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Abstract—Selecting the most pertinent countermeasures to
secure a system is one of the ultimate goals of risk assessment. In
this context, it is important to rely on modeling methods that the
security experts are already familiar with, so that the solution
can be smoothly adopted within industry.

We propose a full-fledged framework, relying on attack–
defense trees and integer linear programming, to find an optimal
set of countermeasures. We use attack–defense trees formalized
with directed acyclic graphs. This enables us to conveniently
reason about attacker’s actions that can contribute to several
distinct attacks, and countermeasures that can block different
ways of attacking. We provide a constructive way of extracting all
reasonable behaviors of the two actors from such models. We then
exploit this extracted information to formulate a generic solution,
based on integer linear programing, to address a wide class of
optimization problems. We show how to instantiate it for specific
security-relevant optimization criteria. We cover deterministic
and probabilistic cases. The framework has been implemented
in a prototype tool, and validated in a real-life case study.

I. INTRODUCTION

By estimating the cost of an optimal set of countermea-

sures, the security expert can provide to the system owner

an impartial argument about the minimal budget that should

be devoted for securing the system. However, defining what

an optimal way of protecting a system means might differ

depending on the perspective. A security expert might be

mostly interested in identifying countermeasures that cover the

largest possible part of the attack surface. The system owner,

in turn, could rather take an economic point of view, and aim

at spending on security only as much as it is really necessary.

While considering an attacker having limited resources, it

could be wise, from the defender’s perspective, to select the

countermeasures in such a way that the remaining uncountered

attacks are as expensive for the attacker as possible.

Before any of the aforementioned problems can be ad-

dressed, one first needs to describe the scenarios of interest

in a rigorous way, to be able to reason about possible attacks

and countermeasures against them. This can be achieved with

the help of attack–defense trees (ADTrees). ADTrees extend a

well-known and industrially recognized model of attack trees
with countermeasures. An ADTree involves two actors: an

attacker who aims at attacking a system, and a defender who

tries to protect it. ADTrees thus provide a natural way of

modeling an interplay between an attacker and a defender.

Contribution. The ultimate objective of this work is to

devise a sound, mature, and automated solution for finding an

optimal set of countermeasures in security scenarios modeled

with ADTrees. We address two major scientific challenges

underlying this problem.

1) We design a constructive way for extracting all strategies

that allow a reasonable attacker to achieve the objective

described by an ADTree, and all reasonable strategies of

the defender allowing to counter the potential attacks.

2) We then exploit this information on attack and defense

strategies to develop a generic optimization framework

expressed in terms of integer linear programming (ILP).

Instantiating this framework with suitable optimization

functions allows for selecting an optimal set of counter-

measures according to various practical criteria.

A first attempt to address the above challenges has been

proposed in [1], where only ADTrees without repeated nodes

were considered. In real-life situations, however, the same

action of the attacker can contribute to several attacks. For

instance, obtaining admin privileges on a machine grants

access to the confidential data stored on the machine but also

allows for further penetration of the network that the machine

is connected to via horizontal privilege escalation. Similarly,

a countermeasure is rarely installed to protect against one

specific attack. For instance, proper network segmentation will

limit the range of computer worms propagating over resource

sharing protocols, but it will also make accessing sensitive data

more difficult for an attacker who manages to compromise

Internet-facing assets of the network. Generally speaking, an

attacker’s action having multiple consequences will appear in

several attacks, and a security measure bringing numerous

benefits will appear in many defense strategies. Thus, there

will be multiple nodes corresponding to such an action in an

ADTree. This richer model is however much more challenging

to analyze, as demonstrated in the Ph.D. thesis [2].
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In order to ease the reasoning about scenarios where a

single action may have several consequences, we introduce

a formalization of ADTrees based on directed acyclic graphs
(DAGs), rather than on classically used trees or terms. We then

design an algorithm to extract from an ADTree its defense
semantics describing how the two actors may interact. The

defense semantics assumes that the attacker and the defender

are reasonable, i.e., they do not execute actions that are useless.

Although the idea behind the defense semantics stays the same

as in [1], its construction in the case of ADTrees with repeated

nodes presents new non-trivial, computational challenges.

To address the second challenge, we transform the defense

semantics of an ADTree into an ILP problem. By instantiating

it with specific optimization functions, we can express numer-

ous optimization problems, including coverage and investment

tackled by [1] in a simplified setting without repeated nodes.

Our framework is suitable for solving problems involving

a single parameter, e.g., cost of the attack, as well as for

addressing those relying on simultaneous analysis of multiple

parameters. We cover a deterministic case, where the counter-

measures are fully successful, and a probabilistic case, where

countermeasures may fail with some probability.

Finally, to make our results applicable in practice, we

implement a tool that automates the computation of the de-

fense semantics and solves some of the discussed optimization

problems. The implementation has been tested on a number

of ADTrees having various size and structure. Our framework

and tool have been validated on a real-life case study.

Paper structure. We present the ADTree model and intro-

duce its formalization based on DAGs in Section II. The defi-

nition and construction of the defense semantics for ADTrees

with repeated nodes is presented in Section III. Section IV is

devoted to the specification of various optimization problems

in terms of ILP. In Section V, we briefly describe the tool

that we implemented and discuss its performance. We also

give a pointer to an empirical validation of our framework.

We discuss the related work in Section VI, and conclude in

Section VII.

II. ATTACK–DEFENSE TREES

To make this article self-contained, we start by recalling

background information about ADTrees. In Section II-A, we

present a toy scenario that we use to illustrate the ADTree

model, and we introduce a formalization of ADTrees based on

DAGs. Then, in Section II-B, we adapt the standard bottom-

up procedure for analysis of ADTrees to our DAG-based

formalization, and we discuss some results on satisfiability

of ADTrees, that will be helpful to reason about reasonable

behavior of the attacker and the defender.

A. Attack–defense tree formalism

Classically, ADTrees [3] are rooted, labeled trees repre-

senting an interplay between an attacker and a defender. The
nodes’ labels depict the goals of the two actors. The root goal

corresponds to the main objective of the modeled scenario.

The actor trying to achieve this goal is called proponent.

It can be either the attacker or the defender. The other

actor, called opponent, wants to prevent the proponent from

succeeding. The nodes representing complex goals are refined
in a disjunctive (OR) or a conjunctive (AND) way. The goal of an

OR node is achieved when a goal of at least one of its refining

children is achieved. The goal of an AND node is achieved

when the corresponding actor achieves the goals of all of its

refining children. Labels of the non-refined nodes represent

atomic steps performed by the actors in order to achieve more

complex goals. Finally, each goal of an actor can be countered
by a goal of the other one.

As visible, e.g., in [4], [5], ADTrees (and more generally,

all attack tree-based models) used in practice often contain

several nodes bearing the same label. In order to devise correct

analysis procedures, the meaning of such nodes needs to be

clear. In this work, nodes having the same label represent

exactly the same instance of a goal. Following the approach

introduced in [6], we call such nodes clones.
From the efficiency perspective, it is wise to use a DAG

representation, where clones are merged into a single node.

Using DAGs instead of trees reduces storage requirements

and might be exploited for speeding up computations. It also

improves readability of the models as it corresponds better to

our interpretation of nodes with the same label.

Example 1 describes a toy scenario of getting confidential

data. It illustrates the ADTree syntax and provides a setting

on which the notions we define can be illustrated.

Example 1. The attacker’s goal is to get the password
protecting a computer. To do so, they could get physical access
to the computer, extract the password’s hash from it, and crack
it. They could also find a post-it note with the password. A
phishing attack could also be used. The first two approaches
require the attacker to find the victim’s office and enter it.

The attacker will not be able to enter the office if an access
control measure is in place. If the user (defender) sets up a
strong password, cracking it will become impossible. Finally,
a well-educated user will not write their password on a post-it
note, and will not be vulnerable to a phishing attack.

Each of the actions find office, enter office and security

training is a clone.

The scenario from Example 1 is modeled in Figure 1 with

an ADTree depicted as a DAG. We use standard graphical

notation for ADTrees: the nodes of the attacker are represented

with red ellipses, and those of the defender with green rectan-

gles; the refining children of an AND node are connected with

an arc, and the countermeasures are attached to the countered

nodes using dotted edges.

Before introducing a formal definition of ADTrees based on

DAGs, we provide the necessary terminology.

A directed graph is an ordered pair (V,E) consisting of a

set V of nodes and a set E ⊆ V ×V of directed edges. Given

an edge (v, w) ∈ E, we say that v is a child of w and that w is

a parent of v. A path in a directed graph (V,E) is a sequence

of nodes from V , in which each node is a child of its successor.

If none of the paths in a directed graph contains some node
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Figure 1. ADTree for getting data, in a form of a DAG

more than once, then the graph is acyclic. A directed acyclic
graph (DAG) is rooted if it has exactly one node with no

parents. This node is called root. Given two DAGs (V,E) and

(V ′, E′), where V ′ ⊆ V and E′ consists of all the edges of

E whose both endpoints belong to V ′, we say that (V ′, E′)
is a subdag of (V,E) induced by V ′.

Our definition of ADTrees based on DAGs follows.

Definition 1 (ADTree). An attack–defense tree is a tuple
T = (V,E,L, λ, actor, τ), where

• (V,E) is a rooted DAG,
• L is a set of labels representing the attacker’s and the

defender’s goals,
• λ : V → L is an injective function assigning labels to the

nodes,
• actor : V → {a, d} is a function assigning actors to the

nodes, in such a way that every node has at most one
child assigned to the other actor,

• τ : V → {OR, AND, N} describes the refinement type of a
node. We use OR for disjunctively and AND for conjunc-
tively refined nodes, N stands for the non-refined nodes,
i.e., nodes labeled with basic actions,

• for every node v ∈ V , τ(v) = N if and only if v has no
child assigned to the same actor as v.

Let T = (V,E,L, λ, actor, τ) be an ADTree. The root of

T , denoted root(T ), is the root of its underlying DAG. We set

refT (v) = {w ∈ V : (w, v) ∈ E, actor(w) = actor(v)},
to denote the (possibly empty) set of all nodes refining v ∈
V , i.e., its children belonging to the same actor as v. The

(possibly non-existing) child of v belonging to the other actor

is denoted v̄.

The actor assigned to the root of an ADTree is the propo-

nent, and the other one is the opponent. Given a tree T , its

proponent is denoted with pT , i.e., pT = actor(root(T )), and

its opponent with oT . For an actor s ∈ {a, d}, we use s to

denote the other actor, i.e., a = d, d = a.

The labels of the non-refined nodes are basic actions. For
s ∈ {p, o}, we denote by B

sT the set of basic actions of the

corresponding actor in T , and we set BT := B
pT ∪BoT . Note

that, since the labeling function λ is injective, the sets B
pT

and B
oT are disjoint, for every ADTree T . The universe of all

basic actions is denoted by B.

Finally, for v ∈ V , we use T (v) to denote the maximal
subdag of T rooted at v i.e., the subdag induced by all nodes

v′ such that there exists a path from v′ to root(T ) containing v.

B. Bottom-up analysis of attributes on attack–defense trees

Attributes (also called parameters or metrics) allow to

reason about quantitative aspects of security scenarios [7], [8],

[9]. In this work, we are mostly interested in the cost and the

satisfiability attributes. The first one is used to identify cost-

efficient behavior of the two actors, while the second one is

helpful in finding potential ways of attacking or protecting the

analyzed system. Bottom-up evaluation of attributes is a stan-

dard method for analyzing ADTrees. The notions employed

in this section are well-established [10], [3], [8], but we adapt

them to our new formalization of ADTrees based on DAGs.

Definition 2 (Attribute domain). Let α be an at-
tribute. The attribute domain for α is a tuple Aα =
(Dα, OR

p
α, AND

p
α, OR

o
α, AND

o
α, C

p
α, C

o
α), where for s ∈ {p, o}

• Dα is a set of values that the attribute can attain,
• ORsα and ANDsα are unranked operations1 on Dα,
• Csα are binary operations on Dα.

Attribute domain Aα can be used to analyze an ADTree

w.r.t. attribute α in a bottom-up way. To do so, one first assigns

values to the basic actions using a function β : B→ Dα, called

basic assignment, and then combines them using the attribute

domain’s operations according to the ADTree structure.

Definition 3 (Bottom-up evaluation of attributes).
Let α be an attribute with the domain Aα =
(Dα, OR

p
α, AND

p
α, OR

o
α, AND

o
α, C

p
α, C

o
α), and let β : B→ Dα be a

basic assignment. Given an ADTree T = (V,E,L, λ, actor, τ)
and a node v ∈ V such that actor(v) = sT , s ∈ {p, o},
and τ(v) = OP, the value of α at v under β, denoted by
α(T, β, v), is defined recursively as follows

α(T, β, v) :=⎧⎪⎪⎪⎨
⎪⎪⎪⎩
β(λ(v)), if OP = N and v̄ does not exist,
Csα (β(λ(v)), α(T, β, v̄)) , if OP = N and v̄ exists,
(OPsα)v′∈refT (v)α(T, β, v

′), if OP �= N and v̄ does not exist,
Csα((OP

s
α)v′∈refT (v)α(T, β, v

′), α(T, β, v̄)), otherwise.

The value of attribute α for T under β obtained via the

bottom–up procedure, denoted by α(T, β), is then defined as
α(T, β, root(T )).

1Formally, an unranked operation f on a set D is a family of k-ary
operations {fk : Dk → D}k>0.
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Of special interest for our work is the satisfiability at-

tribute, denoted sat, and modeled with the domain Asat =
({0, 1},∨,∧,∨,∧, �, �), where x�y = x∧¬y. In Section III-B,

we also define some nonstandard attributes that will be helpful

in extracting the behavior of the two actors from an ADTree.

We now discuss some interesting properties of the satisfia-
bility attribute that are relevant for our framework.

First, remark that the intuitive notions of refinement and

goal achievement can be formalized using the attribute domain

Asat. Throughout the paper, for an ADTree T , one of its nodes

v, and a set B ⊆ BT of basic actions, we use achievedT(v,B)
as a shorthand for sat(T,�B , v), where �B is the indicator

function of B. We say that the goal of v is achieved by B
in T if achievedT(v,B) = 1; otherwise, the goal of v is not
achieved by B in T . The following example illustrates our

formalization of a goal achievement in ADTrees.

Example 2. Let T be the ADTree from Figure 2. Assuming that
the attacker executes only the actions a and c and the defender
executes only d1, d2, and d3, which is modeled by assigning 1
to each of these actions and 0 to the remaining basic actions,
the defender fails to counter the action a (the value computed
at the AND node countering a is 0), and so the attacker achieves
the goal of the root node (the value computed at the root node
is 1). In other words, for the set X = {a, c, d1, d2, d3} the
equality achievedT(root(T ), X) = 1 holds.

OR

1 = 1 ∨ 0

a

1
1 = 1 ∧ ¬0

AND

0 = 0 ∧ 1 ∧ 1

d1
1

0 = 1 ∧ ¬1

c

1

d2
1

AND

0 = 1 ∧ 0

b

0
0 = 0 ∧ ¬1

OR

1 = 1 ∨ 0

d3
1

d4
0

Figure 2. Bottom-up evaluation of the satisfiability attribute. Values assigned
to the basic actions are given in black, and values computed at the intermediate
nodes using the attribute domain’s operations in dark blue.

For a node v of a tree T and a set B ⊆ BT , the value of

achievedT(v,B) is obtained by evaluating a specific Boolean

function (called propositional semantics in [11]). This function

has been proven to be positive2 in the variables corresponding

2Boolean function f is positive in variable x, iff f(x = 0) ≤ f(x = 1);
otherwise, f is negative in x.

to the basic actions of actor(v), and negative in the remaining

variables [11]. This fact has multiple direct consequences,

some of them intuitively obvious, of which the following two

corollaries will be of use for us.

Corollary 1. Let T = (V,E,L, λ, actor, τ) be an ADTree and
let B ⊆ B

sT , with s ∈ {p, o}, be a set of actions of one of the
actors. If the equality achievedT(v,B) = 0 holds for a node
v ∈ V , then achievedT(v,B \ {b}) = 0, for every b ∈ BT .

Proof. We may assume that b ∈ B, since otherwise the

statement is obviously true.

Suppose first that actor(v) = sT . The value of

achievedT(v,B) is computed by replacing the 0 assigned

to the variable corresponding to the basic action b in

achievedT(v,B \ {b}) into 1. Since b ∈ B and B ⊆ B
sT , the

function achievedT(v, ·) is positive in that variable. Together

with the equality achievedT(v,B) = 0, this implies that

achievedT(v,B \ {b}) = 0.

Suppose now that actor(v) = s̄T . Observe that Definition 1

and 3 together with the definition of the satisfiability attribute

domain imply that achievedT(v, ∅) = 0. Together with the

fact, the function achievedT(v, ·) is negative in the variables

corresponding to the actions belonging to the set B, this

implies that achievedT(v,B \ {b}) = 0.

Corollary 2. Let T = (V,E,L, λ, actor, τ) be an ADTree,
B ⊆ BT be a set of basic actions of the actors, and v ∈ V
be a node with actor(v) = sT , for s ∈ {p, o}. Then,

• if achievedT(v,B) = 0, then achievedT(v,B ∪B′) = 0,
for every B′ ⊆ B

s̄T , and
• if achievedT(v,B) = 1, then achievedT(v,B ∪B′) = 1,

for every B′ ⊆ B
sT .

We are especially interested in the contraposition of the first

statement from Corollary 2, for sT = pT .

Corollary 3. Let T = (V,E,L, λ, actor, τ) be an ADTree,
let v ∈ V be a node satisfying actor(v) = pT and let P ⊆
B
pT be a set of basic actions of the proponent. If there exists

a set O ⊆ B
oT of basic actions of the opponent such that

achievedT(v, P ∪O) = 1, then achievedT(v, P ) = 1.

Corollary 2 implies also the following.

Corollary 4. Let T = (V,E,L, λ, actor, τ) be an ADTree,
and let P ⊆ B

pT and O ⊆ B
oT be sets of basic ac-

tions of the actors. If the equalities achievedT(v, P ) = 0
and achievedT(v,O) = 0 hold for a node v ∈ V , then
achievedT(v, P ∪O) = 0.

We rely on Corollary 4 to prove the intuitively obvious

statement: if a root goal of an ADTree is achieved by a set of

basic actions and an action from this set does not contribute to

the goal being achieved, then the goal is still achieved after the

action is removed from the set. This statement is formalized

in the following lemma.
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Lemma 1. Let T = (V,E,L, λ, actor, τ) be an ADTree, and
let P ⊆ B

pT and O ⊆ B
oT be sets of basic actions of the

actors. If v ∈ V is a node such that
• τ(v) = N,
• achievedT(root(T ), P ∪O) = 1, and
• on every path from v to root(T ), there exists a node v′

s.t. achievedT(v′, P ) = 0 and achievedT(v
′, O) = 0,

then achievedT(root(T ), P ∪O \ {λ(v)}) = 1.

Proof. Let v′ be one of the nodes satisfying the last condition

of the lemma. Corollary 4 implies that achievedT(v
′, P∪O) =

0. Therefore, when the value of achievedT(root(T ), P ∪ O)
is computed using the bottom-up procedure, the value prop-

agated up to the root from v′ is zero. Furthermore, it fol-

lows from Corollary 1 that achievedT(v
′, O \ {λ(v)}) = 0

and achievedT(v
′, P \ {λ(v)}) = 0. Thus, by Corollary 4,

achievedT(v
′, P ∪O \ {λ(v)}) = 0, i.e., the value propagated

from v′ remains unchanged after the removal of the basic

action λ(v) from P ∪O. Hence,

achievedT(root(T ), P ∪O \ {λ(v)}) =
achievedT(root(T ), P ∪O) = 1.

The above results will be useful in investigating relations

between sets of actions of the two actors, and, eventually,

in determining optimal sets of countermeasures in security

scenarios modeled with ADTrees.

III. DEFENSE SEMANTICS FOR ATTACK–DEFENSE TREES

The ultimate goal of this work is to extract possible behav-

iors of rational actors from an ADTree modeling a security

scenario, and to exploit this information for optimal selection

of countermeasures to be implemented by the opponent. We

express actors’ behavior in terms of sets of their basic actions,

that we call strategies. While some works, e.g., [12], [13],

consider any subset of basic actions of an actor to be a

possible strategy, such an approach is not only computationally

ineffective, but also unnecessary, in the sense that among all

the subsets there are inefficient ones that do not correspond to

a reasonable behavior.

In this section, we present a semantics for ADTrees called

defense semantics. Defense semantics of an ADTree T pairs

each of the rational ways for the proponent to achieve the root

goal of T together with the minimal sets of the opponent’s

actions preventing the proponent from succeeding. It has been

introduced in [1], for trees containing no clones. We adapt

the notions introduced in [1] to our DAG-based formalization

of ADTrees in Section III-A. A novel algorithm for the con-

struction of the defense semantics, suitable for trees containing

clones, is given in Section III-B. The complexity of the defense

semantics computation is discussed in Section III-C.

A. Defense semantics definition

When looking at a graphically depicted ADTree, one can

easily distinguish its structural components, namely, the max-

imal rooted subdags where all nodes belong to the same actor.

We call them homogeneous subdags. They play a crucial role

in defining the defense semantics.

Definition 4 (Homogeneous subdag). Let T =
(V,E,L, λ, actor, τ) be an ADTree and let H = (VH , EH)
be a rooted DAG such that

• VH ⊆ V , EH = E ∩ (VH × VH),
• either at least one of the parents of root(H) in T belongs

to the actor other than actor(root(H)), or root(H) =
root(T ),

• refT (v) ⊆ VH , for every v ∈ VH ,
• v̄ /∈ VH , for every v ∈ VH .

Moreover, let λH , actorH , and τH be restrictions of λ, actor,
and τ to VH . If the actor assigned to all the nodes of VH is
pT (resp. oT ), then the ADTree (VH , EH ,L, λH , actorH , τH)
is called a homogeneous subdag of the proponent (resp. of the
opponent) in T . If the only homogeneous subdag of T is T
itself, then T is called a homogeneous ADTree.

ADTree from Figure 1 has four homogenous subdags. They

are illustrated in Figure 3.
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disk

access
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office
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eo

restrict
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badge
b

key
k

retrieve
hash
rh

crack
hash
ch

use strong
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sp

post-it
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post-it
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post-it
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phishing
ph

security
training
st

Figure 3. Homogenous subdags of the ADTree from Figure 1

Note that the second condition of Definition 4 implies

that the goal of the root node of a homogeneous subdag

either counters some goal of the other actor, or achieving

it means success for the proponent. Therefore, in order to

succeed, the actors need to achieve the root goals of (some of)

their corresponding homogeneous subdags. If a set of actions

achieves none of the root goals of the homogeneous subdags,

its execution has no impact on the realization of the modeled

scenario. Therefore, we use minimal sets of actions that

achieve root goals of homogeneous subdags as the building

blocks for our formalization of the behavior of rational actors.

We call them proponent’s and opponent’s vectors.

Definition 5 (Proponent’s/opponent’s vector). Let T be an
ADTree and let H be a homogenous subdag of the proponent
(resp. opponent) in T . A minimal, w.r.t. the inclusion, set
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of basic actions of the proponent (resp. opponent) achieving
the root goal of H is called a proponent’s vector (resp. an
opponent’s vector) in T .

For example, there are three attacker’s vectors in the homo-

geneous subtree from Figure 3 rooted in the get password

node: {fo, eo, rh, ch}, {fo, eo, rp} and {ph}.
In order to counter the proponent in the best way possible,

the opponent might be interested in executing a number of

opponent’s vectors from some homogeneous subdags of an

ADTree. Given such a specific behavior of the opponent, we

assume that a rational proponent executes only those actions

that are necessary for achieving the root goal. Such behavior

of rational actors is captured with the notion of their strategy.

Definition 6 (Proponent’s/opponent’s strategy). Let T be an
ADTree.

• A set O ⊆ B
oT is called an opponent’s strategy in T if it

is a union of some of the opponent’s vectors in T . Remark
that the empty set is a possible opponent’s strategy.

• A set P ⊆ B
pT is called a proponent’s strategy in T if

there exists an opponent’s strategy O in T for which P
is a minimal set satisfying achievedT(root(T ), P ∪O) =
1. Such a set O is called a witness for the proponent’s
strategy P .

Note that every proponent’s strategy can be witnessed by

many opponent’s strategies, and each of the opponent’s strate-

gies can be a witness for a number of proponent’s strategies.

Let P and O be sets of basic actions of the proponent and

the opponent in T , respectively. We say that O counters P ,

if achievedT(root(T ), P ∪ O) = 0; otherwise P counters O.

With the actors’ strategies defined by Definition 6, our objec-

tive of determining possible behavior of a rational proponent

and ways of countering it is accomplished with the notion of

defense semantics.

Definition 7 (Defense semantics). The defense semantics of
an ADTree T , denoted D(T ), is the set of all pairs (P,O),
where P is a proponent’s strategy in T and O is a minimal
(w.r.t. the inclusion) opponent’s strategy in T that counters P .

We would like to stress that the proponent’s strategies in an

ADTree that cannot be countered do not appear in its defense

semantics. The proponent’s strategies in T that do appear in

the defense semantics of T , i.e., those that can be countered

by an opponent’s strategy in T , are called counterable.

Example 3. The defense semantics of the ADTree from Fig-
ure 1 is composed of the following five pairs of strategies:

({fo, eo, rh, ch}, {b}), ({fo, eo, rh, ch}, {k}),
({fo, eo, rh, ch}, {sp}), ({fo, eo, rp}, {st}),
({ph}, {st}).
While the concept of the defense semantics is intuitively

simple, constructing this semantics is a complex task, espe-

cially in the case of ADTrees with repeated nodes. We discuss

it in the next section.

B. Defense semantics construction

To construct the defense semantics of an ADTree T , one

could consider the following naive approach, which we are

going to build upon.

1) Create all the opponent’s strategies in T .

2) For every opponent’s strategy, determine the proponent’s

strategies witnessed by it.

3) For every proponent’s strategy, identify the minimal

opponent’s strategies countering it.

The first of the three steps is already very expensive, since,

in the worst case, every subset of basic actions of the opponent

might constitute an opponent’s strategy. Luckily, we can show

(see Proposition 1 and 2) that this step’s complexity can be

reduced by creating (if possible) only a subset of all possible

opponent’s strategies, while ensuring that every proponent’s

strategy is witnessed by at least one element of this subset.

Once this subset has been obtained, one can proceed with the

remaining two steps. The construction of the defense semantics

is summarized in Algorithm 1. The rest of this section is

devoted to explaining it and to proving its correctness and

completeness.

We start by introducing four operations on sets of sets that

we use to define attribute domains employed by Algorithm 1.

For n sets A1, . . . ,An of sets, let

n⊗
i=1

Ai := {
n⋃

i=1

Ai | Ai ∈ Ai}, (1)

n⊕
i=1

Ai :=
⋃

I⊆{1,...,n}

⊗
i∈I

Ai, (2)

A1 �A2 :=

{
{∅}, if A1 = {∅} or A2 = {∅},
A1 ∪ A2, otherwise,

(3)

A1 �A2 := A1 ∪ (A1 ⊗A2). (4)

To construct a set of witnesses sufficient for determining

all proponent’s strategies, we employ the bottom-up eval-

uation of the sufficient witnesses attribute, abbreviated as

SuffWit, formalized with the attribute domain ASuffWit :=
(22

B

,⊕,⊕,⊕,⊗,⊕,�). We begin, in Proposition 1, with spec-

ifying a basic assignment under which each of the elements

belonging to the result of this bottom-up evaluation is an

opponent’s strategy in the tree.

Proposition 1. Let T = (V,E,L, λ, actor, τ) be an ADTree
and let βSW

T be the basic assignment for the SuffWit attribute,
defined as

βSW
T (b) :=

{
∅, if b ∈ B

pT ,

{{b}}, otherwise.
(5)

IfO ∈ SuffWit(T, βSW
T ), thenO is an opponent’s strategy in T .

Proof. We shall prove that, for every v ∈ V , every element

O ∈ SuffWit(T, βSW
T , v) is a union of opponent’s vectors

from some of the homogeneous subdags of T (v). The validity

of this statement for v = root(T ) completes the proof of

Proposition 1.
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Algorithm 1 Defense semantics for ADTrees

Input: ADTree T
Output: Defense semantics D(T )
1: O ← SuffWit(T, βSW

T ) ∪ {∅}
2: P ← ∅
3: for O ∈ O do
4: P ← P ∪ {P : P is a minimal set in CounterOpp(T, βO

T )}
5: end for
6: D(T )← ∅
7: for P ∈ P do
8: D(T )← D(T ) ∪ {(P,O) : O is a minimal set in CounterPro(T, βP

T )}
9: end for

10: return D(T )

b1
∅

∅ ⊕ {{d1}, {d1, d2}} = {{d1}, {d1, d2}}

d1
{{d1}}

{{d1}} � {{d2}} = {{d1}, {d1, d2}}

b2
∅

∅ ⊕ {{d2}} = {{d2}}

d2
{{d2}}

Figure 4. Bottom-up evaluation of the SuffWit attribute. Basic assignment
given in black, values computed given in blue.

The proof is by induction on the structure of T (v). If v is a

non-refined node such that v̄ does not exist, then the statement

is obviously true by the definition of the basic assignment βSW
T .

If v is refined or v̄ exists, then, since every element of

SuffWit(T, βSW
T , v) is a union of some sets belonging to⋃
v′∈refT (v)∪{v̄}

SuffWit(T, βSW
T , v′),

by formulæ (1), (2) and (4), the statement follows from the

induction hypothesis.

Throughout the rest of this work, whenever we say “bottom-

up evaluation of the SuffWit attribute”, we mean the evalu-

ation under the basic assignment βSW
T given by formula (5).

The proof of Proposition 1 provides some insight into our

motivation for the choice of the operations of the SuffWit

attribute domain: they are defined in a way that ensures that

the result of the bottom-up evaluation of the SuffWit attribute

consists of opponent’s strategies. Nevertheless, being aware

that the definition of the attribute domain ASuffWit is non-

intuitive, we illustrate its usage with Example 4.

Example 4. Figure 4 exemplifies the bottom-up evaluation of
the SuffWit attribute. It is easy to verify that the opponent’s

strategy {d1} is the unique minimal witness for the proponent’s
strategy {b1, b2}. The set {d1, d2} is an opponent’s strategy
in the tree, but it is not a witness for any of the proponent’s
strategies.

Should a node of the attacker labeled b3 be attached as
a countermeasure to the node labeled d2, the set obtained
with the bottom-up evaluation of SuffWit in the resulting tree
would be the same as in the tree from Figure 4. In this case,
however, the opponent’s strategy {d1, d2} would be the unique
minimal witness for the proponent’s strategy {b1, b2, b3}.

There are ADTrees for which the result of the bottom-up

evaluation of the SuffWit attribute consists of exactly the

non-empty witnesses necessary for determining all proponent’s

strategies. As illustrated by Example 4, this is the case, for

instance, for an ADTree being a path of alternating non-refined

nodes of the proponent and the opponent, where the first node

on the path belongs to the proponent. We discuss such trees

further in the following example.

Example 5. Let T be an ADTree being a path of 2n+1 alter-
nating non-refined nodes of the proponent and the opponent,
with the first node on the path belonging to the proponent,
as schematized in Figure 5. The total number of non-empty
opponent’s strategies in T is 2n − 1, whereas there are only
n − 1 strategies in the result of the bottom-up evaluation of
SuffWit on T . Furthermore, each of them is a unique witness
for one of the proponent’s strategies: the opponent’s strategy
{d1, . . . , di}, with i ∈ {1, . . . , n}, is the unique witness for
the proponent’s strategy {b1, . . . , bi+1}.

Observe the following: if O is an opponent’s strategy
belonging to the result of the bottom-up evaluation of SuffWit
on T and di ∈ O, with i ∈ {1, . . . , n}, then dj ∈ O for every
j ∈ {1, . . . , i−1}. Informally speaking, there are no “gaps” in
the obtained opponent’s strategies. This is intentional: should
the above condition be not satisfied by an opponent’s strategy
O, say, O = {d1, . . . , di, di+k}, with i, i + k ∈ {1, . . . , n},
k > 1, then O is a witness for the same proponent’s strategies
as {d1, . . . , di}. This example motivates our choice of the
operation � as the one to be performed in the bottom-up
procedure when traversing countermeasures against goals of
the opponent.
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b1

d1

b2

d2

dn

bn+1

Figure 5. A schema generalizing the tree from Figure 4

Notice that Example 4 illustrates also the fact that, in

general, in the set returned by the bottom-up evaluation of the

SuffWit attribute there might be opponent’s strategies that

do not witness any proponent’s strategy, or that witness the

same proponent’s strategies as other elements of the set. In

other words, the set might contain more strategies than needed,

which is not ideal. This drawback is outweighed, however, by

the fact that the set contains at least one witness for each of the

proponent’s strategies in T , as we shall prove in Proposition 2.

Our proof of Proposition 2 relies on the property of the

attribute domain ASuffWit stated in Lemma 2, which can be

intuitively explained as follows. Suppose that each of the

actors fixes a set of their actions to be executed. As long as it

is possible, keep removing from these sets actions that do not

contribute to any of the root goals of homogeneous subdags

being achieved. Then, the remaining actions of the opponent,

which are the only actions relevant for the realization of the

scenario under the fixed behavior of the actors, belong to some

intermediate result of the bottom-up evaluation of the SuffWit

attribute.

Lemma 2. Let T = (V,E,L, λ, actor, τ) be an ADTree, let
v ∈ V and let βSW

T be the basic assignment of the SuffWit

attribute defined by (5). Let T ′ = (V ′, E′) be a rooted subdag
of T , such that

• root(T ′) = v,
• if v′ ∈ V ′ and τ(v′) = AND, then refT (v

′) ⊆ V ′,
• if v′ ∈ V ′ and τ(v′) = OR, then the intersection

refT (v
′) ∩ V ′ is not empty,

• E′ = E ∩ (V ′ × V ′).
Let

B
oT
T ′ := {λ(v′) : v′ ∈ V ′, actor(v′) = oT , τ(v

′) = N} (6)

be the set of all basic actions of the opponent in T that
appear in T ′. If the set B

oT
T ′ is non-empty, then it belongs

to SuffWit(T, βSW
T , v).

Due to space restrictions, a proof of Lemma 2 can be found

in the full version of this work [14].

We are now ready to state and prove the following result.

Proposition 2. Let T = (V,E,L, λ, actor, τ) be an ADTree,
P be a proponent’s strategy in T , and let βSW

T be the basic
assignment defined by (5). If O is a minimal non-empty witness
for P in T , then O ∈ SuffWit(T, βSW

T ).

Proof. We begin with constructing an appropriate subdag of

T to which we then apply Lemma 2. Let

V1 :=

{v ∈ V : achievedT(v, P ) = 1 or achievedT(v,O) = 1},
V2 :=

{v ∈ V1 : ∃v1, v2, . . . , vm ∈ V, s.t. v1v2 . . . vm is a path in T,

v1 = v, vm = root(T ), and vi ∈ V1, for i ∈ {1, . . . ,m}}.

Let T2 be the subdag of T induced by V2. Observe that,

since achievedT(root(T ), P ∪O) = 1, it follows from Corol-

lary 3 that the root of T belongs to the set V1. Together with the

definition of V2, this implies that the subdag T2 is connected

and rooted at root(T )3. Furthermore, the choice of V1 and V2

implies that T2 satisfies the assumptions of Lemma 2 (as the

subdag T ′). Therefore, if the set BoT
T2

defined by (6) is not

empty, then B
oT
T2
∈ SuffWit(T, βSW

T ). To complete the proof

it remains to show that BoT
T2

= O.

The inclusion B
oT
T2
⊆ O follows immediately from the

choice of V2. To prove that the two sets are in fact equal,

suppose that there exists a node v ∈ V with λ(v) ∈ O
which does not belong to V2. Then, since v ∈ V1, it

follows that on every path from v to root(T ) there is a

node v′ other than v, such that achievedT(v
′, P ) = 0 and

achievedT(v
′, O) = 0. Since O is a witness for P , we

have achievedT(root(T ), P ∪ O) = 1. Therefore, Lemma 1

implies that achievedT(root(T ), P ∪ O \ {λ(v)}) = 1. This
contradicts the choice of O as the minimal witness for P .

Hence, BoT
T2

= O, completing the proof.

Proposition 1 and 2 imply the following result.

Corollary 5. Let T = (V,E,L, λ, actor, τ) be an ADTree and
let βSW

T be the basic assignment defined by (5). The set

{P ⊆ B
pT : ∃O ∈ SuffWit(T, βSW

T ) s.t.

P is a minimal set countering O or

P is a minimal set countering ∅}
consists of all the proponent’s strategies in T .

Corollary 5 shows that, in order to identify witnesses

relevant for the computation of the defense semantics, it is

sufficient to compute SuffWit(T, βSW
T ) instead of all possible

3In fact, T2 is the component of the subdag of T induced by the set V1

that contains the root of T . Intuitively, T2 models the (relevant part of the)
particular realization of the scenario represented by T , when the opponent
executes all of the actions in O, and the proponent — all of the actions in P .
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opponent’s strategies. To evaluate the impact of this observa-

tion in practice, we have tested it on some example ADTrees.

The results are discussed in Section V.

With a sufficient set of witnesses identified, the next step

of the defense semantics’ construction is to determine the

proponent’s strategies. This can be achieved with the help

of the attribute CounterOpp, formalized with the attribute

domain ACounterOpp := (22
B

,∪,⊗,⊗,∪,⊗,�).
Proposition 3. Let T = (V,E,L, λ, actor, τ) be an ADTree,
let v ∈ V and O ⊆ B

oT . Let βO
T be the basic assignment for

the CounterOpp attribute defined by

βO
T (λ(v)) :=

⎧⎪⎨
⎪⎩
{{λ(v)}}, if actor(v) = pT ,

∅, if actor(v) = oT , λ(v) ∈ O,

{∅}, if actor(v) = oT , λ(v) /∈ O.

(7)

Let P be a set of basic actions of the proponent such
that P ∈ CounterOpp(T, βO

T , v). If actor(v) = pT , then
achievedT(v, P∪O) = 1; otherwise achievedT(v, P∪O) = 0.

Proof. The proof is by induction on the structure of T (v) –

the maximal subdag of T rooted at v.
For the base case, let v be a non-refined node and assume

that v̄ does not exist. Since the set CounterOpp(T, βO
T , v) is

not empty, the definition of the basic assignment βO
T implies

that actor(v) = pT and P = {λ(v)}, or actor(v) = oT and

P = ∅. In the former case, the claim follows immediately. In

the latter, we have λ(v) /∈ O, implying that

achievedT(v, P ∪O) = achievedT(v,O) = 0,

as required.

Case 1. The node v is not refined and v̄ exists.

Case 1.1. actor(v) = pT .
Under the assumptions of this case, and since the set

CounterOpp(T, βO
T , v) is not empty, formula (1), the defini-

tion of the CounterOpp domain, and the definition of the basic

assignment βO
T imply that CounterOpp(T, βO

T , v̄) �= ∅ and

P = P∪{λ(v)}, for some set P ∈ CounterOpp(T, βO
T , v̄). By

the induction hypothesis, the equality achievedT(v̄, P ∪O) =
0 holds, and so the definition of the satisfiability attribute

domain implies that achievedT(v, P ∪O) = 1.

Case 1.2. actor(v) = oT .
In the case when λ(v) ∈ O, we have CounterOpp(T, βO

T , v) =
CounterOpp(T, βO

T , v̄), by formula (3) and the definition of

βO
T . Thus, P ∈ CounterOpp(T, βO

T , v̄), which together with

the induction hypothesis implies achievedT(v̄, P ∪ O) = 1.
Now the equality achievedT(v, P ∪O) = 0 follows from the

definition of the satisfiability attribute domain.

If λ(v) /∈ O, then βO
T (v) = {∅}, and so

CounterOpp(T, βO
T , v) = {∅}, by formula (3). And indeed,

since λ(v) /∈ O, the demanded equality

achievedT(v, P ∪O) = achievedT(v,O) = 0

follows from the definition of the satisfiability attribute domain.

If v is a refined node, we let refT (v) = {v1, . . . , vk}.

Case 2. The node v is refined and τ(v) = OR.

Case 2.1. actor(v) = pT .
Depending on whether or not v̄ exists, either P = Pi ∪ P
(if v̄ does exist) or P = Pi (if v̄ does not exist), for some

i ∈ {1, . . . , k}, Pi ∈ CounterOpp(T, βO
T , vi) and P ∈

CounterOpp(T, βO
T , v̄). Thus, by the induction hypothesis, we

have achievedT(v̄, P∪O) = 0 and achievedT(vi, Pi∪O) = 1,
implying that achievedT(v, P ∪O) = 1.

Case 2.2. actor(v) = oT .
Again, depending on the existence of v̄, and, if it does exist, on
whether or not the set CounterOpp(T, βO

T , v̄) is empty, either

P = (P1 ∪ . . . ∪ Pk), for some Pi ∈ CounterOpp(T, βO
T , vi)

or P = P , for some P ∈ CounterOpp(T, βO
T , v̄). In the latter

case, we have achievedT(v̄, P ∪ O) = 1, by the induction

hypothesis, and the equality achievedT(v, P ∪ O) = 0 fol-

lows from the definition of the satisfiability attribute domain.

Suppose now that the former of the two cases occurs. The

induction hypothesis implies that achievedT(vi, Pi ∪O) = 0,
for i ∈ {1, . . . , k}. Now, it follows from Corollary 2 that

achievedT(vi, P ∪ O) = 0, for i ∈ {1, . . . , k}. Thus,

achievedT(v, P ∪O) = 0.

Case 3. The node v is refined and τ(v) = AND.

Case 3.1. actor(v) = pT .
Depending on the existence of the countermeasure v̄, it

either holds that P = (P1 ∪ . . . ∪ Pk) ∪ P or P =
(P1 ∪ . . . ∪ Pk), for some Pi ∈ CounterOpp(T, βO

T , vi) and

P ∈ CounterOpp(T, βO
T , v̄). The induction hypothesis implies

that achievedT(vi, Pi ∪ O) = 1, for i ∈ {1, . . . , k}, and

achievedT(v̄, P ∪ O) = 0. By applying Corollary 2, we get

achievedT(v, P ∪O) = 1.

Case 3.2. actor(v) = oT .
If v̄ does not exist or CounterOpp(T, βO

T , v̄) = ∅, then, by

formula (3), P = Pi, for some i ∈ {1, . . . , k} and Pi ∈
CounterOpp(T, βO

T , vi). Otherwise, it might hold that P =
P , for some P ∈ CounterOpp(T, βO

T , v̄). In either case, the

demanded equality follows from the induction hypothesis and

the definition of the satisfiability attribute domain.

Proposition 3 states, in particular, that every set belonging to

CounterOpp(T, βO
T ), with βO

T defined by (7), counters the set

O of basic actions of the opponent in T . With the next propo-

sition we establish another useful fact: that every minimal set
countering O also belongs to CounterOpp(T, βO

T ).

Proposition 4. Let T = (V,E,L, λ, actor, τ) be an ADTree,
v ∈ V , O ⊆ B

oT and let βO
T be the basic assignment defined

by (7). If
• actor(v) = pT and P ⊆ B

pT is a minimal set such that
achievedT(v, P ∪O) = 1, or

• actor(v) = oT and P ⊆ B
pT is a minimal set such that

achievedT(v, P ∪O) = 0,
then P ∈ CounterOpp(T, βO

T , v).

The proof of Proposition 4 is again by induction on the

structure of T (v), and it can be found in the full version of

this work [14].

403



Proposition 3 and 4 yield immediately the following result.

Corollary 6. Let T be an ADTree and O be an oppo-
nent’s strategy in T . With βO

T being the basic assignment
defined by (7), the minimal (w.r.t. the inclusion) sets from
CounterOpp(T, βO

T ) are the proponent’s strategies in T wit-
nessed by O.

The final ingredient of our algorithm for creation of the

defense semantics is a method for determining minimal op-

ponent’s strategies countering a given proponent’s strategy.

Conceptually, this task is the same as the one achieved by

the domain for the CounterOpp attribute, but it requires,

informally speaking, switching of the actors: for an ADTree

T , let T ′ be the tree obtained by attaching the root of T as a

countermeasure to a new node belonging to oT . Assume that

the new node bears a unique label, say x. Then, pT ′ = oT ,
oT ′ = pT , and for every proponent’s strategy P in T , there is a

set O′ of basic actions of the opponent in T ′ such that O′ = P .

Thus, when creating proponent’s strategies countering O′ in

T ′, one in fact creates the opponent’s strategies countering P
in T . That is, every opponent’s strategy countering O′ in T ′

is of the form P ′ ∪ {x}, where P ′ = O, for some opponent’s

strategy O in T countering P .

More formally, we define the domain ACounterPro :=
(22

B

,⊗,∪,∪,⊗,�,⊗), where the respective operations of the

two actors have been exchanged compared to ACounterOpp. For

an ADTree T = (V,E,L, λ, actor, τ) and a set P ⊆ B
pT of

basic actions of the proponent, let

βP
T (λ(v)) :=

⎧⎪⎨
⎪⎩
{{λ(v)}}, if actor(v) = oT ,

∅, if actor(v) = pT , λ(v) ∈ P,

{∅}, if actor(v) = pT , λ(v) /∈ P.

(8)

The above reasoning implies the following corollary.

Corollary 7. Let T be an ADTree and P be a propo-
nent’s strategy in T . With βP

T being the basic assignment
defined by (8), the minimal (w.r.t. the inclusion) sets from
CounterPro(T, βP

T ) are the minimal opponent’s strategies in
T countering P .

The considerations of this section, in particular Corollary 5,

6, and 7, imply that Algorithm 1 is indeed suitable for creating

the defense semantics of an ADTree.

Corollary 8. On input ADTree T , Algorithm 1 outputs its
defense semantics D(T ).
C. Complexity of the defense semantics computation

We would like to draw the reader’s attention to the following

facts:

Remark 1. Regarding the complexity of Algorithm 1,
1) In the worst case, the number of the opponent’s strate-

gies created using the SuffWit attribute domain is
exponential in both the number of basic actions of the
opponent and the number of the opponent’s nodes in the
tree.

2) The number of proponent’s strategies witnessed by a
given opponent’s strategy can be exponential in both
the number of basic actions of the proponent and the
number of the proponent’s nodes in the tree.

3) The number of minimal opponent’s strategies countering
a given proponent’s strategy can be exponential in both
the number of basic actions of the opponent and the
number of the opponent’s nodes in the tree.

Examples 6, 7, and 8 illustrate the three observations from

Remark 1.

Example 6. Let T be the ADTree depicted on Figure 6.
Every set of basic actions of the defender that contains a
set of the form {b1i, b2j , b3k}, with i, j, k ∈ {1, 2}, is a non-
empty defender’s strategy in T . There are 33 such defender’s
strategies in T , and each of them belongs to the result of the
bottom-up evaluation of the SuffWit attribute on T .

A simple proof by induction shows that in the general case,
when there are n OR nodes of the defender, there are 3n non-
empty defender’s strategies.

d1

AND

OR1

b11 b12

OR2

b21 b22

OR3

b31 b32

d2

Figure 6. An example of a tree with the number of the opponent’s strategies
exponential in the number of basic actions

Example 7. Let T be the ADTree depicted on Figure 7. Each
of the sets of the form {b1, b1i, b2j , b3k}, with i, j, k ∈ {1, 2},
is an attacker’s strategy witnessed by the defender’s strategy
{d1}. There are 23 such strategies.

b1

d1

AND

OR1

b11 b12

OR2

b21 b22

OR3

b31 b32

Figure 7. An example of a tree with the number of the proponent’s strategies
witnessed by a single opponent’s strategy exponential in the number of basic
actions
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Example 8. Let T be the ADTree depicted on Figure 6. Each
of the sets of the form {b1i, b2j , b3k}, with i, j, k ∈ {1, 2}, is a
minimal defender’s strategy countering the attacker’s strategy
{d1}. The number of such sets is 23.

The three observations from Remark 1 imply that, for a tree

T with n nodes, the time needed for execution of each of the

lines 1, 4 and 8 of Algorithm 1 is exponential in n, implying

that our algorithm returns the defense semantics of T in time

exponential in n. We note that it seems however very difficult,

if not impossible, to construct a tree for which each of the three

lines would indeed require a number of operations exponential

in the number of basic actions in the tree.

To study how Algorithm 1 performs in practice, we have de-

veloped a prototype tool implementing the defense semantics

computation, and tested it on a number of synthetic ADTrees

having various structure. We discuss the tooling and the results

of our tests in Section V.

IV. OPTIMAL SELECTION OF COUNTERMEASURES

We now exploit the defense semantics to design a generic

framework for solving optimization problems expressed in

terms of ILP. We analyze single parameter and multi-

parameter cases, and we deal with proponent and opponent-

related parameters. In Section IV-A, we present a mathematical

model encoding the defense semantics with a number of

propositional variables. Then, we show how to encode the

optimization problems of interest using ILP. To ease the

framework’s understanding, we start in Section IV-B with the

deterministic setting, where there is no uncertainty about the

outcome of the actions of the opponent, i.e., where every action

executed by the opponent succeeds, and contributes fully to all

the goals that depend on it. Then, in Section IV-C, we move

to a more realistic, probabilistic setting.

A. The mathematical model

Given an ADTree T and its defense semantics D(T ), let
• b1, . . . , bp be the basic actions of the opponent present

in T ,

• P1, . . . , Pn be the distinct proponent’s strategies that

appear in D(T ),
• O1, . . . , Om be the distinct opponent’s strategy that ap-

pear in D(T ).
Furthermore, for k ∈ {1, . . . , p}, i ∈ {1, . . . , n}, and j ∈
{1, . . . ,m}, we set

Akj =

{
1, if bk ∈ Oj ,

0, otherwise,
Bij =

{
1, if (Pi, Oj) ∈ D(T ),
0, otherwise.

Every basic action b of the opponent is assumed to be

assigned a non-negative integer cost value cost(b). The total

budget available to the opponent is denoted by B. The ways

in which execution of particular actions contributes to the

implementation of opponent’s strategies, which, in turn, results

in some proponent’s strategies being countered, are modeled

with inequalities involving the following Boolean variables:

• xk, for k ∈ {1, . . . , p}: xk = 1 if and only if the opponent

executes action bk,

• zi, for i ∈ {1, . . . , n}: zi = 1 if and only if the

proponent’s strategy Pi achieves the root node of T in

the presence of currently deployed countermeasures,

• fj , for j ∈ {1, . . . ,m}: fj = 1 if and only if the opponent

does not execute at least one of the basic actions from

the opponent’s strategy Oj .

We are now ready to model the problems of interest with ILP.

B. Optimization problems in the deterministic case

Let us start with a general form of an optimization problem

where the goal of the opponent is to select countermeasures

to be implemented, in a way that optimizes a linear function

F depending on variables xk, fj , and zi. The total cost of

the countermeasures cannot exceed the budget B available to

the opponent. This problem is modeled as an ILP program in

Figure 8. Its special case has been considered in [1].

Optimization goal:

maximize F (x1, . . . , xp, f1, . . . , fm, z1, . . . , zn) (9)

Subject to:
p∑

k=1

cost(bk)xk ≤ B (10)

fj ≥
∑p

k=1 Akj(1− xk)

p
, 1 ≤ j ≤ m (11)

fj ≤
p∑

k=1

Akj(1− xk), 1 ≤ j ≤ m (12)

zi ≥ 1 +
m∑
j=1

Bij(fj − 1), 1 ≤ i ≤ n (13)

zi ≤
∑m

j=1 Bijfj∑m
j=1 Bij

, 1 ≤ i ≤ n (14)

xk ∈ {0, 1}, 1 ≤ k ≤ p,

fj ∈ {0, 1}, 1 ≤ j ≤ m,

zi ∈ {0, 1}, 1 ≤ i ≤ n. (15)

Figure 8. General ILP problem for an optimal selection of countermeasures

Constraint (10) ensures that the opponent’s investment can-

not exceed their budget. The next two families of constraints

model the meaning of the variables fj : constraints (11) ensure

that if the opponent does not execute some of the actions from

Oj , then fj = 1; constraints (12) ensure that if fj = 1, then
the opponent does not execute some action from Oj . Next,

we model the meaning of the variables zi: constraints (13)

ensure that if the opponent does not execute some action in

any of the sets countering Pi (i.e., fj = 1 for every j s.t.

Bij = 1), then zi = 1; and constraints (14) ensure that if the

opponent executes all the actions from at least one of the sets

Oj countering the proponent’s strategy Pi (i.e., there exists j
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s.t. Bij = 1 and fj = 0), then zi = 04. More details regarding

the form of the problem can be found in Remark 1 in [1].

Below, we discuss several specific instances of the general

problem from Figure 8 that are relevant for risk analysis.

1) Coverage problem: Setting F := −∑n
i=1 zi results in

the so called coverage problem, where the goal is to cover the

largest possible part of the attack surface, i.e., maximize the

number of proponent’s strategies countered by the opponent.

2) Countering the most appealing proponent’s strategies:
For an ADTree T , let S : 2B

pT → Z
+ be a score function used

for comparing proponent’s strategies. The higher the value of

the score function of a proponent’s strategy, the less appealing

the strategy is for the proponent. If the opponent cannot

fully protect the system, they can at least implement a set

of countermeasures that maximizes the minimal value of the

score function, among the proponent’s strategies successful in

the presence of this set. This is achieved by setting F := CS ,

where CS ∈ Z
+ is a new variable, and by introducing

constraints

CS ≤ ziS(Pi)+2(1−zi) max
P∈{P1,...,Pn}

S(P ), for i ∈ {1, . . . , n}.
(16)

Constraints (16) relate the value of CS to the values of the

score function attained by proponent’s strategies not countered

by the considered set of countermeasures. They ensure that

CS is always bounded from above by the minimum of these

values, i.e., that maximizing CS is beneficial for the opponent.

Should all the proponent’s strategies be countered by the

opponent under some configuration of variables, then the

optimal solution to the optimization problem would be

2 max
P∈{P1,...,Pn}

S(P ).

The constant multiplier is a technical trick allowing for dis-

tinguishing the case when all the proponent’s strategies can

be countered (result exceeds the maximal of the scores of the

proponent’s strategies) from the case when they cannot (the

result will correspond to the minimal of the scores among the

proponent’s strategies that are not countered).

We analyze two particularly useful instances of this problem.

a) Countering the cheapest proponent’s strategies: Typ-

ical example of score function S is the cost of execution of
a strategy. Assume that the cost of the proponent’s actions

is modeled with non-negative integers, i.e., that there exists a

function cost(·) defined on B, such that cost(b) ∈ Z
+, for

b ∈ B
pT . By solving the problem from Figure 8 extended with

constraints (16) for S(P ) :=
∑

b∈P cost(b), one obtains a set

of countermeasures that maximizes the minimal investment of

the proponent necessary to achieve the root goal.

b) Countering Pareto optimal proponent’s strategies:
Let us start with a generic mathematical setting. Suppose that

there exists a partial order � defined on the set of proponent’s

strategies P = {P1, . . . , Pn}, and that maximal elements w.r.t.

4The denominator in the right hand side of constraints (14) is a constant,
i.e., these constraints do not introduce any non-linearity into the problem.

this order correspond to the strategies most appealing to the

proponent. For a given P ∈ P , denote by #P� ∈ Z
+ the

number of elements of a largest totally ordered subset of P ,
in which P is the minimal element5. The smaller the value

of #P�, the more appealing the proponent’s strategy P is for

the proponent, because there are not many strategies that are

better than P . The opponent’s objective is thus to first counter

the proponent’s strategies P for which the value of #P� is

small. By applying the model from Figure 8 extended with

constraints (16) for S(P ) := #P�, one identifies a set of

countermeasures which maximizes the minimal number #P�
over all proponent’s strategies that are not countered, i.e., a

set for which the uncountered strategies are as unattractive to

the proponent as possible.

The setting described above applies to any partial order on

the set of proponent’s strategies. In particular, it can be used

for countering Pareto optimal proponent’s strategies that have

been studied in [9]. That is, should each of the proponent’s

strategies be assigned a vector of values originating from

partially ordered sets, one could introduce a partial order

� on the set of strategies, were the maximal elements are

the strategies that are Pareto optimal w.r.t. all the considered

parameters. By instantiating the above generic setting with this

order, one selects a set of countermeasures that focuses on

countering the proponent’s strategies that are Pareto optimal.

3) Optimizing the opponent’s investment without jeopar-
dizing the system: Assume now that the opponent’s budget

is not limited, but they do not want to spend on security

more than necessary. Suppose that there exists a solution

to the coverage problem, in which all counterable propo-

nent’s strategies are countered. The opponent can identify a

cheapest set of countermeasures countering all counterable

proponent’s strategies by solving the problem from Figure 8,

for F := −∑p
k=1 cost(bk)xk, with the constraints (10)

and (14) being removed, and with additional n constraints

zi ≤ 0, for i ∈ {1, . . . , n} being introduced.

C. Stochastic model

All the problems considered in Section IV-B assume that the

opponent always perform their actions successfully. However,

in practice, this happens very rarely. Our framework can be

generalized to a non-deterministic case, where the counter-

measures may fail. Formally, we associate with every basic

action bk ∈ B
oT of the opponent a random variable ξk that

is equal to 1 if bk has been implemented successfully, and

0 otherwise (according to the Bernoulli distribution). After

splitting the function F into two parts F = G + H , with

G = G(x1, . . . , xp), H = H(f1, . . . , fm, z1, . . . , zn), the

optimization problem from Figure 8 becomes then a stochastic

programming problem (see, e.g., [15]) given in Figure 9, where

ξ := (ξ1, . . . , ξp). This general problem can be instantiated

similarly as the deterministic one. It can be solved using

variants of the well-studied sampling average approximation

5Note that #P� induces a total order on P .
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Optimization goal:

maximize G(x1, . . . , xp) + E[H(x1, . . . , xp, ξ)]

Subject to:
p∑

k=1

cost(bk)xk ≤ B

xk ∈ {0, 1}, 1 ≤ k ≤ p

where H(x1, . . . , xp, ξ) is the optimal value of the problem

maximize H(f1, . . . , fm, z1, . . . , zn)

Subject to:

fj ≥
∑p

k=1 Akj(1− ξkxk)

p
, 1 ≤ j ≤ m

fj ≤
p∑

k=1

Akj(1− ξkxk), 1 ≤ j ≤ m

zi ≥ 1 +

m∑
j=1

Bij(fj − 1), 1 ≤ i ≤ n

zi ≤
∑m

j=1 Bijfj∑m
j=1 Bij

, 1 ≤ i ≤ n

fj ∈ {0, 1}, 1 ≤ j ≤ m, zi ∈ {0, 1}, 1 ≤ i ≤ n.

Figure 9. General stochastic integer programming problem

approach [16], or other efficient heuristics, e.g., as in [17]. An

interested reader is referred to [17] for more details.

V. TOOL SUPPORT AND CASE STUDY

To automate the methodology developed in this paper, we

have implemented a tool, called OSEAD: Optimal Strategies
Extractor for Attack–Defense trees. It is an open source tool

written in Python, available at https://people.irisa.fr/Wojciech.

Widel/suftware/osead.zip. The main objective of OSEAD is to

solve various optimization problems on ADTrees, including

the problems IV-B1 and IV-B2a.

Below, we discuss the performance of OSEAD while creat-

ing the defense semantics and explain how the tool supports

the selection of an optimal set of countermeasures.

A. OSEAD: automating the defense semantics construction

The discussion in Section III-C shows that the task of

computing the defense semantics might be complex. To study

how Algorithm 1 performs in practice, we have implemented

it in OSEAD. Our tool takes as input an ADTree written in

the xml format generated using ADTOOL (standard software

for creation and manipulation of ADTrees [18]) and extracts

its defense semantics according to Algorithm 1. We tested the

performance of our implementation on a number of synthetic

ADTrees having various structure. The files storing our test

trees are available at https://github.com/wwidel/defsem-tests,

and an excerpt from the tests is given in Table I.

We remark that the number of strategies and the size of

the defense semantics of an ADTree depend strongly on the

structure of the tree (configurations of AND and OR nodes,

number of distinct homogeneous subdags, number of clones,

etc.), and less on the overall number of its nodes. This fact

is illustrated in particular by the trees random3 and random4:
while both trees have the same number of nodes and similar

numbers of basic actions of the actors, the differences in their

structures translate into different sizes of objects created by

Algorithm 1, and, in consequence, into drastically different

running times.

B. OSEAD: automating the optimal countermeasures selection

Amongst all its functionalities, OSEAD implements the

selection of optimal sets of countermeasures, as formalized

in Section IV. Our software can solve the coverage problem,

as well as determine a set of countermeasures that counter
the cheapest strategies of the proponent. To do so, the user

needs to provide an ADTree and the necessary input values:

opponent’s overall budget, and costs of basic actions. After

extracting the defense semantics from the ADTree, OSEAD
translates it into an integer linear optimization problem. The

latter is then solved by the LP_SOLVE solver [19] which works

as a back-end of OSEAD, in a way transparent for the user.

OSEAD returns its analysis results in a form of a textual file,

listing the elements of an optimal set of countermeasures and

recalling all input values that have been used. This allows a

user to perform several simulations, for instance by varying

the overall budget used for securing a system, in order to find

the most suitable solution.

C. OSEAD: real-life case study

We used OSEAD to validate our theoretical results on a real-

life case study borrowed from industry, and described in [20].

The objective of this work was to analyze the scenario of

tampering with an optical power meter to lower the recorded

electricity consumption. Possible attacks and countermeasures

were represented with an ADTree containing 68 nodes, in-

cluding 5 repeated basic actions of the attacker and 3 repeated

basic actions of the defender. OSEAD computed the defense

semantics of this tree instantaneously, as highlighted by the

blue frame in Figure 10. Translating the defense semantics

into an optimization problem and solving it took OSEAD less

than 1 second, as shown the red frame in Figure 10.

Interested reader will find additional details on the OSEAD
tool and the tampering with a power meter case study in [20],

where we also address the problem of estimating the necessary

input values and discuss the reliability of the ADTree analysis,

in general.

VI. RELATED WORK

Plethora of attack tree-based models for analyzing security

scenarios involving an attacker and a defender exist [21], [22],

[23]. Below, we briefly discuss only some of the works that are

closely related to our setting. Interested reader is referred to the

recent survey [24], which provides a detailed comparison of
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Table I
PARAMETERS OF INTEREST FOR THE COMPUTATION OF THE DEFENSE SEMANTICS ON SOME EXAMPLE ADTREES

name of file
storing tree T

total number of
nodes in T

|BpT | |BoT |
number of
opponent’s

strategies in T
|SuffWit(T, βSW

T )|
number of
proponent’s

strategies in T
|D(T )|

performance of
Algorithm 1

in sec.

synthetic1 30 16 8 256 256 192 384 1
synthetic2 36 20 10 1024 1024 1024 2560 1
synthetic3 44 24 12 4096 4096 3072 9216 83
random1 30 8 14 2048 1536 36 168 1
random2 48 12 23 32768 32768 22 92 17
random3 94 36 30 2048 672 156 642 1
random4 94 32 36 221 147792 1376 11940 203

Figure 10. Extracting the defense semantics and solving the coverage problem on the tree from the case study [20], using the OSEAD tool

some solutions addressing the problem of optimal selection of

countermeasures against potential attacks, including a number

of frameworks based on attack trees and attack graphs.
This work builds upon [1], where the defense semantics has

been introduced for the first time, and where an algorithm for

its construction on ADTrees with no clones was developed.

As can be seen in Section III, allowing for clones makes

the reasoning about attack and defense strategies much more

difficult, thus, the main research challenge in the current work

was to devise a constructive method for the defense semantics

in this general, and more realistic case. Furthermore, in [1]

we formulated the coverage and the countering the cheapest
attack strategies problems, but we did not consider their

generalizations nor cases involving probability.
In [25], Roy et al. use attack countermeasure trees, which

are attack trees augmented with countermeasure nodes com-

posed of a detective and a mitigating parts. They exploit

what can be seen as our defense semantics in a case of a

single homogeneous subtree of the attacker, to which coun-

termeasures are attached. The authors propose an ILP-based

solution to the problem of minimizing defender’s investment
while covering some of the attack strategies, and maximizing
the defender’s return on investment (ROI). While the former

can be applied to trees containing clones, the latter cannot, as it

relies on the bottom-up computation of success probability that

is known not to work in trees with clones. The main research

focus of [25] is on algorithms for solving the optimization

problems, while we mostly concentrate on extracting the

defense semantics from the general model of ADTrees.

In [26], Muller et al. propose a branch-and-bound algorithm

for maximizing defender’s ROI. Their scenarios are modeled

with attack–defense trees without clones of the attacker and

where the countermeasures cannot be refined. In [27], Sendi

et al. identify countermeasures that maximize the security
performance, minimize the attack impact, and minimize the
defense cost. Contrary to our work, neither [26] nor [27] allow

for counterattacking the countermeasures.

Each of the approaches presented above is devoted to solv-

ing optimization problems on some variants of attack–defense

trees. These variants are however considerably less expressive

than the model used in this article, and thus significantly easier

to analyze.

The complexity of our framework originates from the fact

that the dependencies between basic actions of the actor are

encoded in ADTrees; they are complex, and to make use of

them, one needs to decode them. In the approaches developed

for optimal selection of countermeasures by Brown et al.

in [28] and by Khouzani et al. in [29], the relations between
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behaviors of the actors are significantly simpler: in [28], every

attacker’s actions disables a set of defender’s actions, and

in [29], every defender’s action impacts success probability

of each of the attacker’s actions. This simplicity allows for

an immediate formulation of the optimization problems as

bilevel mixed integer programming (MIP) programs [30], [31],

which can be solved using standard methods. We note that,

in the light of definition of achievement, the root node of

an ADTree being achieved corresponds to a propositional

formula being satisfied. The optimization problems considered

in our work could thus have been expressed as variants of

the satisfiability problem, which in turn could be directly

encoded as MIP programs [32], [33]. Since the goals of the

actors are conflicting (e.g., the attacker wants to minimize,

and the defender wants to maximize the value of the objective

function), and the defender is the first one to act, the result of

such encoding would be a bilevel MIP problem resembling the

ones considered in [28], [29]. A standard technique for dealing

with bilevel programs involves replacing the inner problem

with its dual or the dual of its linear relaxation [31], [28],

[29]. If the inner problem is a linear programming problem or

the integrality gap of its linear relaxation is 1, one eventually

obtains a single level optimization problem equivalent to the

initial one. In our case, the integrality gap is greater than 1,

i.e., the difference between the optimal solution of the final

program and the optimal solution of the initial one cannot

be predicted. Therefore, even though this method would allow

for omitting the computationally expensive construction of the

defense semantics, we decided to pursue the approach yielding

the exact optimal solutions. We believe that our framework

could thus play an important role in assessing performance of

heuristic methods for optimal selection of countermeasures in

ADTrees developed in the future.

Artificial intelligence, and more precisely Stackelberg plan-

ning, has also been recently applied to address the optimization

problems on large infrastructures [34], [35], [36]. In [35]

a formal model for Stackelberg planning game between a

leader and the follower (each of which could be the attacker

or the defender) has been introduced. The goal is to find

the leader/follower equilibria where the leader’s objective is
to minimize its own cost while maximizing the cost of the
follower’s best response. The Stackelberg planning approach

has been applied to the penetration testing setting, in [34].

First, critical attack paths, i.e., those that maximize the attack

probability within a given budget of the attacker are identified,

and then the dominant mitigation strategies, i.e., a sequence

of defender’s actions that reduce the attack probability while

not increasing the defense cost are found. The planning-based

solution was also used in [36] to perform mitigation analysis of

an e-mail infrastructure. In this work, each attack is associated

with a reward that can be seen as an indicator of the severity of

the attack. The defender’s actions lower the attacker’s reward

and are associated with a positive real cost. The objective is

to find the mitigation strategies that minimize the attacker’s
reward while investing as little as possible. Since the size of

an e-mail infrastructure may be huge, the main concern of [36]

is efficiency, i.e., to lower the total number of the considered

mitigation strategies to make the problem tractable.

Both, the planning-based frameworks and our integer

programing-based solution address some security-relevant at-

tacker/defender optimization problems. However, several sub-

stantial differences between the two approaches should be

noted. On the one hand, the solutions of [34], [35], [36] focus

on specific attributes (cost, attack probability, reward) and

our optimization problems are expressed in a generic way,

see Section IV-B2 and IV-B3, and can thus be applied to

various optimization functions. On the other hand, we provide

a method to find one optimal solution, and the planning-based

approach returns the entire Pareto frontier. While our main

concern is to extract relevant attack and defense strategies from

an industrially-relevant model, in the planning-based setting

such strategies are given. In ADTrees, the subtrees rooted

in a node belonging to one of the actors can be attached to

any node of the other actor, including its refined nodes. The

countermeasures may also be refined and counterattacked. In

addition, a cloned defense may impact several attacks at once.

This implies that a thorough analysis of the entire tree is

necessary to identify the defense strategies countering a given

attack strategy. This is not the case in [34], [35], [36], where

defender’s actions mitigate directly the actions of the attacker

and which are limited to one level exchange between an action

and a counteraction, i.e., arbitrarily long chains of attacker and

defender exchanges are not taken into account. Finally, the

planning-based approaches operate on a network infrastructure

model, similar to an attack graph. It is however important to

note that attack graphs are conceptually different from attack

tree-based models: the former represent possible system states

(nodes) and their modifications due to the attacker’s actions

(transitions), while the latter focus on the refinement of an

actor’s (attacker and/or defender) goal into basic actions. The

edges in an attack(–defense) tree do not correspond to the

actions of the actors and there is no temporal aspect between

the children and its parent node, as in the case of attack graphs.

VII. CONCLUSION

The main goal of the work presented in this paper was

to tackle the issue of determining optimal sets of counter-

measures in attack–defense scenarios modeled with ADTrees.

To this end, we developed a novel method for extracting

rational behavior of the actors from ADTrees possibly con-

taining clones and countermeasures against countermeasures.

We illustrated how the information stored in the resulting

defense semantics can be employed for formulating numerous

optimization problems in terms of (stochastic) integer linear

programming.

By basing our framework on ADTrees – a derivative of

attack trees that security experts are already familiar with –

we expect its smooth acceptance by the potential end-users.

To this end, we also implemented our solution in a prototype

tool, which helped us to validate its practical applicability.

Despite a promising running time of our tool, the approach

still leaves room for improvement, especially w.r.t. the size
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of the defense semantics. It would be worthwhile to study

possible ways of increasing the efficiency of our framework,

perhaps by means of developing methods for approximating

the defense semantics, i.e., creating its smaller variants without

significant loss in the information stored.

Recently proposed approaches to address optimization prob-

lems and based on Stackelberg planning seem to enjoy very

good performance. An interesting direction to investigate

would be to devise a method of translating an ADTree in a

format suitable for planning, and study how the efficiency of

the two approaches compares on real-life ADTrees.
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