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Abstract—The rise of contactless and wireless devices such as
mobile phones and RFID chips justifies significant concerns over
privacy, and calls for communication protocols that ensure some
form of unlinkability. Formally specifying this property is difficult
and context-dependent, and analysing it is very complex; as is
common with security protocols, several incorrect unlinkability
claims can be found in the literature. Formal verification is
therefore desirable, but current techniques are not sufficient
to directly analyse unlinkability. In [21], two conditions have
been identified that imply unlinkability and can be automatically
verified. That work, however, only considers a restricted class
of protocols. We adapt their formal definition as well as their
proof method to the common setting of RFID authentication
protocols, where readers access a central database of authorised
users. Moreover, we also consider protocols where readers may
update their database, and tags may also carry a mutable state.
We propose sufficient conditions to ensure unlinkability, find new
attacks, and obtain new proofs of unlinkability using Tamarin to
establish our sufficient conditions.

I. INTRODUCTION

In our societies, practically everybody carries digital devices

whose communications may happen, unnoticed, at any time.

While most of these communications rely on cryptography to

ensure secrecy or authenticity, little is done to protect the user’s

privacy. Contactless cards and cell phones reveal identities in

clear [30], [31], and several traceability attacks are available

even when anonymity is ensured [5], [6], [21], [13]. It has

thus become easy to track individuals through their personal

devices. To avoid such threats to privacy, we need protocols

that ensure unlinkability [22]: an outside observer must not

be able to tell whether two uses of the protocol are related or

not. Privacy concerns and the need for unlinkability are slowly

being accepted by the industry, e.g. the 5G PPP consortium [3].

Designing unlinkable protocols does not require cutting-

edge cryptography, but it is a very difficult task. As is generally

true of security protocols, defending against an arbitrary active

attacker involves too many details that are easily overlooked.

History has told us that formal methods are very useful in that

domain, both to find attacks and to obtain security proofs that

can be trusted. This is particularly true with unlinkability, for

several reasons. First, the informal notion of unlinkability does

not translate to a single formal definition. Several definitions
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of unlinkability have been proposed, e.g. [34], [23], [32], [5],

[15], [16], [21]: leaving aside the different formal models,

these definitions provide varying degrees of security, corre-

sponding to different attack scenarios. Given a protocol with

some intended use case, it is not immediately obvious which

definition provides strong enough guarantees. Second, most

definitions of unlinkability rely on some form of behavioural

equivalence, which makes proofs even more difficult — this is

a general problem when dealing with privacy notions, which

has motivated a recent alternative approach which can avoid

equivalences in some cases, not including unlinkability so

far [28]. Proofs of equivalences are cumbersome, and we

believe that they cannot realistically be carried out in details

by hand. Regarding mechanisation, several mature tools are

available for analysing trace properties such as secrecy or

authentication: for instance, ProVerif [11], [1], the Avantssar

platform [8] and Tamarin [26], [2] are very successful. How-

ever, even if some of these tools have been extended to support

equivalences, they remain limited. Specifically, ProVerif [12]

and Tamarin [10] can only prove very restricted forms of

equivalences, called diff-equivalences, which are too limiting

for unlinkability [21]. All these reasons explain why there

are currently only few formal proofs of unlinkability. For

instance, we may note the manual but very detailed proof

of unlinkability for a variant of AKA by Koutsos [24] and

the mechanised proofs of e-passport and RFID protocols by

Hirschi et al. [21] using ProVerif. Both of these works have

lead to the discovery of new attacks on protocols that were

previously claimed unlinkable.

Given the current impossibility and certain difficulty of di-

rectly verifying unlinkability, [21] adopted an approach based

on sufficient conditions. The authors identify two conditions

that correspond to two broad classes of attacks on unlinkabil-

ity, and show that these two conditions imply unlinkability.

Moreover, they show that the conditions can be verified

directly using e.g. ProVerif, which they successfully use on

several case studies. Let us briefly describe these conditions.

First, frame opacity states that, for every execution of the

protocol against an active adversary, relations between mes-

sages never leak information about the involved agents. This

property is expressed using a notion of message idealisation,

and can be verified using (an extension of) ProVerif’s diff-

equivalence. Then, well-authentication states that, whenever

the outcome of a conditional is positive, the corresponding

agent is having an honest interaction with a counterpart of
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the expected identity. This ensures that the attacker cannot

learn anything about identities by (indirectly) observing the

outcome of conditionals. In practice, it is easy to verify well-

authentication as it is a traditional correspondence property.

The main limitation of the work of [21] is that it does not

cover stateful protocols, which is important for two reasons.

First, many authentication protocols involve a database ac-

cessed by readers to check the credentials of an RFID device

(aka. tag). In its simplest form, this global state is monotonic,

i.e. database entries are never modified nor removed. Second,

the secret shared by each tag with the readers is often updated

to achieve forward privacy. Analysing protocols with such non-

monotonic state is notoriously difficult. Whereas Tamarin has

been designed to support stateful protocols from the beginning,

there have been several attempts to add global states to

ProVerif and other tools, e.g. StatVerif [7], Set-Pi [14], AIF-

ω [27]. The most recent one, GSVerif [17], enriches ProVerif

models to achieve better precision, which leads to several

successes on trace properties.

Contributions and outline. In this paper, we revisit the work

of [21] with a focus on protocols where the readers rely on a

global database and each tag carries a local state. This setting

is formally described in Section II. We show in Section III

that existing notions of unlinkability are inadequate for our

protocols, even when tags do not update their state, and pro-

pose a definition that precisely reflects the intended use case.

Since the direct verification of unlinkability with available

tools remains out of reach, we adapt the method of [21]

in Section IV. In particular, we design a third condition to

obtain sufficient conditions for our definition of unlinkability.

We discuss in Section V how these three conditions can be

mechanically verified using Tamarin [26], [2], and present case

studies in Section VI.

Before entering into the formal details, let us briefly

comment on our sufficient conditions. First, frame opac-

ity is directly inherited from [21], and we also verify it

as a diff-equivalence, although using Tamarin rather than

ProVerif, with some manual guidance or pre-processing for

most cases. Well-authentication is also inherited from [21],

with a minor technical difference. However, it is important

to observe that, in the stateless setting of [21], the converse

of well-authentication was obvious: honest interactions lead

to successful conditionals. The situation changes in a setting

where the tags’ states may evolve, possibly desynchronise

with the readers’ database, with an impact on the outcome

of future honest interactions. This leads to our new condition,

no desynchronisation, which requires that an honest interaction

between a tag and a reader cannot fail, i.e. the outcome of its

conditionals is always positive.

To illustrate how a desynchronisation can lead to an attack

on unlinkability, let us consider a simple protocol between tags

and readers. Each tag carries a state kT , initialised with some k

that is also stored as a new entry in the readers’ database.

The protocol consists of a single message from the tag to the

reader, which is a hash of the tag’s state, written g(kT ). When

receiving an input, the reader checks that it matches g(kR)
for a kR in its database. At the end of the session, tag and

reader update their state by applying another hash function h

to it: kT ← h(kT ) and kR ← h(kR). This protocol is easily

desynchronised: an attacker could intercept the first output of

a tag, which nevertheless updates its state, rendering all future

interactions with readers unsuccessful since no state in the

database will match the updated state of the tag. Once a tag

has been desynchronised, an honest session fails if, and only

if, it involves that tag: this is a failure of unlinkability.

II. MODEL FOR PROTOCOLS

We model security protocols in the symbolic model with

a process algebra inspired from the applied pi calculus [4].

Participants are represented by processes while messages

exchanged between participants are represented by terms.

We consider a specific class of protocols: stateful 2-party

protocols between a tag and a reader. In order to model the

stateful nature of these protocols, we assume that each tag

has a memory cell to store the successive values of its state,

whereas the readers have access to a global database.

A. Term algebra

We assume an infinite set N of names used to represent

atomic private data such as keys, or nonces; and two infinite

and disjoint sets of variables X and W . Variables in X are

used to refer e.g. to input messages and variables in W ,

called handles, are used as pointers to messages learned by

the attacker. We assume a signature Σ, i.e. a set of function

symbols, split into constructors and destructors: Σ = Σc ⊔Σd.

We note T (F ,D) the set of terms built from elements of

the set of initial data D by applying function symbols in

the signature F . We refer to elements of T (Σc,N ∪ X) as

constructor terms. We define vars(t) as the set of variables

that occur in a term t ∈ T (Σ,N ∪ X) and call message a

constructor term u that is ground, i.e. such that vars(u) = ∅.

We use the vector notation (for example x) to denote a

(possibly empty) sequence. The domain of a substitution σ

is noted dom(σ), and its application to a term t is noted tσ.

The positions of a term are defined as usual.

We split the signature Σ into two sets, Σpub and Σpriv,

to distinguish function symbols that are public (available to

the attacker) from others that are private. A computation

performed by the attacker, modelled by a term in T (Σpub,W),
is called a recipe. Our attacker cannot generate fresh names,

but we may assume instead an infinite set of public constants

available to the attacker in the set Σc ∩Σpub.

Example 1: Let ΣBH = {h, ⟨⟩,proj1,proj2, eq,ok, error}.
The function symbol h represents a hash function of arity 2.

We model the pairing function with symbol ⟨⟩ of arity 2, and

projections with proj1/proj2 of arity 1. The binary symbol eq

is used to model equality tests. Finally, symbols ok and error

of arity 0 model public constants. All these function symbols

are public. Constructors are given by ΣBH
c = {h, ⟨⟩,ok, error},

and destructors by ΣBH
d = {proj1,proj2, eq}.
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In order to provide a meaning to constructor symbols,

we equip constructor terms with an equational theory. We

assume a set of equations E over T (Σc,X) and define =E
as the smallest congruence containing E that is closed under

substitutions and under bijective renaming.

Example 2: Consider Σ⊕ = Σ⊕c = {⊕,0} where ⊕ is

binary and 0 is a constant. The standard equational theory E⊕
modelling the exclusive or operator is the following:

x⊕ (y ⊕ z) = (x⊕ y)⊕ z x⊕ y = y ⊕ x

x⊕ x = 0 x⊕ 0 = x
For instance, with a, b ∈ N , we have that a⊕ (a⊕ b) =E⊕ b.

Then, we give a meaning to destructors through an ordered

rewrite system, i.e. an ordered set of rules g(t1, . . . , tn) → t

where g is a destructor and t, t1, . . . , tn are constructor terms.

A ground term u can be rewritten into v if there is a position p

in u, a rewrite rule g(t1, . . . , tn) → t and a substitution θ

from variables to messages such that u∣p = g(t′1, . . . , t
′
n),

t′1 =E t1θ, . . . , t
′
n =E tnθ and v =E u[tθ]p (i.e. u in which

the subterm at position p has been replaced by tθ). In the

case where more than one rule may be applied at position p,

only the first such rule can be effectively used. Given a ground

term u, it may be possible to rewrite it (in an arbitrary number

of steps) into a message: in that case, this message is noted u⇓.
We write u� when no such message exists, and say that the

computation fails.

Example 3: Going back to Example 1, we consider the

following rules to represent the properties of symbols in ΣBH
d :

proj1(⟨x1, x2⟩)→ x1 proj2(⟨x1, x2⟩)→ x2 eq(x,x) → ok

When u, v are messages, eq(u, v)� if, and only if, u ≠E v.

B. Process algebra

We consider a set C of channel names assumed to be public.

We also consider an infinite set R of references to represent

memory cell addresses of tags. We assume that R and N (the

set of names defined in Section II-A) are disjoint.

Protocols will be modelled as processes given by the

grammar in Figure 1. We will not comment on the stan-

dard constructs of this grammar (i.e. name restriction, input,

output, parallel). The process P ;Q represents the sequential

composition of processes P and Q and will only have a

meaningful semantics under some conditions on P (this will

be detailed later on). The replication !P can be understood as

the infinite parallel composition P ∣ (P ∣ (P ∣ . . .)) while the

repetition

!

P corresponds to an infinite sequential composition

P ; (P ; (P ; . . .)). The process let x = t in P else Q (where

x and t are two sequences of the same length, respectively

containing variables and terms) combines computations with a

conditional: it attempts to evaluate t, executes P with x bound

to the resulting messages upon success, and Q otherwise1.

Next, we have constructs for dealing with memory cells,

used by tags: new r.P introduces a new cell with undefined

contents before executing P , where get and set constructs

1The use of sequences x and t here is superfluous in terms of expres-
siveness but allows for a more convenient definition of our notion of well-
authentication.

may be used to respectively lookup or update the contents

of r. Finally, two constructs model the database shared by all

readers: insert to add a value to the database, and lookup for

both looking up and updating the database. More specifically,

lookup y such that x = t, y′ = t′ in P else Q attempts to find

some value v in the database such that t{y ↦ v} and t′{y ↦ v}
evaluate successfully to w and v′ respectively; upon success it

replaces v with v′ in the database and executes P with y, y′, x

bound to v, v′,w; otherwise, it executes Q.

The constructs in and get (resp. let) bind variable x (resp. x)

in their first sub-process. The construct lookup binds y in

t, t′ and y, y′, x in its first sub-process. The free variables

fv(P ) of a process P are defined accordingly. We also define

fn(P ) as the set of names occurring in P not bound by a new

construct, and similarly for free references fref (P ). Processes

are identified modulo α-renaming for bound variables, names

and references. A process P is closed when fv(P ) = ∅.

Example 4: As a running example, we consider the Basic

Hash protocol as described in [15]. Each tag stores a secret

key that is never updated, and the readers have access to a

database containing all these keys. The protocol is as follows:

T → R ∶ ⟨nT ,h(k,nT )⟩

where nT is a fresh nonce and k is the secret key.

When receiving a message, the reader checks that it is a

pair whose second element is a hash of one of the keys from

the database, using the first element of the pair as hashing key.

The protocol can be modelled in our syntax by:

PBH = (!R) ∣ (!new k.new r.set(r, k).insert(k).
!

newnT .T )

T = get(r, y).out(cT , ⟨nT ,h(y,nT )⟩)
R = in(cT , z).

lookup y such that x = eq(proj2(z),h(y,proj1(z)))),
y′ = y in out(cR,ok)

else out(cR, error).

C. Semantics

The operational semantics of processes is given by a labelled

transition system over configurations (denoted by K) which

are triplets (P ;φ;S) where:

● P is a multiset of closed processes where null processes

are implicitly removed;

● φ = {w1 ↦ u1, . . . ,wn ↦ un} is a frame representing

the knowledge of the adversary, i.e. a substitution where

w1, . . . ,wn are handles and u1, . . . , un are messages;

● S = (ST ,SR) is a store split into two parts:

– ST is a substitution mapping references to messages,

representing the current contents of memory cells,

such that fref (P) ⊆ dom(ST );
– SR is a set of messages representing the global

database shared by the readers.

We note store(K) the store of a configuration K . We

sometimes use P as a configuration; it stands for (P ;∅;∅).
The operational semantics of processes is given by labelled

transitions K
α
Ð→ K ′, where K and K ′ are configurations

and α is an action of the form in(c,R), out(c,w), τ , τabort,
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P,Q ∶= 0 null process

∣ newn.P name restriction n ∈ N
∣ new r.P reference restriction r ∈R
∣ in(c, x).P input c ∈ C, x ∈ X
∣ out(c, u).P output c ∈ C, u ∈ T (Σc,N ∪X )
∣ let x = t in P else Q evaluation x ∈ X k, t ∈ T (Σ,N ∪X )k

∣ get(r, x).P memory cell lookup r ∈R, x ∈ X
∣ set(r, v).P memory cell insertion r ∈R, v ∈ T (Σc,N ∪X )
∣ lookup y such that x = t, y′ = t′ in P else Q database test and update (y, y′, x) ∈ X k+2, and (t′, t) ∈ T (Σ,N ∪X )k+1

∣ insert(v).P database insertion v ∈ T (Σc,N ∪X )

∣ (P ∣ Q) parallel composition

∣ !P replication

∣ P ;Q sequence

∣

!

P repetition

Fig. 1. Syntax of processes

τelse or τthen. The definition of these transitions is given in

Figure 2. In that figure we refer to the free names of frames

and stores, which are defined as expected: fn(φ) (resp. fn(S))
is the set of names appearing in the messages of φ (resp. S).

Rule IN allows the attacker to send on channel c a message

u, provided that it is the result of a computation, modelled

by R, that applies public function symbols to messages from

the frame, which models the attacker’s knowledge. Rule OUT

corresponds to the output of a term, that is added to the frame

(and thus to the attacker’s knowledge). Rules NEW-N and

NEW-R are standard rules for restrictions; note that alpha-

renaming can always be applied to obtain the associated fresh-

ness conditions. Rules LET-THEN and LET-ELSE correspond

to the evaluation of a sequence of terms t. In case of success,

i.e. if there exists some sequence of messages u such that

u = t⇓, then variables x are bound to those messages and the

process P is executed. In case of failure, the process Q is

executed.

Rules INSERT, UPDATE-THEN and UPDATE-ELSE define

transitions for operations on the store. By definition of config-

urations, fref (P) ⊆ dom(ST ), hence get and set can only be

performed on a memory cell r after it has been created with

the rule NEW-R. Note that we require v to be a message in

rule SET whereas, in the syntax used to model protocols, we

only require that terms occurring at these positions are (not

necessarily ground) constructor terms. This difference is due

to the fact that we consider closed processes in the operational

semantics: by the time a set(r, v) is executed, all variables of v

will have been bound to messages, turning the constructor term

into a message itself.

We finally describe rules dealing with sequential composi-

tion and repetition. As in [21], we make use in rule SEQ of

a simplification relation ↝ to move sequential compositions

above most other constructs, so as to be able to execute them.

This simplification relation is defined in fig. 3. It ensures

that, whenever P is not a parallel composition, replication

or repetition, we have P ;Q ↝ R for some R that is not a

sequence. Thus sequences and repetitions are only meaningful

for this class of processes, which is limited but sufficient for

our purposes. We also consider a rule ABORT to model the

possibility for the attacker to interrupt a tag session at any

time to start a new one.

Example 5: Following Example 4 we have:

(PBH;∅;∅)
tr
Ð→ (PBH ∪ {

!

newnT .T {r ↦ r′}};φ0;S0)

with PBH = {!R, !new k.new r.set(r, k).insert(k).

!

newnT .T },
and for arbitrary names k′ ≠ n′T , handles w0 ≠ w1 and

reference r′:

● tr = τ9.out(cT ,w0).in(cT ,w0).τthen.out(cR,w1);
● φ0 = {w0 ↦ ⟨n

′
T ,h(k

′, n′T )⟩,w1 ↦ ok};
● S0 = ({r

′ ↦ k′},{k′}).

D. Trace equivalence

We define here the notion of trace equivalence on which

will be based our definition of unlinkability. Intuitively, two

processes are trace equivalent if for each trace of one process,

there is an indistinguishable trace of the other process. To

define this formally, we first introduce static equivalence

between frames. Intuitively, an attacker can distinguish two

frames φ and φ′ if there exists a test that fails in φ and succeeds

in φ′ (or the contrary).

Definition 1: A frame φ is statically included in φ′ when

dom(φ) = dom(φ′) and:

● for any recipe R such that Rφ⇓ is a message, we have

that Rφ′⇓ is a message;

● for any recipes R1,R2 such that R1φ⇓, R2φ⇓ are mes-

sages, and R1φ⇓ =E R2φ⇓, we have R1φ
′⇓ =E R2φ

′⇓.

Two frames φ and φ′ are in static equivalence, written φ ∼ φ′,
if the two static inclusions hold.

Example 6: As an illustrative example, we consider the

signature given in Example 2 and the following frames:

● φdiff = {w1 ↦ id1 ⊕ n1,w2 ↦ id2 ⊕ n2}, and

● φsame = {w1 ↦ id0 ⊕ n1,w2 ↦ id0 ⊕ n2}
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IN (in(c, x).P ∪ P ;φ;S)
in(c,R)
ÐÐÐÐ→ (P{x↦ u} ∪P ;φ;S)

where R is a recipe such that u = Rφ⇓ for some message u

OUT (out(c, u).P ∪P ;φ;S)
out(c,w)
ÐÐÐÐ→ (P ∪P ;φ ∪ {w ↦ u};S)

with u a message and w a fresh handle from W

NEW-N (newn.P ∪P ;φ;S)
τ
Ð→ (P ∪P ;φ;S) where w.l.o.g. n /∈ fn(P , φ,S)

NEW-R (new r.P ∪P ;φ; (ST ,SR))
τ
Ð→ (P ∪ P ;φ; (ST ∪ {r ↦⊥},SR)) where w.l.o.g. r /∈ dom(ST )

LET-THEN (let x = t in P else Q ∪P ;φ;S)
τthen
ÐÐ→ (P{x↦ u} ∪P ;φ;S) where u = t⇓

LET-ELSE (let x = t in P else Q ∪P ;φ;S)
τelse
ÐÐ→ (Q ∪P ;φ;S) when t�

GET (get(r, y).P ∪ P ;φ; (ST ,SR))
τ
Ð→ (P{y ↦ ST (r)} ∪P ;φ; (ST ,SR))

SET (set(r, v).P ∪ P ;φ; (ST ,SR))
τ
Ð→ (P ∪ P ;φ; (ST [r ← v],SR)) with v a message

INSERT (insert(v).P ∪P ;φ; (ST ,SR))
τ
Ð→ (P ∪P ;φ; (ST ,SR ∪ {v})) with v a message

UPDATE-THEN (lookup y such that x = t, y′ = t′ in P else Q ∪ P ;φ; (ST ,SR))
τthen
ÐÐ→ (P{y ↦ v, y′ ↦ v′, x↦ w} ∪ P ;φ; (ST , (SR ∖ {v})∪ {v

′}))
when v ∈ SR is such that w = t{y ↦ v}⇓ and v′ = t′{y ↦ v}⇓

UPDATE-ELSE (lookup y such that x = t, y′ = t′ in P else Q ∪ P ;φ;S)
τelse
ÐÐ→ (Q ∪ P ;φ;S)

when for all v ∈ SR, we have that t{y ↦ v}� or t′{y ↦ v}�

PAR ({P1 ∣ P2} ∪P ;φ;S)
τ
Ð→ ({P1, P2} ∪P ;φ;S)

REPLICATION (!P ∪P ;φ;S)
τ
Ð→ (P ∪ !P ∪P ;φ;S)

REPETITION (

!

P ∪P ;φ;S)
τ
Ð→ ({P ;

!

P} ∪P ;φ;S)

SEQ (P ∪P ;φ;S)
α
Ð→ (P ′ ∪P ;φ′;S′) if P ↝ Q and (Q ∪P ;φ;S)

α
Ð→ (P ′ ∪P ;φ′;S′)

ABORT ((P ;Q) ∪P ;φ;S)
τabort
ÐÐ→ (Q ∪ P ;φ;S)

Fig. 2. Semantics for processes

0;Q ↝ Q

(in(c, x).P );Q ↝ in(c, x).(P ;Q) when x ∉ fv(Q)
(out(c, u).P );Q ↝ out(c, u).(P ;Q)
(newn.P );Q ↝ newn.(P ;Q) when n /∈ fn(Q)
(new r.P );Q ↝ new r.(P ;Q) when r /∈ fref (Q)

(let x = t in P ′ else P ′′);Q ↝ let x = t in (P ′;Q) else (P ′′;Q) when x ∩ fv(Q) = ∅
(lookup y such that y′, x = t in P ′ else P ′′);Q ↝ lookup y such that y′, x = t in (P ′;Q) else (P ′′;Q)

when {y, y′, x} ∩ fv(Q) = ∅
(insert(v).P );Q ↝ insert(v).(P ;Q)
(get(r, y).P );Q ↝ get(r, y).(P ;Q) when y /∈ fv(Q)
(set(r, v).P );Q ↝ set(r, v).(P ;Q)

Fig. 3. Sequence simplification rules

where n1, n2, id0, id1, id2 ∈ N . We have that φdiff ∼ φsame.

Assuming now that n1 and n2 are given to the attacker through

φ0 = {w3 ↦ n1,w4 ↦ n2}, we have that: φ0∪φsame /∼ φ0∪φdiff .

Indeed, consider R1 = w1 ⊕ w3 and R2 = w2 ⊕ w4. The test

R1

?
= R2 holds in φ0 ∪ φsame whereas it does not hold in the

frame φ0 ∪ φdiff . Knowing n1 and n2, the attacker is able to

tell whether w1 and w2 are issued from the same tag.

In order to define trace equivalence, we first define

trace(K) for a configuration K = (P ;φ;S):

trace(K) = { (tr, φ′) ∣ (P ;φ;S)
tr
Ð→ (P ′;φ′;S′)

for some configuration (P ′;φ′;S′) }.

Given a trace tr, obs(tr) is the subsequence of tr obtained

by erasing unobservable actions, i.e. τ , τabort, τthen and τelse.

Definition 2: Let K and K ′ be two configurations. We say

that K is trace included in K ′, written K ⊑K ′, when, for any

(tr, φ) ∈ trace(K) there exists (tr′, φ′) ∈ trace(K ′) such that
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obs(tr′) = obs(tr) and φ ∼ φ′. They are in trace equivalence,

written K ≈K ′, when K ⊑K ′ and K ′ ⊑K .

E. Our class of protocols

In this section, we formally define the class of protocols we

consider in this paper, i.e. stateful 2-party protocols where each

role is a sequence of actions, without any parallel composition.

We consider a set L of labels (denoted by ℓ) used to decorate

output actions, in order to identify which outputs come from

a same syntactic action. We fix two channels cT ≠ cR in order

to identify the role underlying a given action.

Definition 3: A tag role manipulating reference r0 is a

closed process T obtained using the following grammar and

such that fref (T ) ⊆ {r0}:

T,T1, T2 ∶∶= 0 ∣ in(cR, x).T ∣ ℓ ∶ out(cT , u).T
∣ let x = t in T1 else T2

∣ get(r0, y).T ∣ set(r0, v).T

A reader role is a closed process R obtained from the grammar

below:

R,R1,R2 ∶∶= 0 ∣ in(cT , x).R ∣ ℓ ∶ out(cR, u).R
∣ let x = t in R1 else R2

∣ lookup y such that x = t, y′ = t′ in R1

else R2

A tag role is allowed to access its memory cell r0, whereas

a reader role manipulates the database through the lookup

construct. A protocol is then given by tag and reader roles,

together with some data to initialise their memory.

Definition 4: A protocol Π is a tuple (initT , initR, T,R)
where initT , initR are messages, T is a tag role manipulating

reference r, and R is a reader role. We assume that no output

label occurs twice in T and R. We define MΠ as

(! new k.new r.set(r, initT ).insert(initR).

!

newnT .T )
∣ (! newnR.R)

where k = fn(initT , initR), nT = fn(T ), and nR = fn(R).
The session parameters nT (resp. nR) occurring in T

(resp. R) correspond to secrets that are known only by the tag

(resp. reader) and are generated fresh for each session. This is

without loss of generality since arbitrary secrets can be shared

via the initialisation parameters initT and initR. The process

MΠ corresponds to a real system using protocol Π, where an

arbitrary number of tags can be spawned. For each new tag,

fresh copies of r and k are generated to initialise the reference

and an entry is inserted in the database. Note that we consider

sequential sessions for a given tag in order to avoid concurrent

accesses to memory cells.

Example 7: Continuing Example 4, T and R correspond

respectively to tag and reader roles, up to the additon of

distinct labels ℓ0, ℓ1 and ℓ2 to decorate their outputs. Then

ΠBH = (k, k, T,R) is a protocol according to our definition

and the process PBH of Example 4 is MΠBH
.

III. MODELLING UNLINKABILITY

We first recall some earlier definitions of unlinkability

before giving ours and discussing how and why our definition

differs from earlier ones.

Intuitively, unlinkability attempts to express that an attacker

cannot learn anything about the relationships between several

uses of the protocols, in the spirit of the ISO definition [22].

A. Related work

a) Weak and strong unlinkability: A formal notion of

weak unlinkability has been proposed in [5] as a very general

model of unlinkability in the framework of the applied pi-

calculus. It is similar in spirit to the untraceability notion

of [32]. Intuitively, it requires that if two actions are played

by the same tag in a trace, there exists an indistinguishable

trace where the two actions are played by different tags.

In [5], another notion is introduced, strong unlinkability,

which the authors view as being unrealistically strong but

more amenable to mechanised verification. Importantly, strong

unlinkability is defined in terms of observational equivalence,

a very strong equivalence on processes whose failure often

does not correspond to attacks.

b) Taking into account the reader in the model: Brusò et

al. [15] investigate unlinkability for a simple class of protocols.

In their model, the reader process is explicitly set to 0, which

is possible because tag roles consist of a single output. Even

in such a simple situation, this is abusive: we will illustrate

this on the OSK protocol [29] in Example 9. This protocol

is unlinkable according to [15] but we show a legitimate

linkability attack that breaks our notion of unlinkability.

c) Different ways of modelling the reader: A more

recent definition of unlinkability, introduced in [21], involves

identity-specific readers, i.e. each reader session can only in-

teract successfully with sessions of a specific tag identity. This

can be realistic for some protocols, e.g. e-passport protocols.

However, for the protocols considered here, where readers

access a global database, considering a generic reader role

makes more sense. In fact, we will show that it avoids false

attacks in Example 10.

B. Our definition of unlikability

On top of this historical buildup, we now propose a defi-

nition of unlinkability that is relevant in our context, before

discussing it in light of previous definitions.

We define unlinkability as the impossibility for an outside

observer to distinguish between two systems: the real system

where each tag can play an arbitrary number of sessions

for each identity, and an ideal system where each tag can

play only one session for each identity. We express this

indistinguishability in terms of trace equivalence.

Definition 5: Let Π = (initT , initR, T,R) be a protocol. We

define SΠ as the process obtained fromMΠ by removing the

repetition operator

!

. We say that Π is unlinkable ifMΠ ≈ SΠ.

Note that, even in the single session system SΠ, multiple

reader sessions may access the database entry corresponding

to a same identity.
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Example 8: Continuing Example 7, unlinkability is ex-

pressed through the following equivalence:

(! new k.new r.set(r, k).insert(k).

!

newnT .T ) ∣ !R

≈ (! new k.new r.set(r, k).insert(k).newnT .T ) ∣ !R

Showing that such an equivalence holds is non trivial and is

actually the main purpose of this work.

C. Comparison with previous definitions

a) Weak and strong unlinkability: It can be shown that

the weak unlinkability of [5] is strictly weaker than our notion

of unlinkability, and misses potential attacks; see [9, Appendix

A-A] for details. In fact, our definition of unlinkability is

closer to the notion of strong unlinkability introduced in [5],

which the authors view as being unrealistically strong but more

amenable to mechanised verification.

In contrast, our definition relies on the more realistic notion

of trace equivalence, as is now common [21], [18]. Unlike [5],

we view our definition of unlinkability as being realistic (it

precisely captures linkability attacks) but not amenable to

verification (there are no tools for proving trace equivalences

with unbounded sessions).

b) Taking into account the reader in the model: We

illustrate with the OSK protocol [29] that our definition of

unlinkability is able to capture a legitimate linkability attack

that would be missed by the notion defined in [15].

Example 9 (OSK protocol): Let Π = (k, k, T,R) where:

T = get(r, y).set(r,hash(y)).ℓ0 ∶ out(cT ,g(y))
R = in(cT , x).lookup y such that

xtest = TestOSK(y, x), y
′ = UpdateOSK(x) in

ℓ1 ∶ out(cR,ok) else ℓ2 ∶ out(cR, error)

with the following infinite set of rewriting rules:

● TestOSK(x,g(hashn(x)))→ ok with n ≥ 0; and

● UpdateOSK(g(y))→ hash(y).

Each tag has a secret state, whose initial value is stored in

the reader’s database. The tag’s state is updated by applying

a hash function hash at each session. The reader expects a

message of the form g(hashn(x)) for some database entry

(to allow resynchronisations) and updates that entry with

hash
n+1(x) (to avoid replay attacks). This step is modelled

relying on the private function symbol UpdateOSK. We ex-

plicitly model the reader’s response using public constants ok

and error: this is important because in actual access control

scenarios, one often observes the outcome of the authentication

protocol, e.g. by observing whether a door opens.

The scenario described in Figure 4 is a linkability attack

w.r.t. our definition. The first tag’s output is intercepted by the

attacker in order to be replayed after a successful interaction

between the tag and the reader. This replayed message is

not accepted by the reader because the state contained in the

message is too old. This scenario shows that it is possible

to link two sessions of a same tag: a reader replies ok after

receiving a previously intercepted message if and only if this

tag has not interacted with the reader meanwhile.

r ← k

Tag

k ∈ DB

Reader

g(k)

r ← hash(k)
g(hash(k))

r ← hash2(k) remove k from DB

add hash
2(k) in DB

ok

g(k)

error

Fig. 4. Linkability attack for OSK protocol

c) Different ways of modelling the reader: The next ex-

ample protocol is linkable in the setting of [21] but unlinkable

according to our definition.

Example 10 (Basic Hash protocol): We go back to our

running example. Since the state is never updated, it is possible

to analyse the protocol in the setting of [21]. In that setting,

readers are identity-specific, and the scenario described in

Figure 5 is a linkability attack.

k1

Tag

k1

Reader

newnT

⟨nT ,h(k1, nT )⟩

ok

⟨nT ,h(k1, nT )⟩

ok

Fig. 5. Scenario with identity-specific readers of the Basic Hash protocol

In this scenario, the attacker replays a message and observes

the answer from the reader. That answer may be ok in the

multiple sessions system, where two readers can interact with

tags of identity k1, but not in the single session system. This

scenario does not correspond to an attack when considering

generic readers that would perform a database lookup to check

the tag’s output. Our notion of unlinkability closely models

this behaviour and does not suffer from this false attack.

Therefore, for protocols that can be modelled in the setting

of [21] (i.e. protocols without updates) our notion of unlinka-

bility does not imply the one of [21]. The converse implication,

however, holds; see [9, Appendix A-B] for details. Our notion

is thus strictly weaker and, in our opinion, more realistic for

the class of protocols that we consider.
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IV. A METHOD FOR ESTABLISHING UNLINKABILITY

As already mentionned, existing tools for verifying unlinka-

bility in the unbounded case (ProVerif, Tamarin) are based on

a notion of diff-equivalence and are unable to conclude even

for very simple protocols. We illustrate this systematic issue

with our running example, the Basic Hash protocol. We have

tried to check unlinkability on this example using ProVerif

and Tamarin and in both cases, the tool has returned a trace

which does not correspond to an attack.

In ProVerif, we model the database with a table and since

the tag performs only one action (an output), we can consider

tags in parallel. Then, in order to check the equivalence given

in Example 8, we write the following bi-process:

table keys(bitstring).

let T (k:bitstring,nT:bitstring) =

out(cT,(nT,h((k,nT)))).

let R =

in(cT, x:bitstring);

get keys(k) suchthat snd(x)=h((k,fst(x))) in

out(cR,ok).

process

(! R) |

! new k:bitstring;

! new kk:bitstring; insert keys(choice[k,kk]);

new nT:bitstring; T(choice[k,kk],nT)

On the left, an arbitrary number of tags with identity k

can each play many sessions. On the right, each new session

of T is launched with a fresh identity kk, i.e. each tag plays

a single session. The tool concludes that the equivalence

“cannot be proved” and shows an attack trace. This trace

involves a reader R and two tags T (choice[k, kk]) and

T (choice[k, kk′]). Assuming that the first tag performs its

output, the bi-frame will contain:

w1 → ⟨nT ,h(choice[k, kk], nT )⟩.

Then, the reader performs an input with w1 and looks up in

the table to find a key matching the received message. On the

left side of the bi-process, the table contains the keys k at line 1

and k at line 2. On the right side of the bi-process, the table

contains the keys kk at line 1 and kk′ at line 2. Therefore, the

test will succeed on the left side independently of the chosen

line, while the test fails on the right side when the reader

looks up at line 2. This false attack relies on the incorrect

assumption that the attacker is able to identify the line of the

database that is involved in the underlying execution.

The experiments we conducted in Tamarin lead to a similar

conclusion; more details may be found in our source code [9].

We now revisit the work of [21] in the context of stateful

protocols. We define next our three conditions: frame opacity,

well-authentication and no desynchronisation. In order to do

so, we first have to introduce annotations in our semantics.

A. Annotations

We distinguish two types of actions in protocol executions:

1) τ actions are used to create new agents (rules

NEW-N, NEW-R, PAR, REPLICATION, REPETITION,

SEQ, INSERT and SET for the initialisation) and will

not be annotated;

2) other actions are performed by already created agents

(rules IN, OUT, LET-THEN, LET-ELSE, UPDATE-THEN,

UPDATE-ELSE, ABORT, GET and SET when it corre-

sponds to an action from the tag) and will be annotated

accordingly.

Considering a protocol Π, we define a set A of annotations for

identitying the protocol’s agents. A tag is annotated T (r,nT )
where r is the reference and nT the session parameters for this

tag, and a reader is annotated R(nR) where nR are the session

parameters for this reader. The goal of those annotations is to

explicitly associate each action to the agent responsible for

it. We assume that nT ≠ ∅ and nR ≠ ∅ in order to uniquely

identify agents. Note that these session nonces do not have to

be useful in the role, so the assumption is not restrictive.

We are now able to define an annotated semantics, where

agents are annotated as explained above and actions coming

from the tag/reader roles are annotated with the annotation of

the agent performing this action. We will write ta to refer to

traces of the annotated semantics.

Example 11: We go back to our running example, consid-

ering the protocol of Example 5 with a session parameter nR

added for the reader role. The multiset PBH thus becomes:

{!newnR.R, !new k.new r.set(r, k).insert(k).

!

newnT .T }.

The annotated version of the execution given in Example 5

yields the following annotated trace ta, where k′, n′T and n′R
are fresh names, aT = T (r

′, n′T ) and aR = R(n
′
R):

ta = τ10.ℓ0 ∶ out(cT ,w0)[aT ].
in(cT ,w0)[aR].τthen[aR].ℓ1 ∶ out(cR,w1)[aR]

After the first τ actions, the annotated configuration is

(PBH ∪ {RσR[aR], T σT [aT ],

!

newnT .T {r ↦ r′}};∅;S0)
where:

● σT = {r ↦ r′, nT ↦ n′T }; σR = {nR ↦ n′R};
● S0 = ({r

′ ↦ k′},{k′}).

After ta, the configuration is the same as in Example 5: no

annotation remains since all agents have terminated.

B. Frame opacity

Intuitively, this condition aims to prevent attacks in which,

for some possible behaviour of the attacker, there exists a

relation between messages that leaks information about the

involved agents. Practically speaking, this condition requires

that any reachable frame must be statically equivalent to an

idealised frame that does not depend on identity parameters.

A very simple way to obtain an idealisation of a frame

is to replace each output message by a fresh nonce. In that

case, if the real frame and the idealised frame are statically

equivalent, it is obvious that the attacker cannot learn anything

by analysing the relations between the messages, since there

is no relation between disctinct fresh nonces. Nevertheless,

it is not satisfying because too restrictive as e.g. a pair is

distinguishable from a nonce.
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We will obtain idealised frames by replacing each output

message by a message built using constructors and fresh

nonces. The precise construction will depend on the specific

output, identified by its label ℓ. Formally, we consider a set of

name variables X n = {xn
1 , x

n
2 , . . .} ⊆ X that will refer to fresh

names used in the idealised frame. We also assume a fixed

but arbitrary idealisation operator ideal(⋅) ∶ L ↦ T (Σc,X
n).

This idealisation operator will have to be chosen as part of the

modelling such that frame opacity holds.

Definition 6: Let fr ∶ A×X n ↦N be an injective function

mapping, for each agent, name variables to names. We define

the idealised frame Φfr

ideal
(ta) associated to ta, as follows:

{w ↦ ideal(ℓ)σn} ∈ Φfr

ideal
(ta) ⇔ ℓ ∶ out(c,w)[a] ∈ ta

where σn(xn

j ) = fr(a,x
n

j ).

Example 12: Continuing Example 11, we consider the

following idealisation operator:

ℓ0 ↦ ⟨x
n
1 , x

n
2⟩, ℓ1 ↦ ok, ℓ2 ↦ error.

Let fr be an injective function such that fr(aT , x
n

i ) = n
T
i with

i ∈ {1,2}. We have Φfr

ideal
(ta) = {w0 ↦ ⟨n

T
1 , n

T
2 ⟩,w1 ↦ ok}.

The choice of fr in Φfr

ideal
(ta) is not important with respect

to static equivalence: we have Φfr1

ideal
(ta) ∼ Φfr2

ideal
(ta) for

any fr1 and fr2 [21]. We can thus often write Φideal(ta) instead

of Φfr

ideal
(ta), as in the definition of frame opacity given next.

Definition 7: The protocol Π ensures frame opacity

w.r.t. the idealisation operator ideal if for any execution

(MΠ;∅;S)
ta
Ð→ (Q;φ;S′) we have that Φideal(ta) ∼ φ.

Example 13: With the idealisation operator given in Exam-

ple 12, frame opacity holds for the Basic Hash protocol. This

can be established using the diff-equivalence of either ProVerif

or Tamarin. The intuition is that messages outputted by tags

are all different since a fresh nonce is used each time, and

an outside observer cannot distinguish a hash from a nonce.

More practical details will be given in Section VI.

As in [21], we can actually consider more complex and

powerful idealisation operators (see also [9, Appendix B-C]).

However, they are not needed to conclude on our case studies

presented in Section VI and we therefore chose to simplify

this notion for the sake of readability.

C. Well-authentication

The idea behind this second condition is to avoid that the

outcome of conditionals leaks information about identities to

the attacker. To do so, we require that whenever a conditional

(let or lookup) is positively evaluated, the corresponding agent

is having an honest interaction with another participant. In

practice, protocols often have some conditionals for which the

attacker already knows the outcome: these safe conditionals

can (and must) be excluded from our condition.

Definition 8: A conditional occurring in a role (tag or

reader) is said to be safe if it is of the form let x = t in P else Q

with t a sequence of T (Σpub,{x1, . . . , xn}∪ {u1, . . . , um})
∗,

where the xi are the variables bound by the inputs preceding

the conditional in the role, and the ui are the messages used

in the previous outputs of that role.

In particular, a lookup conditional is never safe.

In order to state our condition, we define the notion of

honest trace. Intuitively, it corresponds to a trace in which the

attacker does not interfere, except to simply forward messages

without modifying them.

Definition 9: A trace tr is honest for a

frame φ if τelse ∉ tr and obs(tr) is of the form

out(c,w0).in(c,R0).out(c
′,w1).in(c

′,R1).out(c,w2) . . .
where {c, c′} = {cT , cR} and such that

● each input is preceded by an output on the same channel,

and followed by an output on the other channel,

● Riφ⇓ =E wiφ for any action in( ,Ri) occurring in tr.

Note that τabort is allowed in an honest trace.

Definition 10: Two annotations a and a′ have an honest

interaction in (ta, φ) if the subsequence of ta that consists of

action of the form α[a] or α[a′] is honest for φ.

We are now able to state our condition.

Definition 11: The protocol Π is well-authenticating if for

any

MΠ

ta.τthen[a]
ÐÐÐÐÐ→ (Q;φ;S′)

either the last action corresponds to a safe conditional of T

or R, or there exists a′ such that the annotations a and a′ have

an honest interaction in (ta, φ).

Example 14: Our running example, the Basic Hash protocol,

is actually well-authenticating. More practical details on how

we prove it will be given in Section VI. The intuition is that

the only way for an attacker to build a message that would be

accepted by the reader is to replay a tag’s output (because the

key stored in the state remains secret). Thus, for any replayed

tag’s output, there exists a (real) tag with which the reader has

an honest interaction in the considered trace.

This example also shows that well-authentication only en-

codes a weak requirement of authentication protocols, as it

allows some replay attacks.

D. No desynchronisation

This third condition states that an honest interaction between

a tag and a reader cannot fail. The intuition is that, in case

a protocol does not correctly handle the situations where the

tag and the reader are desynchronised, it could happen that

an honest interaction does not pass successfully a conditional

because of a mismatch in the states values, thus leaking some

information to the attacker.

Definition 12: The protocol Π ensures that no desynchro-

nisation occurs if, for any MΠ

ta.τx[a]
ÐÐÐÐ→ (P ;φ;S′) where the

last action is performed by an unsafe conditional, we have: if

there exists a′ such that a and a′ have an honest interaction

in (ta, φ) then τx = τthen.

Example 15: No desynchronisation holds for the Basic

Hash protocol: since the database and references are never

updated, an honest interaction between a tag and reader can
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only result in a τthen. We discuss further the verification of no

desynchronisation in Section VI, notably covering the case of

protocols with updates.

E. Main result

Our main result establishes that the previous three condi-

tions are sufficient to ensure unlinkability.

Theorem 1: Let Π be a protocol together with an

idealisation operator ideal(.) for it, such that:

● Π ensures frame opacity w.r.t. to ideal;

● Π is well-authenticating; and

● Π ensures that no desynchronisation occurs.

We have that Π satisfies unlinkability.

To establish this result, we show that any execution ofMΠ

can be mimicked by an execution of SΠ leading to the same

observables. Roughly, we first show that MΠ and SΠ can

form a bi-process, putting the states apart, and then prove that

the two sides of this bi-process can evolve simultaneously:

in particular, the outcome of conditionals is the same on both

sides and frames are in static equivalence. Technically, a notion

of ground configuration [21] is used to put together MΠ

and SΠ as a bi-process. See [9, Appendix B] for details.

Let us sketch how our three conditions play a role in

showing that conditionals have the same outcome on both

sides of the bi-process. Suppose a conditional has a positive

outcome in an execution of MΠ. By well-authentication, it

must be the result of an honest interaction. Thanks to frame

opacity the relationships between recipes are still satisfied in

the execution of SΠ, and thus our honest interaction for MΠ

maps to an honest interaction for SΠ. We can finally use no

desynchronisation, which holds on SΠ, to conclude that the

outcome of the conditional will be positive in the execution

of SΠ. A similar reasoning allows us to conclude for a negative

outcome of a conditional, relying first on the no desynchro-

nisation condition for MΠ and then on well-authentication

for SΠ. Note that our two conditions are satisfied byMΠ and

thus SΠ as well since SΠ has less behaviours than MΠ.

The most striking difference between our result and the

one of [21], besides the modified definition of unlinkability, is

the introduction of the no desynchronisation condition. This

new condition is necessary to handle protocols with states: it

ensures that, in the end, the specific states of honest agents do

not impact the outcome of conditionals. There are more subtle

differences: for instance, our well-authentication condition is

more permissive than the one of [21], which features a further

constraint that becomes both useless and meaningless with our

generic readers.

In the stateless case [21], it can be shown that unlinkability

would systematically fail if expressed using bisimulation rather

than trace equivalence. When trying to mimick a multiple-

session execution on the single-session side, one has to look

forward in the trace to know which successful interactions

will actually happen. The situation is simpler in our case:

any new tag session on the multiple-session side must be

mimicked by a new identity on the single-session side, and

there is no question of which identities should be picked

by the reader sessions, as our readers are generic. As a

consequence, it should be possible to show that our conditions

actually imply a stronger notion of unlinkability where trace

equivalence is replaced by some form of bisimulation, or even

diff-equivalence. However, these equivalences would have to

be lax enough regarding states: as explained at the beginning of

this section, existing diff-equivalences cannot be used to prove

unlinkability; accordingly, the bi-processes we form in our

proof of Theorem 1 do not superpose the single- and multiple-

session states, but allow them to evolve independently.

V. TOWARDS AUTOMATION

Existing tools at our disposal for verifying our sufficient

conditions in the unbounded case are ProVerif [12], [1] and

Tamarin [10], [2]. In order to analyse our protocols of interest,

we need a tool that supports stateful protocols. Handling global

states is a known limitation of ProVerif. Our attempts to

use private channels to model memory cells have resulted

in non-termination issues. We have also experimented the

recent extension GSVerif [17], but failed again due to non-

termination [9].

On the other hand, Tamarin is naturally well-suited to

handle global states. Morever, unlike ProVerif, it supports the

XOR operator and provides an interactive mode that can be

used to complete the more difficult proofs. We thus chose

Tamarin to verify unlinkability of stateful protocols with our

method. Despite all these qualities, obtaining satisfying results

with Tamarin has required significant effort. We explain here

the main choices we made about how to encode the protocols

and our conditions.

A. Tamarin in a nutshell

We give here a brief introduction to the main features

of Tamarin, referring the reader to [2] for more details.

In Tamarin, security protocols and attackers are modelled

symbolically using multiset rewriting: a state of the system

is a multiset of facts, and transitions between states are given

by rules of the form l −[a]→ r where l and r are sequences

of facts and a is a sequence of labels. There are two types

of facts: linear facts are consumed by a rule while persistent

facts (written !F) can be consumed arbitrarily often, i.e. they

are never removed from the state once introduced.

Trace properties are expressed in a fragment of first-order

logic over labels, messages and timepoints. These formulas

are used as lemma statements to verify trace properties of the

modelled protocol. Lemmas may be proved automatically or

using an interactive mode where the user can manually guide

and inspect the proof. Some lemmas can be re-used as helpers

in the next proofs. Finally, the tool provides restrictions,

which are logical formulas constraining the set of traces to

be considered in the analysis.

In order to prove observational equivalence between two

transition systems, the two systems should be superposed into

a single model containing the diff operator, allowing different
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messages for the two systems but a shared structure for the

states and the transitions.

B. Well-authentication and no desynchronisation

We check well-authentication and no desynchronisation

within the same Tamarin file, i.e. using the same model of the

studied protocol. We comment on this shared model, before

discussing the encodings of our two conditions as lemmas.

For illustration purposes, we show next the model for our

running example, the Basic Hash protocol. We will give some

details about this implementation later on.

theory BasicHash_WA_ND

begin

functions: h/1, OK/0

/*************************************
PROTOCOL

*************************************/

rule InitReader:

[ Fr(˜sidR) ]

--[ NewReaderSession(˜sidR) ]->

[ Reader(˜sidR) ]

rule InitTagId:

[ Fr(˜k) ]

--[ NewId(˜k), InsertDB(˜k) ]->

[ !DB(˜k), !TagSession(˜k) ]

rule InitTagSession:

[ !TagSession(˜kT), Fr(˜sidT) ]

--[ NewTagSession(˜sidT,˜kT) ]->

[ Tag(˜sidT,˜kT) ]

/* READER */

rule R_in:

[ Reader(˜sidR), In(x) ]

--[ InR(˜sidR,x) ]->

[ Reader1(˜sidR,x) ]

rule R_test:

let x = <xnT,h(<kR,xnT>)> in

[ !DB(kR), Reader1(˜sidR,x) ]

--[ TestR(˜sidR), CompleteR(˜sidR) ]->

[ Out(OK) ]

/* TAG */

rule T_out:

let m = <˜nT,h(<kT,˜nT>)> in

[ Tag(˜sidT,kT), Fr(˜nT) ]

--[ PlayT(˜sidT,kT), OutT(˜sidT,kT,˜nT,m),

CompleteT(˜sidT) ]->

[ Out(m) ]

This model contains a few elements that are not strictly

necessary for illustrating the encoding of our conditions, but

which we systematically use in our models and thus take the

opportunity to present here. First, the sidT and sidR nonces

are added to all tag and reader roles as identifiers, even though

in this case nT could have been used to identify tags. Second,

the CompleteT and CompleteR labels are used in sanity

check lemmas (not shown here) to verify that our models can

execute properly. Finally, the PlayT label would be useful

to impose sequentiality on tag sessions using a restriction, for

protocols where tags perform more than a single output.

To model sequentiality of a tag’s successive sessions, we use

restrictions. More specifically, the transition rules modelling

our protocols allow many sessions of a given tag to run in

parallel but we then use restrictions to specify the set of

traces that Tamarin should actually consider when proving

our conditions, notably imposing sequentiality of a tag’s

sessions. This has proved to be helpful for the tool to conclude

automatically, instead of encoding directly the sequentiality in

the protocol’s workflow. Concretely, the sequential restriction

is written as follows, building on the systematic use of the

PlayT label in tag rules:

restriction seqSessionTag:

"not (Ex sidT1 sidT2 kT #i1 #i2 #i3.

PlayT(sidT1,kT)@i1 &

PlayT(sidT2,kT)@i2 &

PlayT(sidT1,kT)@i3 &

i1<i2 & i2<i3 &

not(sidT1=sidT2))"

We model the presence of a message x in the database

by a fact DB(x). When the reader performs a lookup in

the database, we consume the fact DB(x) that verifies the

conditional and we create a new fact DB(x′) where x′ is the

updated value of the state. When working with monotonic

states (i.e. never updated), it has proved useful to use persistent

facts !DB(x).
Our Tamarin files also feature intermediate lemmas express-

ing invariants of the protocol or secrecy of some data, marking

them as reusable to guide our proofs.

We pointed out in Section III-C that modelling error mes-

sages is important when verifying unlinkability because the

outcome of conditionals is often observable in real uses of

authentication protocols. However, error messages are not

always represented in our Tamarin models. Indeed, encod-

ing else branches with Tamarin is not straightforward when

dealing with facts DB(x) representing the database, and it

is actually not necessary when verifying well-authentication

and no desynchronisation (else branches do not contribute

to the attacker’s knowledge, and are not involved in honest

executions).

a) Well-authentication: The way we encode this condi-

tion is very similar to what is done in [21] and Tamarin is

well suited to write such lemmas. Basically, we check that,

for each successful conditional of a given agent, the trace

contains an honest interaction of this agent with another agent

of the opposite role (i.e. an alternation of inputs and outputs

where each input is equal modulo the equational theory to the

previous output).

For our model of the Basic Hash protocol, well-

authentication is expressed through the following lemma.

lemma WA_Reader [use_induction]:

"All sidR #i3.

TestR(sidR)@i3 ==>

( Ex sidT kT nT m #i1 #i2.

( InR(sidR,m)@i2 &

OutT(sidT,kT,nT,m)@i1 &

i1<i2 & i2<i3 ))"

179



b) No desynchronisation: Encoding this condition is

more subtle than well-authentication but the flexibility allowed

by Tamarin to write lemmas is helpful. We verify that, when-

ever an agent has reached a point where a conditional is going

to be evaluated, if this agent is having an honest interaction

with another agent of the opposite role, then the conditional

will be positively evaluated. The way we encode that the

conditional will be positively evaluated changes depending on

the type of conditional. For let conditionals, we only have to

check that the test holds: it generally consists in checking that

a message is of the expected form. The same holds for lookup

conditionals in the case of a protocol where the database is

monotonic: if the test holds at some point in time, it will

hold at any future point since the database is never updated;

the only difference is that the test will involve database facts.

When the database is updated, verifying no desynchronisation

for lookup conditionals is more involved: we must check that

the test will hold at any point in the future. It generally consists

in checking that a message is of the expected form, that some

appropriate database entry has been inserted in the database,

and that it would still be there in the future when the test

might be evaluated.

The encoding of the no desynchronisation condition for our

Basic Hash model (for which the database is monotonic) is as

follows:

lemma ND_Reader [use_induction]:

"All sidT kT nT sidR m #i1 #i2.

(InR(sidR,m)@i2 &

OutT(sidT,kT,nT,m)@i1 &

i1<i2)

==>

(Ex kR xnT #i0.

m = <xnT,h(<kR,xnT>)> &

InsertDB(kR)@i0 &

i0<i2)"

C. Frame opacity

Similarly to [21], we check frame opacity using a notion of

diff-equivalence. We adapt the encoding of [21] which uses

the diff-equivalence feature of ProVerif, in order to use the

observational equivalence mode of Tamarin. In this mode, we

write bi-systems, i.e. systems that only differ in terms using the

diff operator. In the case of frame opacity, the left-hand side

system encodes the real execution and, in the right-hand side

system, we replace each outputted message by its idealisation.

If Tamarin proves that these two systems are equivalent, then

we have that the resulting frames are in static equivalence so

frame opacity holds.

Frame opacity is defined w.r.t. an idealisation operator. In

our case studies, we use an idealisation that maps hashes and

encryptions to fresh nonces, public constants to themselves,

and pairs of terms to pairs of the terms’ idealisations.

The main problem is that conditionals lose their meaning

on the right-hand side of the bi-system: the conditions are

meant for the real messages, not their idealisations. To avoid

this mismatch, which would break diff-equivalence, we over-

approximate the protocol by removing the conditionals. We

thus verify that frame opacity holds for a larger set of possible

traces, which is sound.

For some case studies, conditionals are used to define new

variables that are used later on. When removing the condi-

tionals, we thus lose the definition of these variables. In order

to overcome this difficulty, we enrich the equational theory.

Consider for example an input x equal to senc(n, k) in the

real frame and equal to a fresh nonce n′ in the idealised frame.

In order to recover n without using a conditional in the real

execution (left-hand side system) we introduce a private con-

structor extract with the equation extract(senc(y, z), z) = y.

Then extract(x) will reduce to n in the left-hand side system,

and will not fail in the right-hand side system since extract is

not a destructor symbol.

Over-approximating the protocol as explained above has

sometimes not been sufficient to make Tamarin conclude. For

some case studies, we have used open variables, i.e. inputs that

the attacker can fill with any value, including the real values.

But here again, it is sound to check frame opacity on a set of

traces that is larger than the actual traces of the protocol.

In order to verify frame opacity for the Basic Hash protocol,

we use the observational equivalence mode on a modified

model, where the reader’s test is removed and the output of the

tag is a diff-term. The model is thus identical to the previous

one except for two rules:

rule R_test:

// let x = <xnT,h(<kR,xnT>)> in

[ !DB(kR), Reader1(˜sidR,x) ]

--[ TestR(˜sidR), CompleteR(˜sidR) ]->

[ Out(OK) ]

rule T_out:

let m = diff(<˜nT,h(<kT,˜nT>)>,<˜nId1,˜nId2>) in

[ Tag(˜sidT,kT), Fr(˜nT), Fr(˜nId1), Fr(˜nId2) ]

--[ PlayT(˜sidT,kT), OutT(˜sidT,kT,˜nT,m),

CompleteT(˜sidT) ]->

[ Out(m) ]

VI. CASE STUDIES

We have applied our method to several case studies. Our

results are summarised in Figure 6, descriptions of the proto-

cols are available in [9, Appendix C], and the Tamarin files

to reproduce these results can be found at [9]. We have found

two attacks on unlinkability for the OSK and LAK protocols

that had not been previously reported in the literature, and

propose fixes that we prove unlinkable using our method.

For a few cases, we have used the interactive mode of

Tamarin to conclude. In most cases, Tamarin is able to

conclude automatically in a few seconds (the worst cases

take about one minute). But it has required a lot of time

to implement these case studies and to write appropriate

intermediate lemmas in such a way that Tamarin can prove

automatically our conditions.

A. Basic Hash, Hash-Lock and Feldhofer

We study here three examples falling into our class of

protocols and being similar in the sense that they involve a

monotonic state (i.e. never updated). Our sufficient conditions
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Unlink. WA FO ND

Basic Hash ok ✓ ✓ ✓

Hash-Lock ok ✓ ✓ ✓

Feldhofer ok ✓ ✓ ✓

OSK (v1) attack ✓* ✗

OSK (v2) ok ✓ ✓ ✓

LAK (pairs) attack ✓* ✗

LAK (pairs, fix v1) ok ✓ ✓ ✓

LAK (pairs, fix v2) ok ✓* ✓ ✓

5G-AKA (simplified) ok ✓ ✓ ✓

Fig. 6. Summary of case studies: ✓ means the condition hold, ✗ means the
conditions does not hold. These conditions are verified automatically with
Tamarin, except for those with a * meaning the interactive mode has been
used.

can be automatically verified with Tamarin, thus we conclude

that these protocols ensure unlinkability.

Our conclusions regarding these three protocols are in line

with the literature. Note that if the Basic Hash protocol had

been studied in [21], it would have been declared linkable for

the reason we detailed in Section III-C. In [10], the Feldhofer

protocol is analysed using the observational equivalence mode

of Tamarin but for a notion of privacy that is different from

our definition of unlinkability.

B. OSK

The OSK protocol is proved unlinkable in [15] but in a

simplified model, as explained in Section III-C. A privacy vul-

nerability in the OSK protocol is highlighted in [23], but this

attack exploits an upper bound on the number of operations

in the tag’s lifetime, which is a practical consideration that we

do not consider here. We present here two versions inspired

from the original description of the OSK protocol that can be

found in [29].

The first version (v1) is the one described in Example 9

for which we highlight an attack scenario. On this version,

Tamarin concludes automatically that our no desynchronisa-

tion condition does not hold.

The second version (v2) differs only in the reader’s

conditional. Instead of expecting a message of the form

g(hashn(x)) for some database entry x (to allow resynchro-

nisations) and updating that entry with hashn+1(x) (to avoid

replay attacks), the reader never updates the database and

accepts any message of the form g(hashn(k)) for some initial

shared key k. In this second version, an attacker can replay

a message but this is not an issue for unlinkability. Indeed,

Tamarin is able to prove that our three conditions hold.

In order to check frame opacity on OSK v2, we do not

simply remove the reader’s conditional as explained in Sec-

tion V-B but we also over-approximate the protocol workflow.

Since the reader’s conditional is removed, this role becomes

useless in the sense that it only outputs a public constant that

stays the same in the idealised frame. We can thus remove

all reader rules without affecting diff-equivalence. We also

over-approximate the possible values for the tags’ states, by

allowing the attacker to choose them. Over-approximating the

protocol in such a way helps Tamarin to terminate. Since diff-

equivalence holds for a larger set of traces (containing the real

ones) we conclude that frame opacity holds.

In our Tamarin models, we represent the successive ap-

plications of the same hash functions by using a multiset

of the constant 1. For example, we represent hash3(x) with

hash(x,1+1+1). This allows us to express conditions such as

∃m ≤ n. x = hm(k), but has an impact on the attacker model.

This is why we have added an extra rule to represent the fact

that the attacker can obtain hashn+1(x) from hashn(x).

C. LAK

The LAK protocol as described in [33] is a stateful protocol

using the XOR operator. As highlighted in [21], this protocol

suffers from an authentication attack (based on algebraic

properties of the XOR operator) which can be turned into

an attack on unlinkability. An analysis of unlinkability for the

LAK protocol using Tamarin is done in [19] but only for a

bounded number of sessions, and this same attack is found.

In [21], a stateless version of this protocol where the

XOR operator is replaced by the pairing operator was proved

unlinkable. The three different versions of the LAK protocol

we study here also replace the XOR operator by pairs.

We first analyse a version of the protocol that is very close

to the original one: the only difference is the replacement of

the XOR operator by the pairing operator, i.e. the way tags

and readers update their states is faithful to the description

in [33]. We show that this version suffers from an attack on

unlinkability, based on the fact that there exists a scenario

in which a tag can be desynchronised w.r.t. the states stored

in the database, thus leaking information to the attacker.

This scenario is depicted in [9, Appendix C Figure 15]. As

expected, our no desynchronisation condition fails; Tamarin

is able to automatically find an attack trace.

Then, we propose two possible fixes to correct this flaw

(fix v1 and fix v2 in Figure 6). Our first fix is the stateless

version as proposed in [21] but with generic readers having

access to a common database, which is closer to the original

specification. Our second fix consists in modifying the reader’s

conditional: for a given value ⟨k0, n⟩ in the database, the reader

will accept any message containing hkey
p(k0) with p ≤ n,

instead of accepting only hkeyn(k0) or hkeyn−1(k0). Thus,

our fix handles unbounded desynchronisations, whereas the

original specification only handled desynchronisation by one

step. Note that, even if this second fix is more complex than the

first one, a protocol where states are updated at each session

is interesting when considering properties such as forward

privacy. Using Tamarin to check our three conditions, we

conclude that these two fixes ensure unlinkability.

Our models in Tamarin use two different hash functions: a

function h for the messages and another one, hkey, for the key

updates. Similarly to the OSK protocol, we also represent the

successive applications of the same hash functions by using a

multiset of the constant 1 and we use the same extra rule to

complement the attacker’s capacities.

181



The fixed version v2 required more work to automatically

verify our conditions. Lemmas checking no desynchronisation

are more complex to write since we are in the case where

states in the database are updated, and proving them required

more intermediate lemmas than in other cases.

D. Simplified 5G-AKA

The AKA protocol, designed by the 3rd Generation Part-

nership Project (3GPP) which is responsible for the standardi-

sation of 3G, 4G and 5G technologies, aims at authenticating a

subscriber to its service provider and establishing shared keys

for future communications.

A number of linkability attacks (resp. fixes) have been

shown (resp. proposed) in the literature [6], [20], [24], [13].

We study here a simplified version of the AKA protocol, in-

spired from the different fixes proposed in the literature. More

specifically, we add a challenge-response mechanism at the

beginning of the protocol to avoid the encrypted IMSI replay

attack [20]. With this modification, we add the generation

of fresh nonces for the network and the mobile station, thus

the resynchronisation mechanism using the sequence number

becomes useless and we remove this sequence number, which

takes away the main difficulty of the original protocol. In the

end, we have a stateful protocol with monotonic states (i.e.

never updated) for which we are able to prove, using Tamarin,

that our three conditions hold. We conclude that this simplified

version of the protocol ensures unlinkability.

VII. LIMITATIONS

We discuss in this section a number of limitations of

our work. Obvious ones include the restriction to two-party

protocols and the assumption that tags and readers are not

corrupted. We believe that the first restriction could be lifted

relatively easily, but do not know of case studies that would

be enabled in this way. Concerning corruption, it would be

interesting to incorporate it in our notion of unlinkability: we

leave it for future work. We discuss below the other limitations

concerning the method and its mechanisation.

A. Method

Our approach based on sufficient conditions is not complete:

there are protocols that are unlinkable but do not satisfy

our conditions. In particular, our conditions impose that the

outcome of conditionals is the same in the real world (multiple

sessions) and in the ideal one (single session), but one can

easily design a toy protocol that is unlinkable but does not

verify such a property. However, we are not aware of practical

cases where this source of incompleteness is an issue.

Our Definition 9 of an honest trace is arbitrary and might be

too restrictive for some protocols. This can be seen by taking

any protocol proved unlinkable with our method, and adding

a simple exchange at the beginning of the protocol, that does

not break unlinkability: the tag’s session starts by receiving a

public constant get challenge sent by the reader. The expected

interaction would thus be as follows:

R ∶ out(cR,get challenge)
T ∶ in(cR,get challenge)

But the following one is also possible, since get challenge is

public and thus derivable by the attacker:

T ∶ in(cR,get challenge)
R ∶ out(cR,get challenge)

Our well-authentication condition would not hold anymore

due to this possible (benign) interaction, because honest traces

require that each input is preceded by its corresponding output.

We believe that such examples could be avoided by adopting

a richer notion of honest trace. We believe that our theoretical

results can be adapted, as long as both well-authentication and

no desynchronisation use the same notion of honest trace (this

is indeed a key element for the proof of our main result).

B. Mechanisation

Regarding the mechanisation of our method, we hope to see

further improvements of verification tools (Tamarin or new

ones) that would help users to verify our conditions in more

cases and with less effort. We discuss below two points that

are particularly important in that respect.

Many protocols falling in the scope of this paper use the

XOR operator, but we were not able to apply our method to

these protocols because the support for the XOR operator in

Tamarin is not yet sufficient. As an example, Tamarin does

not terminate on the simple static equivalence illustrated in

Example 6 (see [9] for the code). It seems to us that improving

Tamarin’s XOR support is necessary to be able to apply our

method to protocols using XOR.

Another aspect which limits the mechanisation of our

method is the lack of more inductive reasoning in Tamarin.

Using inductive proof methods is helpful when dealing with

protocols with mutable states, but it is currently only available

for proving trace properties and not in observational equiv-

alence mode. We encountered non-termination issues when

checking frame opacity for protocols where the states are up-

dated. We overcame this difficulty by significantly simplifying

the protocol’s workflow, as explained in Section V: this is not

an issue for soundness, but limiting this non-trivial manual

step would be a key to further automate our method.

VIII. CONCLUSION

We have adapted the method of [21] to verify unlinkabil-

ity for stateful protocols. We have proposed a definition of

unlinkability that is well-suited to such protocols, improving

on earlier propositions. We have adapted the two conditions

originally proposed in [21], identified a third, no desynchroni-

sation condition, and proved that these three conditions imply

unlinkability. This provides a method to verify unlinkability

for an unbounded number of sessions, which we have applied

on several case studies using Tamarin. We have thus found

new attacks and obtained new proofs of unlinkability.

A way to go further would be to bridge the gap between

the formal model of Tamarin, based on multiset rewriting, and

our formal model based on the applied-pi calculus, which is

better suited to our theoretical developments relying e.g. on the

notions of conditionals and honest execution. For this purpose,
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we could use a tool such as SAPIC [25]. It would allow us

to describe our protocols in a language close to the applied-

pi calculus while still using, after an automatic translation

step, the Tamarin language to express and verify conditions.

A potential drawback of this approach is that the generated

code might not be satisfying: currently, several details of our

manual encodings are crucial to obtain automatic proofs; these

design choices would have to be systematised.
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