provides no
suitable middle point for systems that mix trusted and untrusted
code. This paper connects the two extremes by reframing progress-
insensitivity as a particular form of declassification. Our novel
semantic condition reconciles progress-insensitive security as a
declassification bound on the so-called progress knowledge in an
otherwise progress or timing sensitive setting. We show how the
new condition can be soundly enforced using a mostly standard
information-flow monitor. We believe that the connection estab-
lished in this work will enable other applications of ideas from the
literature on declassification to progress-insensitivity.

I. INTRODUCTION

Progress-insensitive noninterference (PINI) is a popular se-

mantic condition for secure information flow. PINI generalizes

the classical termination-insensitive noninterference to accom-

modate I/O interactions and provides a practical foundation for

many information flow systems. A known downside of PINI

is that it permits leaking arbitrary amounts of information [6].

Malicious code may launder data through termination channels

by unary encoding the information in the length of the trace

or via timing channels. For these reasons, the consensus in the

information flow community is to use PINI for trusted settings,

where the goal is to prevent accidental information leaks. For

untrusted settings, stronger notions of security, such as progress

or timing sensitivity, are necessary.

Many practical scenarios, however, combine both trusted

and untrusted code. Such combinations are natural to browser

mashups, mobile apps, and just about any system that embeds

third-party code. The binary consensus provides no suitable

middle ground here. Progress-insensitivity is too permissive,

whereas progress and timing-sensitivity is too restrictive.

Consider one such example scenario of a mashup that embeds

a third-party newsfeed widget. The widget downloads the latest

newsfeed from the news server and displays the favorite topic

of the user. The choice of the favorite topic is sensitive and,

therefore, must not leak to the news server. Figure 1 presents a

pseudo-code for such a widget. The widget implements a custom

caching logic by maintaining a counter and re-fetching the news

1 function newsWidget (userFavTopic) {
2 if (counter % 10 == 0) {
3 feed = receive (newsfeed_server_url)
4 }
5 counter ++;
6 newstext = feed[userFavTopic]
7 }

Fig. 1. Newsfeed widget code

on every tenth invocation. For the purpose of this example, we

regard the counter as sensitive as well.

The code in Figure 1 is straightforward and unproblematic.

We can imagine crafting a tool that analyzes (statically or

dynamically) the code in Figure 1 for potential information

flow violations. But if we are to take the next step and try to

prove our tool sound, we hit a semantic conundrum. Because

Line 3 contains a potentially blocking network operation, it

is unclear how long it may take for the server to respond, if

ever. This means that if we want our tool to accept programs

such as Figure 1, we cannot use progress and timing-sensitive

security as the basis for soundness. With the binary consensus,

the only other option is progress-insensitive security. This option

permits blocking and divergence, making it suitable for Figure 1.

However, it also forces us to place the termination and timing

attacks outside of the formal threat model, which weakens our

tool.

This paper addresses the problem of the binary situation

by presenting a novel semantic definition that connects the

two extremes by reconciling progress-insensitive security as

a particular form of declassification. This reframing means

that we can treat progress-insensitivity just like any other

declassification – a selective weakening of a baseline end-to-

end security policy. It also means that we can transfer insights

about declassification policies, such as their dimensions and

principles [30], to progress-insensitivity. The key to the new

definition is the use of the epistemic approach to information

flow, which allows us to specify a bound on the knowledge the

attacker learns from observing the progress of the computation

in an otherwise progress or timing-sensitive setting.

Two meta-level points about our definition are worth highlight-

ing. First, we note that the practice of declassifying termination

leaks by itself is not novel. This idea appears in the literature

as early as two decades ago in Jif [28] in the context of

95

2020 IEEE 33rd Computer Security Foundations Symposium (CSF)

© 2020, Johan Bay. Under license to IEEE.
DOI 10.1109/CSF49147.2020.00015

programming languages and later in HiStar [36] in the context

of operating systems. Here, our work provides a firm theoretical

basis that this practice lacked. In fact, we show that a mostly

standard flow-insensitive dynamic monitor soundly enforces the

new definition.

Second, we stress the value of the epistemic approach in

formulating a concise and intuitive definition. It is not clear to

us whether the definition can be reformulated in a classical

two-trace style while retaining the same degree of clarity.

The discussion of the soundness of our monitor presents an

operational security invariant that does have the classical two-

trace formulation, but that invariant is far from intuitive.

We present our condition in the setting of a simple imperative

language with a standard flow-insensitive dynamic monitor,

which conveys the condition in a clean form. The simple lan-

guage does not contain networking or blocking primitives. This

omission does not remove generality from our setup because

the language already contains the possibility of divergence via

infinite loops. We have implemented the enforcement of this

condition in Troupe [12] – a research programming language

with dynamic information flow control, actor-based concurrency,

and primitives for distributed programming.

The rest of the paper is structured as follows: Section II

introduces the formal setting of a small imperative language

we use in this work. The presentation of the security condition

is split across two sections. Section III presents the security

for a progress-sensitive attacker and presents how a mostly

standard dynamic monitor can soundly enforce this condition;

Section IV presents the security condition for a timing-sensitive

attacker. We discuss our definitions in Section V and report on

the implementation experience in Section VI. Finally, in Sections

VII and VIII we discuss related work and conclude.

II. THE SECURITY MODEL AND THE LANGUAGE

A. Security model

We assume a standard security lattice L of security levels �,
with distinguished bottom and top levels ⊥ and �, and the

operations for least upper bound � and the lattice order �.

Our language is a standard imperative language extended

with capability-based declassification, and a special purpose tini
command for bounded progress-insensitivity that we explain

below. Each variable in the program has a fixed security level

lev(x) that does not change throughout the execution. An

attacker associated with a security level � observes updates

to variables with levels up to �; they additionally observe the

reachability of the tini blocks, as we explain below.

In the examples we show here, we use a two or three-level

lattice with levels L,M ,H , where L � M � H , and � � �
for each � ∈ {L,M ,H }. We adopt the convention of using

upper-case letters to denote concrete lattice elements of L and

lower-case letters to denote variables of said level. As such, h1

and h2 are variables such that lev(h1) = lev(h2) = H .

e ::= n | x | e op e | attenuate e to (�, p)
c ::= skip | c; c | while e do c | if e then c else c

| x = e | tiniη to � with e do c

| x = decl e to � with e

| eval e {x1, . . . , xn}
Fig. 2. Syntax of the language

B. The language and the monitoring semantics

Figure 2 presents the syntax of our language. We explain

the formal semantics of the language and then discuss the non-

standard features.

a) Monitoring semantics: For evaluating commands

we use a small-step semantics transition 〈c,m, pc〉 −→α

〈c′,m′, pc′〉, where pc is the security level of the program

counter, and α is the event generated by the step. The events

can be empty events, denoted by ε, and assignments and

declassifications per the following grammar:

α ::= ε | a(x, v) | d(x, �, �) | t̄η(�, �)
The stop and pcdecl commands are only used internally, and

therefore not part of the syntax of the language. Command stop
denotes final configurations that cannot step any further. For eval-

uating expressions we use a big-step relation 〈e,m〉 ⇓ 〈base; �〉
that relates an expression with a labeled value. Labeled values

〈base; �〉 consists of a base value and a level, where � denotes

the confidentiality-level of the base value base. Base values

include integers n, strings s, and authority values auth � p. In our

semantics, we denote the base type (integer, string, or authority)

of a base value base as type(base), and we furthermore assign a

predetermined type for each program variable such that type(x)
denotes the type of variable x. The types of variables are static

and cannot be changed during the execution. Fig. 3 presents the

rules for expression evaluation and Fig. 4 presents the command

evaluation rules for our language. Note how a tini statement

reduces to the sequential composition of its argument and a

special pcdecl command. The syntactic structure imposed by

the tini blocks ensures that the use of pcdecl is always well-

bracketed since the pcdecl-command is not part of the surface

language. At runtime, the expanded pcdecl-commands exhibit

a stack-like behavior reminiscent of pc-stacks in other monitor

designs from the literature.

The monitor is inherently progress-sensitive: barring any

pcdecl commands, the pc never goes down during the execu-

tion. A reader familiar with the literature on information flow

monitors may spot deficiencies in the monitor’s precision – for

example, it rejects program (if h then skip else skip); l = 0.
This simple monitor is picked for the purpose of exposition to

allow us to focus on the presentation of the security condition

and the soundness proof in Section III. We further note that

while it is possible to add extra precision to this monitor, unlike

progress-insensitive monitors that benefit from hybrid analysis,

it is difficult to avoid pc creep in progress-sensitive monitors.

96

〈base,m〉 ⇓ 〈base;⊥〉
m(x) = base

〈x,m〉 ⇓ 〈base; lev(x)〉

〈e1,m〉 ⇓ 〈base1; �1〉 〈e2,m〉 ⇓ 〈base2; �2〉
type(base1) = type(base2) base = base1 ⊕ base2

〈e1 ⊕ e2,m〉 ⇓ 〈base; �1 � �2〉

〈e1,m〉 ⇓ 〈auth �auth1 p1; �〉
�auth2 � �auth1 p2 ≤ p1

〈attenuate e1 to (�auth2
, p2),m〉 ⇓ 〈auth �auth2

p; �〉
Fig. 3. Semantics of evaluating expressions

b) Declassifications: Our language has two different con-

structs for downgrading: one for downgrading values (decl), and
one for downgrading the termination of a region of the program

(tini). We include two constructs to highlight differences and

parallels between the two kinds of declassifications. Both

constructs reveal information by design, but in different ways.

Whereas declassification is a way for the programmer to indicate

that an otherwise secret value is public, the tini constructs allows

the programmer to indicate that a program block (identified by

a unique tag η) should be treated in a progress-insensitive way,

which means that the information about the termination of the

block is public. In the jargon of information flow control systems,

this exactly amounts to lowering the pc-label at the end of the

block.

c) Authority: Our language restricts the use of declassi-

fications via a capability-like mechanism that we refer to as

authority [28]. Given a value at level �from , an authority of level

�auth permits a declassification to level �to if �from � �to��auth .
At run-time, an authority value auth � p consists of an authority

level � and a purpose bit p. The purpose bit 1 means that

the authority can be used for general purpose declassification,

while the purpose bit 0 means that the authority can only be

used for tini-statements. For example, assuming that variable

authM contains the value auth M 1, the language allows the

declassification

l = decl m to L with authM

but not

l = decl h to L with authM

d) Attenuate and running untrusted code: The only way

to create an authority value in the language is by attenuation of

another authority value. Initially, the special variable rootauth
contains the full authority auth � 1. Our language contains

primitives for restricting the access, level, and purpose of

authority, namely attenuate and eval.
For example, 〈attenuate rootauth to (M, 0),m〉 evaluates to

a value 〈auth M 0;⊥〉 that can only be used for declassifying

progress up to level M . For running untrusted code, we provide

an eval command that takes a string s and a set of variables

{x1, . . . , xn}. The semantics of eval is, that it parses the string

to a command c (denoted c = parse(s)) under the condition

that c is only allowed to use variables explicitly mentioned in

{x1, . . . , xn} and must not contain nested evals. In this way, our

eval-command can be seen as a “poor man’s”-scoping, which

we capture in the following Lemma:

Lemma 1 (eval memory safety). Suppose
〈eval e X,m, pc〉 −→∗

t 〈c′,m′, pc′〉. Then it holds for
all s where x ∈ X =⇒ m(x) = s(x) that

〈eval e X, s, pc〉 −→∗
t 〈c′, s′, pc′〉

and
x ∈ X =⇒ m′(x) = s′(x)

Proof. By induction in the program resulting from parse(s)
using that no variables except those occurring in X is used.

The combination of eval and attenuate allows us to attenuate

the root-authority by storing it in some variable, e.g., x, and
run untrusted code while only permitting access to x. For

example, we may restrict declassifications in the evaluation of

the command stored in variable mcode up to level M as follows.

authM = attenuate rootauth to (M, 1);

eval mcode {authM , l1, l2,m1,m2, h1, h2}
Note that the program in mcode may access high variables h1

and h2 but cannot declassify them since it does not have access

to sufficient authority.

e) tini-blocks: The tini-construct allows us to embed

progress-insensitive code in an otherwise progress-sensitive

setting. To give some intuition about the tini-construct, suppose
we have the following program that loops if a variable of level

H is positive; or makes an assignment at level L otherwise:

while h > 0 do skip

l = 0

This program is acceptable in a progress-insensitive setting,

but is rejected by progress-sensitive security conditions, since

the assignments to l leaks information about the reachability of

the join-point. The tini construct allows us to embed such code

in a progress-sensitive setting by explicitly declassifying the

reachability of the end of the block. Just like regular declassifica-

tion, the tini-block also requires an authority argument. Hence,

the example above can be written instead as:

tiniη to L with rootauth do

while h > 0 do skip;

l = 0

The design of the tini block is inspired by similar constructs

in large-scale information flow systems: Jif [28] implements

pc-declassification by a single command for declassifying the

pc-label although the syntax does not limit the scope of the

progress that is declassified. HiStar [36] implements a similar

thing through “untainting” gates that can be restricted to only

untaint the control flow.

Attenuation of the purpose can be used in conjunction with

eval and the tini block. Revisiting the news widget example from

97

〈skip,m, pc〉 −→ 〈stop,m, pc〉
〈e,m〉 ⇓ 〈v; �e〉 type(x) = type(v) pc � �e � lev(x)

〈x = e,m, pc〉 −→a(x,v) 〈stop,m[x �→ v], pc〉

〈c1,m, pc〉 −→α 〈stop,m′, pc′〉
〈c1; c2,m, pc〉 −→α 〈c2,m′, pc′〉

〈c1,m, pc′〉 −→α 〈c′1,m′, pc′〉 c′1 �= stop

〈c1; c2,m, pc〉 −→α 〈c′1; c2,m′, pc′〉

〈e,m〉 ⇓ 〈base; �〉 i =

{
2 if base = 0

1 otherwise

〈if e then c1 else c2,m, pc〉 −→ 〈ci,m, pc � �〉 〈while e do c,m, pc〉 −→ 〈if e then c;while e do c else skip,m, pc〉

〈eauth ,m〉 ⇓ 〈auth �auth 1; �′〉 〈e,m〉 ⇓ 〈v; �from〉 type(x) = type(v) �′ � pc
�to � pc � lev(x) �from � �to � �auth α = d(x, �auth , �to) m′ = m[x �→ v]

〈x = decl e to �to with eauth ,m, pc〉 −→α 〈stop,m′, pc〉

〈e,m〉 ⇓ 〈auth � p; �′〉 p ≥ 0 �′ � pc pc � �to

〈tiniη to �to with e do c,m, pc〉 −→ 〈c; pcdeclη(�, �to),m, pc〉
pcfrom � pcto � �auth α = t̄η(�auth , pcto)

〈pcdeclη(�auth , pcto),m, pcfrom〉 −→α 〈stop,m, pcto〉

〈e,m〉 ⇓ 〈s; �〉 c = parse(s) vars(c) ⊆ {x1, . . . , xn} eval -free(c)

〈eval e {x1, . . . , xn},m, pc〉 −→ 〈c,m, pc � �〉
Fig. 4. Monitored operational semantics

Section I, the trusted code may evaluate the widget by passing it

access to an attenuated authority. To bring the example closer

to the language we have presented, we let receive fetch the

untrusted widget code from a network connection and run it by

using eval:

untrustedWidget = receive newsfeed_server_url ;

userFavTopic = ”Politics”;

authNews = attenuate rootauth to (newslev , 0);

tiniη to ⊥ with authNews do

eval untrustedWidget {userFavTopic}
III. SECURITY CONDITION

This section presents a security definition for embedding tini-
blocks when the baseline security is progress-sensitive.

A. Auxiliary definitions

We use the knowledge-based [5] approach to define our

security condition. The high-level idea behind the approach is

that we consider an attacker that can observe the execution of the

program and define the knowledge that such attacker obtains as

the set of memories that are consistent with seeing the execution

up to this point. The security condition is defined as a bound on

how much the knowledge is allowed to change at each step of

the execution.

To define such bounds, we first define what it means for

memories to be equivalent and define which execution steps are

visible to the adversary.

In the following, we write m ∼� s to denote that two

memories are equal up to � (Definition 1 below), and �t�� to

denote a filtering of the trace t that only includes the events that

are observable at level � (Definition 2 below).

Definition 1 (Memory equivalence). Two memoriesm and s are
equivalent up to level �, written m ∼� s, if dom(m) = dom(s)
and it holds that for all x ∈ dom(m),

lev(x) � � =⇒ m(x) = s(x)

We define level of an event, denoted lev(α), as the level of

the updated variable for assignment and declassify events, level

�to for tini events t̄η(�, �to), and � otherwise:

lev(ε) = �
lev(a(x, _)) = lev(x)

lev(d(x, _, _) |) = lev(x)

lev(t̄η(_, �to)) = �to

Definition 2 (Trace filtering). The filtering of a trace t at level
� written �t�� is defined as

�[]�� = []

�t′ · α�� =
{
�t′�� · α if lev(α) � �

�t′�� otherwise

We use the above to define two technical definitions of

knowledge. First, we define attacker knowledge which defines

the knowledge of an attacker observing a trace t.

Definition 3 (Attacker knowledge [3]). Given a program c,
initial memory m, initial program counter level pc, such that
〈c,m, pc〉 −→∗

t 〈c′,m′, pc′〉, define attacker knowledge at

98

level �adv to be the set of memoriesm′ that are consistent with
the observations of the adversary:

k(c,m, t, �adv) � {m′ | m ∼�adv m′∧
〈c,m′, pc〉 −→∗

t′ 〈c′′,m′′, pc′′〉 ∧ �t′��adv = �t��adv }

We can now use this definition as a building block for defining

security conditions. We can, for example, define progress-

sensitive noninterference as follows:

Definition 4 (Progress-sensitive noninterference). Given a
program c, initial memorym and initial program counter label
pc such that

〈c,m, pc〉 −→∗
t·α 〈c′,m′, pc′〉

the run satisfies progress-sensitive noninterference if it holds
that for all �adv , if lev(α) � �adv then

k(c,m, t · α, �adv) ⊇ k(c,m, t, �adv)

Note how this definition bounds the knowledge from seing t·α
with the knowledge of seeing t. This essentially means that all

the memories that the attacker considered possible when seeing t
are still considered possible after also observing the event α.
Note that his is a very strong security condition. To define more

lenient conditions, we use another building block: the progress

knowledge.

Definition 5 (Progress knowledge [4]). Given a program c,
initial memory m, initial program counter level pc, such that
〈c,m, pc〉 −→∗

t 〈c′,m′, pc′〉, define progress knowledge at

level �adv to be the set of memoriesm′ that are consistent with
the knowledge up to t followed further by one more event:

k→(c,m, t, �adv) � {m′ | m ∼�adv m′∧
〈c,m′, pc〉 −→∗

t′ 〈c′′,m′′, pc′′〉 ∧ �t′��adv = �t��adv ·α}

The above allows us to express the standard progress-

insensitive noninterference:

Definition 6 (Progress-insensitive noninterference). Given a
program c, initial memorym and initial program counter label
pc such that

〈c,m, pc〉 −→∗
t·α 〈c′,m′, pc′〉

the run satisfies progress-insensitive noninterference if it holds
that for all �adv , if lev(α) � �adv then

k(c,m, t · α, �adv) ⊇ k→(c,m, t, �adv)

Here, the knowledge of an attacker that observes t · α is

bounded by the progress knowledge from seeing just t. This
exactly captures that the attacker is allowed to rule out the the

memories that do not make progress.

B. Progress-sensitive security with declassification and locally-
bound progress-insensitivity

Armed with the above definitions, we define our main security

condition as follows.

Definition 7 (Progress-sensitive security with declassification

and locally-bound progress-insensitivity). Given a program c,
initial memorym and initial program counter label pc such that

〈c,m, pc〉 −→∗
t·α 〈c′,m′, pc′〉

define the run as secure if it holds that for all �adv , if lev(α) �
�adv then
1) if α = d(_, �auth , �to) then it should hold that:

a) k→(c,m, t, �adv) ⊇ k(c,m, t, �adv), and
b) k(c,m, t · α, �adv) ⊇ k(c,m, t, �auth � �adv)

2) if α = t̄η(�auth , �to) then it should hold that:
a) k(c,m, t · α, �adv) ⊇ k→(c,m, t, �adv)
b) k→(c,m, t, �adv) ⊇ k(c,m, t, �auth � �adv)

3) otherwise, it should hold that:

k(c,m, t · α, �adv) ⊇ k(c,m, t, �adv)

The security condition specifies what information the attacker

may learn from observing the program events. The baseline of

progress-sensitive security is captured in item 3 of the definition

stating that the attacker learns nothing from non-declassify

events. This rules out many standard examples of direct and

indirect flows, as well as the termination leaks such as

l = 0; (while h > 0 do skip); l = 1

The other two items weaken the baseline as follows. For

declassifications (item 1) we have two clauses: Clause 1a says

that reachability of the declassification conveys no knowledge

to the attacker. Observe that this is expressed as a bound on the

progress knowledge! This clause rules out programs such as

l = 0; (while h > 0 do skip); l = decl h to L with authH

that leak via termination without a tini-statement.

Clause 1b specifies an upper bound on the information the

attacker learns from the event to be no more the knowledge

at level �auth � �adv before the event. This clause has a flavor

of language-based intransitive noninterference [23], because it

does not otherwise bound what information from the permitted

level is declassified. For example, assuming authM and authH

are authorities with purpose bit one, this definition accepts the

program

m = decl h toM with authH ;

l = decl m to L with authM

Both declassifications above are allowed. At the time of the

second declassification, the adversary at L learns the original

value of h despite only using the authority ofM . This is accepted

because the earlier declassification of h to m happened with

sufficient authority.

99

Clause 1b does not regulate exactly what information from the

level of �auth � �adv may be declassified; however, prior work

on using knowledge-based conditions for further constraining

what and where to declassify can be easily applied here in an

orthogonal manner [4], [16].

For tini-events (item 2), we also have two constraints. The

first constraint corresponds to standard progress-insensitive

noninterference [6]: knowledge of the event must reveal no

more than knowledge of the event’s existence. The second

constraint is interesting, because it specifies an upper bound

on the information leaked by the termination to be no more

than the knowledge at level �auth � �adv before the event. This

is again expressed as a bound on progress knowledge. This

clause rules out programs with insufficient authority for the

pc-declassification such as

l = 0; (tiniη to L with authM do while h > 0 do skip); l = 1

The definition accepts programs that use tini blocks as long
as the authority for the pc-declassification is sufficient. This

includes nested tini blocks. The following program is accepted.

l = 0;

tiniη1 to L with authM do {
if m > 0 then

tiniη2
toM with authH do

while h > 0 do skip

else skip };
l = 1

C. A note on the design of item 2

For the simple language of this section, the two clauses of

item 2 can be simplified to require that for α = t̄η(�auth , �to) it
must hold that

k(c,m, t · α, �adv) ⊇ k(c,m, t, �auth � �adv)

We opted to present the definition without this simplification, be-

cause in more realistic settings, this simplification is dangerous

and leads to occlusion.

The simplification is possible in our language, because pcdecl
events are attacker-observable and convey little information

other than their reachability, thanks to syntactically enforced

well-bracketedness of tini/pcdecl commands.1

However, in reality, it may be unfair to assume that attacker

observes internal events such as pcdecl. Suppose indeed that

pcdecl has no manifestation in the attacker-observable projection

of the trace. How would we need to change Definition 7

to accommodate this? One option is to rephrase item 2 of

Definition 7 so that event α refers to the first observable event
after executing pcdecl. But such events can communicate more

than a unit of information, as in the program below.

tini to L with rootauth do {skip}
if h > 0 then l = 0 else l = 1

1These conveniences help us minimize technical clutter in the paper.

cfg −→α cfg ′ lev(α) � �

cfg �
0,�
α cfg ′

cfg −→β 〈stop,m, pc〉 lev(β) �� �

cfg �
0,�
β 〈stop,m, pc〉

cfg1 −→β cfg2 lev(β) �� � cfg2 �
n,�
α cfg3

cfg1 �
n+1,�
α cfg3

Fig. 5. Bridge-step relation

This program would reduce to

pcdecl(rootauth, L); if h > 0 then l = 0 else l = 1

Here, the first event after pcdecl is one of the low assignments.

The approach of the simplified definition accepts this program

because it mistakenly applies the declassification condition to

reveal the choice of the high branch. On the other hand, the

two-clause approach that explicitly constraints the progress

knowledge rejects this program.

D. Soundness of the enforcement

Next, we formally connect the monitoring semantics of

Section II with Definition 7. We do this by showing the following

statement:

Theorem 1 (Soundness of the monitoring semantics). Given
a program c, memory m, and level pc then all runs
〈c,m, pc〉 −→∗

t 〈c′,m′, pc′〉 satisfy Definition 7.
To get some intuition about the proof, let us think how

classical noninterference proofs usually proceed. The security

invariant of such proofs boils down to the reasoning along

the lines of “a pair of low-equivalent configurations that each

emit attacker-observable events transition to low-equivalent

configurations plus the attacker cannot discriminate between

the two events.” Note how low-equivalence is used in both

the precondition and the post-condition of such a statement.

For declassification, we need to weaken the invariant, which is

typically done by strengthening the precondition to relate fewer

configurations. Set-theoretically, this strengthening corresponds

to picking a relation that is smaller than low-equivalence. Exactly

how small is an important design criterion that is dictated by the

top-level security requirement such as our Definition 7. One

challenge that we have encountered in the proof is finding

the right equivalence relation for the precondition that is

compositional in the applications of the inductive hypothesis.

Our solution to this challenge is to engineer relations that are

smaller than low-equivalence, subject to additional constraints

we explain below.

First, we define an auxiliary relation that characterizes the

intuition of “configuration emitting an attacker-observable event.”

We call this relation bridge-step. Operationally it is defined as a

relation between two configurations where the first configuration

reaches the second one by taking n intermediate “secret” steps

100

〈c,m, pc〉�n,�
α 〈c′,m′, pc′〉 〈c, s, pc〉�n′,�

α 〈c′, s′, pc′〉
〈c,m | s, pc〉 ⇒�

α 〈c′,m′ | s′, pc′〉

k > 1 〈c,m | s, pc〉 ⇒�
α1
〈c′,m′ | s′, pc′〉

〈c′,m′ | s′, pc′〉 ⇒�
α2...αk

〈c′′,m′′ | s′′, pc′′〉
〈c,m | s, pc〉 ⇒�

α1...αk
〈c′′,m′′ | s′′, pc′′〉

Fig. 6. Synchronized bridging

(without producing any observable events) and then either emits

an observable step or terminates. This relation is shown in Fig. 5.

The security intuition behind the bridge relation is that the

attacker only observes the configurations related by the bridge

relation. Hence, we formulate our security invariant around that

relation.

We furthermore define indistinguishability restriction
〈I〉c,pc�|α1...αk

as the restriction of the relation I to only contain

all pairs of the memories that can emit α1 . . . αk (in that order)

when evaluating c using initial program-counter pc. To formally

define 〈I〉c,pc�|α1...αk
, we introduce another auxiliary definition

that synchronizes two bridge-step runs on a list of events. The

synchronized bridge has the effect of demanding that two runs

proceed in lock-step w.r.t to their individual bridge-steps. The

rules for synchronized bridging can be seen in Fig. 6.

We can now define indistinguishability restriction as per

Definition 8 below.

Definition 8 (Indistinguishability restriction 〈I〉c,pc�|α). Consider
a potentially empty sequence of events α1 . . . αk. Define the
relationm 〈I〉c,pc�|α1...αk

s as follows:

m I s

m 〈I〉c,pc�|nil s

m I s 〈c,m | s, pc〉 ⇒�
α1...αk

〈c′,m′ | s′, pc′′〉
m 〈I〉c,pc�|α1...αk

s

With all this auxiliary infrastructure, we now state the

operational definition of security.

Lemma 2 (Security for monitored evaluations). Suppose
〈c,m, pc〉�n,�adv

α 〈c′,m′, pc′〉. Then the following holds:
1) if α = d(x, �auth , �to) and lev(x) � �adv :

Let
I =〈∼�auth��adv 〉c,pc�auth��adv |β1,...,βj

where

〈c,m, pc〉�i1,�auth��adv
β1

〈c1,m1, pc1〉�i2,�auth��adv
β2

. . . �
ij ,�auth��adv
βj

〈cj ,mj , pcj〉
such that

〈cj ,mj , pcj〉�i′,�auth��adv
α 〈c′,m′, pc′〉

then it holds that for all s such that m I s,

〈c, s, pc〉�n′,�adv
α 〈c′, s′, pc′〉

and m′ ∼�adv s′.
2) if α = t̄η(�auth , �to) and �to � �adv :

Let
I =〈∼�auth��adv 〉c,pc�auth��adv |β1,...,βj

where

〈c,m, pc〉�i1,�auth��adv
β1

〈c1,m1, pc1〉�i2,�auth��adv
β2

. . . �
ij ,�auth��adv
βj

〈cj ,mj , pcj〉
such that

〈cj ,mj , pcj〉�i′,�auth��adv
α 〈c′,m′, pc′〉

then it must hold that for all s wherem I s there exists α′

such that
〈c, s, pc〉�n′,�adv

α′ 〈c′, s′, pc′〉
and m′ ∼�adv s′.

3) if α �= t̄_(_, _) and pc′ � �adv :
For all s where m ∼�adv s it holds that

〈c, s, pc〉�n′,�adv
α 〈c′, s′, pc′〉

and if α is not a declassify event d(x, _, _) where lev(x) �
�adv then m′ ∼�adv s′.

4) if α = t̄η(_, _) or pc′ �� �adv :
It holds that for all s where m ∼�adv s,

〈c, s, pc〉�n′,�adv
α′ 〈c′′, s′, pc′′〉 =⇒

m′ ∼�adv s′ ∧ c′ = c′′

∧ pc′ �� �adv =⇒ (pc′′ �� �adv ∧ c′ = stop)

∧ pc′ � �adv =⇒ (pc′′ � �adv ∧ α = α′)

The indistinguishability restriction of ∼�, which we alluded

to earlier, appears in two out of four sub-cases of the invariant.

This is crucial in the proof when showing the clauses related

to declassify-events, since this allows us to account for earlier

unobservable declassifies that might become observable through

the latest event. For example, suppose we have an attacker at

level L and that we earlier on declassified a value v from H
to M . Now if we later declassify that same value from M to

L, it is not enough to only assume that the initial memories

satisfy memory-equivalence up to M to prove the clause for

declassify. Instead, we “replay” the trace at a higher attacker-

level – in this case M – which reveals the events that are

otherwise only observable at this higher level – such as declassi-

fications from H to M . We use these events to synchronize the

memories, and then conclude that the two runs must declassify

the same value. This is exactly what the indistinguishability

restriction condition 〈∼�auth��to 〉c,pc�auth��to |α1,...,αk
provides. The

events α1, . . . , αk here range over the M -level events including

H to M declassifications; none of these events are typically

observable by L.
The detailed proof of Lemma 2 can be found in the extended

version of this paper [11], where we also prove Theorem 1 by

showing that runs satisfying Lemma 2 satisfy Definition 7.

101

IV. TIMING SENSITIVITY

The security condition that we present for progress-sensitive

noninterference in Definition 7 can be naturally strengthened to

also cover timing-sensitive noninterference. The cautious reader

might have noticed already that the monitor we present in our

language is actually already enforcing this stronger notion of

noninterference. As an example, the program

if h > 0

then skip

else skip; skip; skip;

l = 0

is accepted by our progress-sensitive security condition, but is

not allowed by our monitor. This shows that our monitoring

leaves room for strengthening the security condition so that

examples like above are also rejected by the definition.

To formalize this observation, we add a clock ts to our

configurations 〈c,m, pc | ts〉 and timestamps to events (ts, α)
such that our evaluation steps are now defined by the following

rule

〈c,m, pc〉 −→α 〈c′,m′, pc′〉
〈c,m, pc | ts〉 −→(ts+1,α) 〈c′,m′, pc′ | ts + 1〉

We extend the definition of when events are observable in

the obvious way: a timestamped event (ts, α) is observable at

level � if α is observable at level �. The definitions of attacker

knowledge and progress knowledge from the previous section

are also ported to the new setting in a straightforward manner,

noting that the initial clock value is 0. However, we need a new

knowledge combinator, that we dub clock knowledge.

Definition 9 (Clock knowledge). Given a program c, initial
memory m, initial program counter level pc, and initial times-
tamp ts such that 〈c,m, pc | 0〉 −→∗

t 〈c′,m′, pc′ | ts ′〉, define
clock knowledge at level �adv to be the set of memories m′ that
are consistent with the knowledge up to t followed further by
one more event with timestamp ts:

k�→(c,m, t, �adv , ts) � {m′ | m ∼�adv m′

∧ 〈c,m′, pc | 0〉 −→∗
t′ 〈c′′,m′′, pc′′ | ts〉

∧ �t′��adv = �t��adv · (ts, α)}
Observe that the clock knowledge, the

progress knowledge, and the attacker knowledge

are related by their definitions as follows:

k(c,m, t, �adv)⊇ k→(c,m, t, �adv)⊇ k�→(c,m, t, �adv , ts
′).

We can now give a more precise top-level security condition:

Definition 10 (Timing-sensitive security with declassification

and locally-bound progress-insensitivity). Given a program c,
initial memorym, initial program counter label pc, and initial
clock ts such that

〈c,m, pc | ts〉 −→∗
t·(ts′,α) 〈c′,m′, pc′ | ts ′〉

define the run as secure if it holds that for all �adv , if lev(α) �
�adv then

1) if α = d(_, �auth , �to) then it should hold that:

a) k�→(c,m, t, �adv , ts
′)⊇ k→(c,m, t, �adv)

⊇ k(c,m, t, �adv)
b) k(c,m, t · (ts ′, α), �adv) ⊇ k(c,m, t, �auth � �adv)

2) if α = t̄η(_, _) then it should hold that:

a) k(c,m, t · (ts ′, α), �adv) ⊇ k�→(c,m, t, �adv , ts
′)

b) k�→(c,m, t, �adv , ts
′) ⊇ k(c,m, t, �auth � �adv)

3) otherwise it should hold that:

k(c,m, t · (ts ′, α), �adv) ⊇ k(c,m, t, �adv)

Observe that Clause 3 of the above definition now requires

timing-sensitivity since it explicitly states that an attacker must

not learn anything from observing an event α and its timestamp.

Another notable change is Clause 1a that specifies that the

timing of a regular declassification must not convey information.

Finally, this definition also changes the semantics of the tini-
construct (cf. Clause 2b). Instead of declassifying the progress

knowledge it now declassifies the timing behavior of the code

block guarded by tini.

V. DISCUSSION

a) Dimensions and principles of declassification: The

reframing of the progress-insensitive security as declassification

allows us to think about it in terms of declassification principles

and dimensions. The locality-driven aspect of our definition

places it in a where dimension, while the use of authority-

based bounds naturally has a clear what flavor. While we do

not specify any bounds on what information can be learned via

a tini-declassification as long as the authority is sufficient, the

prior work on tight specification of what information is released

through declassifications [4], [16] should compose with our

definition. Our authority model is inspired by the expressive

label models such as DLM [25] and FLAM [1]; and studying

our condition in the formal frameworks of these label models

will lead to who characterizations of the tini-declassifications.
Another interesting angle to explore is the integration of

integrity into the formal model, which would allow one to study

the robustness [35] of declassifications via progress-insensitivity.

Here, a potentially desirable semantic characterization is that

attacker-controlled input does not influence information leaked

through termination channels. A knowledge-based approach to

robustness [7] can provide a starting point for such a definition.

With respect to the four principles of declassification, we

believe that the principles of semantic consistency – namely

that security definition should be invariant under equivalence-

preserving transformations – and of conservativity – namely that

the definition of security should be a weakening of noninterfer-

ence – follow directly from the knowledge-based nature of the

definition that is inherently attacker-driven [10]. The principle of

monotonicity of release – namely that adding a declassification

should not make a secure program insecure – is also satisfied by

our definition: adding a tini block to a program that is already

accepted by Definitions 7 does not change how the definition

102

treats this program, because all knowledge containments for the

declassification cases are weaker than Clause 3 of the definition

(a similar argument applies to the normal declassification).

Finally, our definition also satisfies the non-occlusion principle –

namely, that the presence of declassifications should not mask

other covert leaks. This one has two subtleties. The first one

is already discussed in Section III-C. The second one is that

without Clause 1a of the definition, we would have violated non-

occlusion, as examples that reach an explicit declassification

after a high loop would have been accepted.

Similar arguments apply to Definition 10.

b) Design principle for pc-declassifications: In the infor-

mation flow community, pc-declassifications have a poor repu-

tation because their security characterization has been not well

understood. Our work provides a principle for understanding

security of pc-declassifications that can answer the following

question: given a programming language or a system that has a
primitive for pc-declassification, how dangerous is it? The key

to answering this question is bounding the progress knowledge.

If the security of pc-declassification can be characterized as

a bound on progress knowledge – as we do in Definition 7 –

then these pc-declassifications are as dangerous as leaks through

progress. However, if progress knowledge cannot be bounded,

then these pc-declassifications are more dangerous. For example,

in a system designed to allow any pc-declassifications, programs

such as

if h then pcdecl(Hauth , L); l = 0 else pcdecl(Hauth , L); l = 1

can leak information indirectly more efficiently than just encod-

ing the secret in the length of the trace.

c) Access control to authority: Neither our security policy

nor the language provides guarantees about programs that misuse

authority if they have access to it. To that extent, our approach

leaves it to the programmers to ensure that untrusted code does

not have access to authority above the code’s intended security

clearance. However, the capability-based nature of the authority

means that a complementary technique for principled control

of capabilities can be used. One candidate approach is the work

by Dimoulas et al. [18] that uses access control and integrity

policies to restrict capability use. Another is the mechanism of

bounded privileges for LIO proposed by Waye et al. [34].
d) Enforcement techniques: We choose a simple runtime

monitor to showcase the enforcement of the new definition.

While the monitor is fully dynamic and flow-insensitive, we

believe that other single-trace monitoring techniques such as

hybrid information flow monitors [2], [21], [26] as well as

Denning-style static techniques can be easily adapted. Static

approaches may have an added benefit of helping infer the

location of tini statements. An interesting prospect for future

work is extension of monitors designed for declassification for

secure multi execution [24], [29] to enforce our definition.

e) Timing treatment: Our treatment of timing-sensitivity

in Section IV via a simple step counter is admittedly academic,

given the plethora of architectural and runtime side channels

today. We nevertheless believe that the formulation of the timing-

sensitive condition is useful, and can be combined with other

proposals to mitigate practical timing attacks such as predictive

mitigation [8], [37], [38].

VI. IMPLEMENTATION EXPERIENCE

We implemented the tini-based enforcement as a part of

Troupe [12]. This language enforces progress-sensitive secu-

rity, but allows tini-scoped initialization as a variation of let-

declarations

1 let tini auth (* tini declaration *)
2 val v1 = e1
3 val v2 = e2
4 ...
5 in (* the point of pcdecl *)
6 e
7 end

This construct declassifies the termination of the initialization

expressions e1, e2, ... using authority auth before evaluating the

body e.
Figure 7 presents a snippet from the code of the news widget

example in our language. The top listing is the source of the

news widget itself. When invoked with the favorite topic and

its current state as arguments, it updates the counter, fetching

updated news from the remote servers if necessary. Finally, it

returns the result together with the updated state. Fetching the

news is potentially blocking and implemented in the function

fetch_news (omitted from the listing but it uses the networking

primitives of the language). The news value is an associative

list, and the secret-dependent lookup is done using the built-

in function list_lookup_with_default. The initial state of the

widget is an empty list, with the counter set to zero. The security

level of the initial state is NEWS.
The bottom listing in the figure displays how this widget is

used by user at level ALICE. The important part is the invocation

of the news_widget is placed in the let tini block with attenuated

authority NEWS, which limits the termination leakage of the

news_widget function.
The actual example is about 80 lines of code. As another data

point for the readers, a different case study in our language of

roughly 500LOC uses the let tini construct 9 times.

VII. RELATED WORK

a) pc-declassification: Jif provides a mechanism for pc-

downgrading in the form of a declassify statement that lowers

that pc-label that is tracked by the type system. Unlike other

features of Jif that are proven sound, e.g., dependent labels [39]

or robust declassification [15], there is no soundness theorem

for the pc-declassifications.

Both the Asbestos [19] and the HiStar [36] operating systems

also allow downgrading of the control-flow. In Asbestos a

process with privilege, a related notion to our authority, can

decontaminate other processes’ send label which has the effect

of allowing the other process to “forget” that it has previously

seen secret data from the privileged process. In our setup, this

corresponds to passing an authority that allows declassifying

control-flow up to the senders level. HiStar similarly makes it

possible to lower the accrued taint by passing on untainting

103

1 fun news_widget fav state =
2 let
3 val (news, update_counter) = state
4 val news = if update_counter %10 = 0
5 then fetch_news() (* Blocking *)
6 else news
7 val update_counter = update_counter + 1
8 (* Operation on the secret *)
9 val fav_news = list_lookup_with_default

10 news fav "no news"
11 in (fav_news, (news,update_counter))
12 end
13 val init_state = ([], 0) raisedTo {NEWS}

1 (* Receiving widget and initial state *)
2 val (news_widget, state0) = fetch_widget ()
3
4 (* Usage of the widget by user ALICE *)
5 val news_auth = attenuate(rootauth, {NEWS})
6 val fav_topic = "#politics" raisedTo {ALICE}
7
8 (* Calling untrusted widget code *)
9 val (fav_news1, state1) =

10 let tini news_auth
11 val res = news_widget fav_topic state0
12 in res
13 end

Fig. 7. News widget (top) and its usage (bottom) code snippets

gates that act as a capability for lowering the pc. Both of these

systems provide this functionality because it is a practical feature

to have, but neither of them presents a security condition that

encapsulates what this feature entails regarding leakage.

Chandra and Franz [14] present an information flow frame-

work for the Java Virtual Machine with a hybrid monitoring that

uses a static analysis to reason about when it is safe to declassify

the pc. Similarly to earlier work by, for example, Denning [17],

they statically find the immediate postdominator (the nearest

join-point that all execution paths must pass through) to any

branch-point and insert a pc-lowering command at this point.

Their security condition is intended to only allow lowering the

pc when no knowledge is revealed by doing so, but since they

are in a setting where almost any bytecode can throw unchecked

exceptions, this is not generally feasible. Instead, they disregard

all implicit flows through unchecked exceptions and accept these

leaks as a limitation of the security the system provides. We

believe one could extend this line of work by applying our

bound on what is learned through such flows, and thereby gain a

stronger guarantee for the system as a whole.

The idea of control flow declassification also appears in the

discussions of information flow control vs. taint tracking. For

example, Schoepe et al. [31] use an observational approach

where every branch decision is declassified.

b) Knowledge-based policies: The methodology and the

experience of this paper is in line with the argument by Broberg

et al. [13] that epistemic specifications is the most natural way

to specify information flow properties:

The notion of security intrinsically has nothing to do

with observing two separate runs – but rather what can

be deduced from observing a single run. [. . .] A two-

run formulation could certainly be very useful as part

of the strategy to prove e.g. the correctness of an en-

forcement mechanism. [. . .] But that property is then

only a stepping stone, and should, for completeness,

be shown to imply the natural epistemic property.

In our case, it is the operational security (cf. Lemma 2) that has

the two-run formulation.

The knowledge-based approach we use in this work follows

the style of definitions of gradual release [3]. Logical epistemic

approaches include the work by Halpern and O’Neill [20] that

use epistemic logic to specify noninterference, and that of Balliu

et al. [9] that uses epistemic temporal logic used to reason about

knowledge acquired by observing program outputs.

Chudnov and Naumann [16] define an epistemic semantics for

relational assumptions and guarantees in a progress-insensitive

setting. To specify the allowed knowledge at a particular point

in the trace they define a notion of release policy of a trace,

where relational assumptions are interpreted as an annotation

permitting the attacker to learn new information. The insight of

our work suggests the direction of lifting their approach into a

progress-sensitive setting and treating progress leaks as another

form of relational assumptions.

McCall et al. [24] propose a model for enforcing information

flow control in the setting of webpages that must handle

execution of untrusted scripts. Their approach enforces robust

declassification such that untrusted code cannot influence what is

declassified by extending prior work on secure-multi-execution.

They show their enforcement sound with respect to a knowledge-

based progress-insensitive noninterference condition with de-

classification. They also present a progress-sensitive notion of

noninterference, but restrict their focus to the weaker progress-

insensitive condition, because IO-operations can use potentially

looping event handlers that leak information through progress

(a design decision somewhat reminiscent of the scenario in the

Introduction). In the context of their work, the bridge between

progress-sensitive and progress-insensitive security provided by

our definition, can allow programmers to explicitly state when,

and how much, information an event handler is allowed to leak

through divergence.
c) Leakage via termination: Moore et al. [27] propose a

type-based enforcement combined with a runtime mechanism for

budgeting the amount of information leaked through termination

at runtime. The idea is to use a termination oracle that uses

maximum available runtime public information to deduce the

termination behavior of secret-dependent code. The budgets

mechanism allows for a quantitative interpretation of the leak-

age.
d) Untrusted code: LIO [32], MAC [33], and related

programming models side step the issue of label creep via a

programming discipline where high computations are forked into

separate processes. A consequence of this programming model

however is that consuming the result of the forked computation

requires process synchronization followed by explicit declas-

sification. Fabric [22] contains a number of mechanisms for

104

confining untrusted code downloaded over a network, including

limits on authority that the code can use and access labels that

limit when the untrusted code can read remote objects. As Fabric

is based on Jif, it also places timing and progress channels

outside of its threat model.

VIII. CONCLUSION

This paper proposes two novel knowledge-based security

conditions that capture the semantic meaning of declassifying

the progress knowledge in information flow control systems.

While many language-based and architectural systems allows

such declassification there is, to the best of our knowledge, no

formal characterization of it. We present a language construct,

tini, that exactly captures the embedding of progress-insensitive

code in a stricter setting and show how this can be used in the

presence of potentially blocking or diverging untrusted code.

We furthermore show that our conditions are enforceable by a

mostly standard dynamic monitor. For future work we conjecture

that our epistemic definitions can form a foundation for further

studies by extending it with for example integrity and robust

downgrades, principled usage of authority-capabilities, or more

elaborate label models. Finally, we believe that a large body of

techniques that rely on progress-insensitive security can use the

insight of our work to accommodate stronger adversary models.

IX. ACKNOWLEDGEMENTS

We thank Mathias Vorreiter Pedersen for his help with the

technical aspects of this work at an earlier stage, Alix Trieu

and Andrei Sabelfeld for their comments and insights, and the

anonymous reviewers for their suggestions for improving the

presentation of this paper. This work is supported by the DFF

project 6108-00363 from The Danish Council for Independent

Research for the Natural Sciences (FNU) and Aarhus University

Research Foundation.

REFERENCES

[1] O. Arden, J. Liu, and A. C. Myers, “Flow-limited authorization,” in
Proceedings of the 2015 IEEE 28th Computer Security Foundations
Symposium, ser. CSF ’15, Washington, DC, USA: IEEE Computer
Society, 2015, pp. 569–583.

[2] A. Askarov, S. Chong, and H. Mantel, “Hybrid monitors for concurrent
noninterference,” in 2015 IEEE 28th Computer Security Foundations
Symposium, Jul. 2015, pp. 137–151.

[3] A. Askarov and A. Sabelfeld, “Gradual release: Unifying declassifica-
tion, encryption and key release policies,” in 2007 IEEE Symposium on
Security and Privacy (SP ’07), May 2007, pp. 207–221.

[4] A. Askarov and A. Sabelfeld, “Tight enforcement of information-release
policies for dynamic languages,” in 2009 22nd IEEE Computer Security
Foundations Symposium, Jul. 2009, pp. 43–59.

[5] A. Askarov and S. Chong, “Learning is change in knowledge:
Knowledge-based security for dynamic policies,” in 25th IEEE Com-
puter Security Foundations Symposium, CSF 2012, Cambridge, MA,
USA, June 25-27, 2012, 2012, pp. 308–322.

[6] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands, “Termination-
insensitive noninterference leaks more than just a bit,” in Computer
Security - ESORICS 2008, 13th European Symposium on Research in
Computer Security, Málaga, Spain, October 6-8, 2008. Proceedings,
2008, pp. 333–348.

[7] A. Askarov and A. Myers, “Attacker control and impact for confidential-
ity and integrity,” Logical Methods in Computer Science, vol. 7, no. 3,
M. Hicks, Ed., Sep. 2011.

[8] A. Askarov, D. Zhang, and A. C. Myers, “Predictive black-box mitiga-
tion of timing channels,” in Proceedings of the 17th ACM conference
on Computer and communications security, 2010, pp. 297–307.

[9] M. Balliu, M. Dam, and G. Le Guernic, “Epistemic temporal logic for
information flow security,” in Proceedings of the ACM SIGPLAN 6th
Workshop on Programming Languages and Analysis for Security, ACM,
2011, p. 6.

[10] I. Bastys, F. Piessens, and A. Sabelfeld, “Prudent design principles
for information flow control,” in Proceedings of the 13th Workshop
on Programming Languages and Analysis for Security, ACM, 2018,
pp. 17–23.

[11] J. Bay and A. Askarov, “Reconciling progress-insensitive noninterfer-
ence and declassification,” Tech. Rep., 2020, https://arxiv.org/pdf/2005.
01977.

[12] J. Bay and A. Askarov. (Jul. 2019). “Troupe programming language.”
Software release and user manual, available at http://troupe.cs.au.dk.

[13] N. Broberg, B. van Delft, and D. Sands, “The anatomy and facets of
dynamic policies,” in 2015 IEEE 28th Computer Security Foundations
Symposium, IEEE, 2015, pp. 122–136.

[14] D. Chandra and M. Franz, “Fine-grained information flow analysis and
enforcement in a java virtual machine,” Jan. 2008, pp. 463–475.

[15] S. Chong and A. C. Myers, “Decentralized robustness,” in Proceed-
ings of the 19th IEEE Workshop on Computer Security Foundations,
ser. CSFW ’06, Washington, DC, USA: IEEE Computer Society, 2006,
pp. 242–256.

[16] A. Chudnov and D. A. Naumann, “Assuming you know: Epistemic
semantics of relational annotations for expressive flow policies,” in
2018 IEEE 31st Computer Security Foundations Symposium (CSF),
IEEE, 2018, pp. 189–203.

[17] D. E. Denning and P. J. Denning, “Certification of programs for secure
information flow,” Commun. ACM, vol. 20, no. 7, pp. 504–513, Jul.
1977.

[18] C. Dimoulas, S. Moore, A. Askarov, and S. Chong, “Declarative
policies for capability control,” in 2014 IEEE 27th Computer Security
Foundations Symposium, Jul. 2014, pp. 3–17.

[19] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler,
E. Kohler, D. Mazières, F. Kaashoek, and R. Morris, “Labels and
event processes in the asbestos operating system,” in Proceedings of the
Twentieth ACM Symposium on Operating Systems Principles, ser. SOSP
’05, Brighton, United Kingdom: ACM, 2005, pp. 17–30.

[20] J. Halpern and K. O’Neill, “Secrecy in multiagent systems,” in Proceed-
ings 15th IEEE Computer Security Foundations Workshop. CSFW-15,
IEEE, 2002, pp. 32–46.

[21] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld, “Jsflow: Tracking
information flow in javascript and its apis,” Proceedings of the ACM
Symposium on Applied Computing, Mar. 2014.

[22] J. Liu, O. Arden, M. D. George, and A. C. Myers, “Fabric: Building
open distributed systems securely by construction,” Journal of Computer
Security, vol. 25, no. 4-5, pp. 367–426, 2017.

[23] H. Mantel and D. Sands, “Controlled declassification based on intransi-
tive noninterference,” vol. 3302, Nov. 2004, pp. 129–145.

[24] M. McCall, H. Zhang, and L. Jia, “Knowledge-based security of
dynamic secrets for reactive programs,” in 2018 IEEE 31st Computer
Security Foundations Symposium (CSF), Jul. 2018, pp. 175–188.

105

[25] B. Montagu, B. C. Pierce, and R. Pollack, “A theory of information-flow
labels,” in 2013 IEEE 26th Computer Security Foundations Symposium,
Jun. 2013, pp. 3–17.

[26] S. Moore, A. Askarov, and S. Chong, “Precise enforcement of progress-
sensitive security,” in the ACM Conference on Computer and Commu-
nications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012,
2012, pp. 881–893.

[27] S. Moore, A. Askarov, and S. Chong, “Precise enforcement of progress-
sensitive security,” in Proceedings of the 2012 ACM conference on
Computer and communications security, 2012, pp. 881–893.

[28] A. C. Myers and A. C. Myers, “JFlow: Practical mostly-static infor-
mation flow control,” in Proceedings of the 26th ACM Symposium on
Principles of Programming Languages (POPL), ACM, 1999.

[29] W. Rafnsson and A. Sabelfeld, “Secure multi-execution: Fine-grained,
declassification-aware, and transparent,” in 2013 IEEE 26th Computer
Security Foundations Symposium, Jun. 2013, pp. 33–48.

[30] A. Sabelfeld and D. Sands, “Dimensions and principles of declas-
sification,” in 18th IEEE Computer Security Foundations Workshop
(CSFW’05), Jun. 2005, pp. 255–269.

[31] D. Schoepe, M. Balliu, B. C. Pierce, and A. Sabelfeld, “Explicit secrecy:
A policy for taint tracking,” in 2016 IEEE European Symposium on
Security and Privacy (EuroS P), Mar. 2016, pp. 15–30.

[32] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières, Flexible dynamic
information flow control in the presence of exceptions, 2012. arXiv:
1207.1457 [cs.CR].

[33] M. Vassena, A. Russo, P. Buiras, and L. Waye, “Mac a verified static
information-flow control library,” Journal of Logical and Algebraic
Methods in Programming, vol. 95, Dec. 2017.

[34] L. Waye, P. Buiras, D. King, S. Chong, and A. Russo, “It’s my privilege:
Controlling downgrading in dc-labels,” Sep. 2015, pp. 203–219.

[35] S. Zdancewic and A. C. Myers, “Robust declassification,” in Proceed-
ings of the 14th IEEE Workshop on Computer Security Foundations,
ser. CSFW ’01, Washington, DC, USA: IEEE Computer Society, 2001,
pp. 5–.

[36] N. Zeldovich, S. Boyd-wickizer, E. Kohler, and D. Mazières, “Making
information flow explicit in histar,” in In Proc. 7th OSDI, 2006.

[37] D. Zhang, A. Askarov, and A. C. Myers, “Language-based control
and mitigation of timing channels,” in Proceedings of the 33rd ACM
SIGPLAN conference on Programming Language Design and Imple-
mentation, 2012, pp. 99–110.

[38] D. Zhang, A. Askarov, and A. C. Myers, “Predictive mitigation of
timing channels in interactive systems,” in Proceedings of the 18th
ACM conference on Computer and communications security, 2011,
pp. 563–574.

[39] L. Zheng and A. C. Myers, “Dynamic security labels and static
information flow control,” Int. J. Inf. Secur., vol. 6, no. 2-3, pp. 67–84,
Mar. 2007.

106

