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Abstract—Hundreds of millions of mobile devices worldwide
rely on Trusted Execution Environments (TEEs) built with Arm
TrustZone for the protection of security-critical applications (e.g.,
DRM) and operating system (OS) components (e.g., Android
keystore). TEEs are often assumed to be highly secure; however,
over the past years, TEEs have been successfully attacked
multiple times, with highly damaging impact across various
platforms. Unfortunately, these attacks have been possible by
the presence of security flaws in TEE systems. In this paper, we
aim to understand which types of vulnerabilities and limitations
affect existing TrustZone-assisted TEE systems, what are the
main challenges to build them correctly, and what contributions
can be borrowed from the research community to overcome
them. To this end, we present a security analysis of popular
TrustZone-assisted TEE systems (targeting Cortex-A processors)
developed by Qualcomm, Trustonic, Huawei, Nvidia, and Linaro.
By studying publicly documented exploits and vulnerabilities as
well as by reverse engineering the TEE firmware, we identified
several critical vulnerabilities across existing systems which
makes it legitimate to raise reasonable concerns about the security
of commercial TEE implementations.

Index Terms—TEE, TrustZone, Security Vulnerabilities, Arm

I. INTRODUCTION

Trusted Execution Environments (TEE) are a key security

mechanism to protect the integrity and confidentiality of

applications. By leveraging dedicated hardware, TEEs enable

the execution of security-sensitive applications inside protected

domains isolated from the platform’s operating system (OS).

Arm TrustZone [1] has become the de facto hardware technol-

ogy to implement TEEs in mobile environments and has been

employed in industrial control systems [2], servers [3], and

low-end devices [4]. In the future, where trillions of TrustZone-

enabled IoT devices are expected worldwide [5], TEEs can

provide secure environments for data processing at the edge.

TrustZone-assisted TEEs are generally assumed to be more

secure than modern OSes due to the hardware-based separation

enforced by TrustZone technology and their smaller Trusted

Computing Base (TCB), which is several orders of magnitude

smaller than standard OSes’. For this reason, TEEs have

become widely adopted for securing mobile devices against

malware [6–10]. For instance, Android platforms incorpo-

rate TrustZone-assisted TEEs to secure application-specific

operations involving, e.g., user authentication [11], online

banking [12], or DRM [13]. Unfortunately, some of these

systems have been exploited over the past years, which casts

doubt on the real security guarantees that existing commercial

TEEs can effectively provide.

In this paper, we perform a systematic study of publicly dis-

closed vulnerabilities in commercial TrustZone-assisted TEEs

for Arm Cortex-A devices. Despite the existence of multiple

security reports affecting such systems, this information tends

to be scattered and, in certain cases, unverified, which makes

it difficult to obtain a comprehensive understanding of the

prevailing vulnerabilities and overall security properties of these

systems. To fill this gap, we analyzed 207 TEE bug reports

spanning a nearly 5 years, from 2013 until mid-2018, focusing

on widely deployed TEE systems developed for Arm-based

devices by five major vendors: Qualcomm, Trustonic, Huawei,

Nvidia, and Linaro. We examined and categorized numerous

vulnerabilities, in particular, some of those that have been

leveraged to carry out successful attacks. From our analysis,

along with the manual inspection of TEE firmware, we have

gained multiple insights about the extent and causes of existing

vulnerabilities, and about potential solutions to mitigate them.

One first observation is that TEE systems have a long history

of critical implementation bugs. Numerous bugs have been

(and continue to be) found inside TEE applications – named

Trusted Applications (TAs) – and inside the trusted kernel

responsible for managing the TEE runtime. Many bugs involve

classic input validation errors, such as buffer overflows. As

shown by multiple attacks, these bugs can be leveraged to

hijack Android’s Linux kernel or to entirely compromise the

TEE kernel of devices featuring TEEs by Qualcomm [14, 15],

Trustonic [16, 17], or Huawei [18].

Second, exploiting vulnerable TAs is facilitated by the

numerous architectural deficiencies of TrustZone-assisted TEE

systems. For instance, the memory protection mechanisms

commonly found in modern OSes, e.g., ASLR or page guards,

are almost absent or ill-implemented in most analyzed systems.

TEE systems also tend to expose a large attack surface,

including dangerous TEE kernel system calls that can be

invoked by TAs. For example, on Qualcomm’s TEE, any TA

can map in memory regions of the host OS. As a result, by

hijacking a vulnerable TA, e.g., leveraging a buffer overflow,

an attacker can easily control Android [15].

Third, important hardware properties are overlooked in most

TrustZone systems at the architectural and microarchitectural

levels, which can compromise the security of the TEE. Some

vulnerabilities are caused by unexpected behavior of trusted

hardware components due to microarchitectural side-channels

(e.g., in caches) [19–23]. Others are caused by components that

can be leveraged to exfiltrate sensitive data from TEE-restricted
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memory, for instance via reconfigurable hardware (FPGAs)

embedded into the modern SoCs [24, 25].

Although many of these problems remain difficult to solve

for software systems in general, we observe that the defense

mechanisms currently implemented in the studied TEEs lag

considerably behind the state-of-the-art defenses incorporated

into commodity mainstream OSes and proposed by the research

community. We argue that, by adopting up-to-date defenses,

commercial TrustZone-assisted TEEs could be made signifi-

cantly more secure and capable of countering many prevailing

vulnerabilities. We present a collection of relevant defense

techniques according to their suitability to address specific kinds

of issues: architectural, implementation or hardware issues.

In summary, this paper makes the following contributions:

(1) presents the first systematic study of known vulnerabilities

in widely used TrustZone-assisted TEE systems (Section III);

(2) analyzes the main architectural flaws of TEE systems in

perspective with modern OSes (Section IV); (3) introduces a

taxonomy for classifying implementation bugs that are more

likely to be used for exploiting TEE systems (Section V); (4)

raises awareness of hardware elements that can be leveraged for

attacking TEEs (Section VI); (5) analyzes the main defenses

techniques proposed by the research community (Section VII);

and (6) puts TrustZone-assisted TEEs in perspective with

alternative TEE enabling technologies (Section VIII).

II. BACKGROUND AND MOTIVATION

This section provides context on TrustZone-assisted TEEs.

Also, it motivates our study by showing the impact of TEE

vulnerabilities on the security of widely-used mobile devices.

A. Trusted Execution Environment and Arm TrustZone

A TEE provides an isolated environment for secure pro-

cessing of sensitive data, without the need to rely on the

integrity of the OS. TEEs aim at guaranteeing the secure

execution of programs, known as TAs or trustlets. TEE systems

rely on trusted hardware, such as Arm TrustZone [26], which

has been supplied on Arm application processors (Cortex-A)

since 2004 [27] and it was recently re-engineered for the new

generation of Arm microcontrollers (Cortex-M) [28]. Our work

focuses primarily on the Cortex-A TrustZone implementation,

which is widely used on mobile devices.

TrustZone is centered around the concept of protection

domains named secure world (SW) and normal world (NW).

Each physical processor core provides two virtual cores, one

considered ‘secure’ (SW) and the other ‘non-secure’ (NW), as

well as a mechanism to securely switch between them. The state

of the system is identified by the NS bit of the processor, which

identifies the current executing world. Hardware logic present

in the TrustZone-enabled AMBA bus extends the security state

of the processor to other system components, ensuring that

SW resources cannot be accessed by NW components.

B. Software Architecture of TrustZone-assisted TEE

The typical software architecture of a TrustZone-assisted

TEE runs the untrusted OS inside NW – named Rich Execution

Figure 1. Software architecture of a TrustZone-assisted TEE system.

Environment (REE) – and the TEE software components run

in the SW (see Figure 1). Inside SW, the trusted OS runs in

supervisor mode (protection ring EL1) and provides runtime

support for sustaining the lifecycle of TAs, which run in user

mode (protection ring EL0). The core of the trusted OS is

the trusted kernel, which provides the basic OS primitives for

scheduling and managing TAs. The trusted OS additionally

implements device drivers for accessing trusted peripherals,

handles cross-world requests through the world switching

SMC instruction and shared memory, and implements shared

libraries (e.g., cryptographic) and TEE primitives, namely

remote attestation, trusted I/O, and secure storage.

Beyond the trusted OS, a TEE comprises two fundamental

software components. The secure monitor implements mecha-

nisms for secure context switching between worlds and runs

with highest privilege, in protection ring EL3. The TEE
bootloader bootstraps the TEE system into a secure state, and it

is critical to implement the trusted boot primitive. It is split into

two parts which run, first, in EL3, and then in EL1. Together,

trusted OS, secure monitor, and TEE bootloader constitute the

software TCB of a typical TEE system. For this reason, TEE

designers aim for small and bug-free implementations.

C. Attacking TEE-enabled Devices

Over the past years, critical security vulnerabilities have been

identified in TEE systems of widely deployed mobile devices.

Some vulnerabilities can be exploited to acquire privileged

access to targeted devices and sensitive information stored

therein. In this section, we explain how this can be achieved

using the set of representative exploits listed in Table I to

hijack two critical components of a TEE-enabled device: the

TEE kernel and the REE kernel (i.e., Linux). Altogether, these

exploits demonstrated how to escalate its privileges from a

user-level NW application on a platform running Qualcomm’s

TEE system. Since then, a similar methodology has been

successfully employed to attack devices featuring other popular

TEE systems.

Compromising the TEE kernel: Targeting Qualcomm TEE

(QSEE), the TEE system developed by Qualcomm, Gal

Beniamini showed how to hijack the TEE kernel from an

unprivileged user-level NW application in two different ways.

One way requires escalating privileges into the Linux kernel
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ID Ref Year Description Component Vulnerabilities Impact

E1 [29] 2015 Input validation weakness can be used as a zero-write primitive
anywhere on memory QSEOS’s virtual memory to obtain arbitrary
code execution in trusted OS. Requires root privileges in Linux kernel.

SW Monitor [30] Full control of
TZ kernel

E2 [31] 2015 Exploits bug in the TrustZone Linux driver, which allows an attacker
to obtain root privileges and thus launch the E1 attack.

NW Driver CVE-2014-
4322

Full control of
Linux kernel

E3 [32] 2016 Vulnerability in Android’s Mediaserver process which allows an
unprivileged REE application to gain access the Qualcomm’s TrustZone
interface driver. When used with E1 and E2, allows an unprivileged
application to obtain trusted OS-level arbitrary execution.

NW Service CVE-2014-
7920, CVE-
2014-7921

Full control of
Android
Mediaserver

E4 [33] 2016 Privilege escalation attack to obtain arbitrary execution in the context
of a TA. The vulnerability occurs in the Widevine TA, and can be
exploited by accessing the TrustZone interface Linux driver using E3.

SW TA CVE-2015-
6639

Full control of
Widevine TA

E5 [14] 2016 Lack of input validation in Qualcomm’s trusted OS system calls allows
a TA to write to any address within the OS and hijack the TEE kernel.
Requires privilege escalation into TA through the TA’s interface.

SW Kernel CVE-2016-
2431

Full control of
TZ kernel

E6 [15] 2016 An attacker with TA-level execution privileges can gain control of the
Linux kernel. This attack can be built upon E4.

NW Kernel Bad system call Full control of
Linux kernel

Table I
Representative vulnerability exploits for QSEE, Qualcomm’s TEE system, showing the diversity of affected components and security impact.

(see Figure 1) in several steps. First, use exploit E3 to control

Android’s Mediaserver, which has privileged access to the TEE

driver. Then elevate privileges into the Linux TrustZone driver

to access the SMC interface (E2). A third exploit (E1) takes

advantage of a bug in the TEE kernel and achieves arbitrary

code execution with EL1 privileges in SW. Once in control

of the TEE kernel, an attacker can launch other attacks, e.g.,

hijack a guest TA to extract secret keys and break Android’s

full disk encryption [34], or unblock the device bootloader [35].

A second way to compromise the TEE kernel only requires

access to the interface of a vulnerable TA. Using E4, an attacker

can hijack the Widevine TA, a DRM service for Android OS.

Then, through a vulnerability in the system call interface, the

attacker can further elevate privileges into the TEE kernel (E5).

Compromising the REE kernel: Additionally, it is possible to

compromise Linux without even the need to gain control of the

TEE kernel. This can be achieved by using a vulnerable TA

as a trampoline for privilege elevation into the Linux kernel.

For instance, exploit E6 allows an attacker to take over the

Linux kernel by sending crafted input from a user-level NW

application into the Widevine TA. A vulnerability in this TA

along with QSEE’s system calls that allow TAs to map in

NW physical memory, enable an attacker to modify memory

regions allocated to the Linux kernel and control the system.

The extent of the problem. Several other exploits have been

developed for the Qualcomm TEE [17, 36–38]. Beyond mobile

devices shipping Qualcomm chips, other platforms have been

attacked, namely devices running Trustonic’s TEE system,

renamed from Mobicore to Kinibi [16, 17, 39, 40], and

Huawei’s proprietary TEE named Trusted Core [18, 41].

Most of these exploits adopt the divide-and-conquer strategy

presented in Table I. Considering that Trustonic’s TEE is

estimated to run on 1.7 billion devices (mostly Samsung’s) and

Huawei’s mobile devices are widely adopted (200 million sold

in 2018), TEE flaws can have a large impact worldwide.

III. OVERVIEW

This section provides an overview of our study of security

vulnerabilities on commercial TrustZone-assisted TEE systems.

A. Methodology of our study

Performing a comprehensive security assessment of commer-

cial TEE systems entails several challenges. For many such

systems, the source code is not available. Their binaries also

tend to be inaccessible or difficult to analyze due to the lack

of documentation and the employment of code obfuscation

techniques. Additional complexity is caused by the co-existence

of legacy TEE software versions by the same vendor and the

diversity and heterogeneity of TrustZone hardware. We cope

with these challenges by adopting the following methodology.

Adversary model: We consider an attacker that pursues one or

more of the following objectives: a) obtain secrets from the

TEE, b) obtain secrets from the REE, c) escalate privileges

to the REE kernel, or d) escalate privileges to the TEE. He

can access the SMC interface exclusively from the NW in two

ways: either directly by obtaining code execution privileges in

supervisor mode (N-EL1), allowing for crafting arbitrary SMC

calls, or indirectly from unprivileged user-level applications

(N-EL0) by issuing commands toward some target TA. All

NW components are assumed to be untrusted.

Analyzed TEE Systems: We analyzed TEE systems by Qual-

comm, Trustonic, Huawei, Nvidia, and Linaro. Nvidia main-

tains a proprietary TEE used mostly for Nvidia chips. Linaro

maintains OP-TEE, an open source TEE software very popular

for TrustZone development. All these systems are actively

maintained, are widely adopted for commercial purposes, and

a fair amount of information can be obtained about them. We

excluded research prototypes (e.g., Andix [2]) or commercial

products not currently deployed at scale (e.g., SierraTEE [42]).

We also consider relevant cross-cutting vulnerabilities, e.g.,

hardware side-channels. For the sake of readability, henceforth,
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TEE System CVE SVE SP MR SC Total

Qualcomm TEE 92 - - 7 - 99

Trustonic TEE 5 17 - 4 - 26

Huawei TEE 3 - - 1 - 4

Nvidia TEE 10 - - - - 10

Linaro TEE 3 - - 1 36 40

Other 11 - 15 2 - 28

Total 124 17 15 15 36 207

Table II
Sources of reports: CVE (CVE databases), SVE (SVE databases), SP

(scientific publications), MR (miscellaneous reports), and SC (source code).

we refer to each analyzed TEE by the company name rather

than by software name (e.g., Qualcomm TEE means QSEE).

Data sources: We resorted to multiple sources that we grouped

into four areas (see Table II). We analyzed bug reports from

the CVE database [43] relative to the TEE systems under

study. We retrieved the CVE reports published officially by

Qualcomm [44, 45], Nvidia [46] and Huawei [47] which are

documented also in their respective security bulletins. We gath-

ered additional CVE reports by searching for relevant keywords,

e.g., the TEE names, “TrustZone”, etc. We also collected bug

reports from Samsung Vulnerabilities and Exposures (SVE)

database [48] which have not been assigned specific CVE

IDs. We analyzed scientific publications (SP) in major security

conferences from the past 10 years, miscellaneous reports (MR)

available online (e.g., [17, 33, 49–52]), and inspected source

code (SC) for TEEs’ with public source code, namely Linaro’s

OP-TEE. For OP-TEE, we also analyzed its changelog to

identify security fixes and interviewed the system designers.

Classification of disclosed security vulnerabilities: After col-

lecting the vulnerability reports, we manually analyzed and

categorized them. For the vulnerabilities assigned with a CVSS

score [53], we adopted a classification metric based on the

attribute score. Our rating system comprises four categories:

critical (CVSS ≥9), severe (CVSS [7,9[), medium (CVSS [5,7[),

and low (CVSS [0,5[). The severity of a specific vulnerability

may have different security implications. A critical vulnerability

is normally one that can lead to a complete compromise of

confidentiality or integrity in the TEE, in the REE, or both.

Binary analysis: To obtain accurate details about the studied

TEE systems, we reverse engineered a subset of them. First, this

method allowed us to quantify the size of each system’s TCB.

Second, it helped determine the specific software architecture

of each system, for example, that Huawei uses Arm Trusted

Firmware (ATF) as a base for its secure monitor software, while

Qualcomm uses its own implementation. Third, it allowed us to

analyze the memory protection features implemented by each

TEE. For Trustonic TEE we analyzed the firmware for Samsung

Galaxy S7 (Exynos) version G930FXXS1APG3, for Qualcomm

TEE the Pixel XL firmware version PQ2A.190205.003, and for

Huawei TEE the P8-Lite system image ALE-L21C432B603.

Threats to validity: Since most vulnerabilities have no proof-

of-concept exploits or their CVE descriptions may not provide

enough detail, our identification and classification of vulnera-

bilities might have some imprecisions. The lack of information

System Critical Severe Medium Low Total

Qualcomm TEE 52 19 12 9 92

Trustonic TEE 1 - 0 4 5

Huawei TEE - 2 - 1 3

Nvidia TEE - 5 1 4 10

Linaro TEE - - 2 1 3

Other - 1 7 3 11

TEE Total 53 27 22 22 124

FreeRTOS - - 5 8 13

VxWorks 2 2 5 1 10

Linux 242 254 393 758 1647

Table III
Number of disclosed CVEs per system from 2013 to 2018.

regarding the vulnerabilities existing in proprietary systems

may have also led to inaccurate classifications. There is also the

risk of over-representation of a given TEE system, particularly

in the case that the number of publicly reported vulnerabilities

about that system largely outnumbers those of other systems.

In such cases, we require extra care while drawing general

conclusions. Lastly, we analyzed only vulnerabilities that

have been previously reported. As a result, unknown types

of vulnerabilities might exist that could reveal additional

fundamental security issues in TEE systems.

B. Summary of Observations

We analyzed the vulnerability reports of all major commer-

cial TEEs, namely the TEE systems by Qualcomm, Trustonic,

Huawei, and Nvidia. Considering the reports obtained from

CVE databases, which are classified with a severity score, we

manually identified, in total, 124 TEE vulnerabilities during a

time window of six years (i.e., 2013 – 2018).

Table III quantifies the number of disclosed vulnerabilities

associated with each system according to their severity. Almost

half of the bug reports are rated as critical or severe. In

particular, 53 of the 124 reports (42%) disclosed security

vulnerabilities are considered critical. Perhaps even more

surprising, every single TEE that we analyzed was found to
have at least one non-low severity vulnerability during the

considered time period: Trustonic has 1 critical vulnerability,

and Nvidia and Huawei’s systems have, respectively, 5 and 2

classified as severe. Considering that collectively these systems

are widely deployed, millions of users worldwide may have

been seriously affected by these vulnerabilities.

Although it stands out that the Qualcomm TEE accounts

for the largest fraction of disclosed vulnerabilities (74%), we

caution that we cannot conclude from this data that it is the

least secure TEE; or similarly compare individual TEEs. This

is due to the disparity in methodology with regards to the

CVE reporting process and could simply be a consequence

of higher reporting diligence of Qualcomm developers and

users. However, these results are useful because they allow

us to establish a lower bound on the vulnerabilities of such

systems, reason about aggregate trends, and compare general

TEE trends against the trends of other types of systems.

For instance, we observed that during the same time window

the entire Linux operating system, which is several orders of
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Figure 2. Detailed architecture of the studied TEE systems. A few relevant common features include: (a) the communication between a NW application and
the SW is mediated by a privileged OS daemon which uses a TrustZone driver to issue SMC calls to the SW; (b) in four cases, the monitor is based on
ATF [54], which consists of the reference implementation provided by Arm for the secure bootloader and monitor software.

magnitude larger than any of these TEEs, only had 1647 CVEs

(see Table III). When comparing the studied TEEs against

Linux and real-time OSes of similar complexity (FreeRTOS

and VxWorks) both classes of OSes account for a smaller

relative percentage of critical and severe vulnerabilities. These

observations suggest that the current development methodolo-

gies for some of the most popular TEEs are not as robust

as the development methodologies of other systems, and may

benefit from the adoption of such methodologies.

C. Sources of Vulnerabilities in TrustZone-assisted TEEs
Overall, we identified three main sources of security vulnera-

bilities in existing TEE systems: architectural, implementation,

and hardware. Architectural issues involve deficiencies in the

overall TEE system architecture, e.g., absence of memory

protection using ASLR. Implementation issues correspond to

flaws in the TEE system’s software, e.g., buffer overflows.

Hardware issues concern hardware behavior that can be abused

to undermine the security of a TEE, e.g., side-channels.
To a great extent, these problems continue to persist. Apart

from incremental improvements, TEE systems preserve their

original architectural features and retain serious weaknesses.

Even the systems which present less critical and severe

vulnerabilities, such as Trustonic TEE, suffer from important

architectural limitations. Vulnerability reports abound which

reveal the presence of critical implementation bugs. Many of

these bugs have a similar nature as the ones exploited by

the attacks described in Table I. We identified other kinds

of bugs that can further be exploited, e.g., concurrency bugs.

Hardware issues are prevalent in TrustZone-enabled SoCs and

can potentially be leveraged for launching highly damaging

attacks in the future. In the next sections, we present our

findings in detail by covering each type of issues.

IV. ARCHITECTURAL ISSUES

This section presents the main architectural security issues

of existing TEE systems. We group these issues into several

categories, and refer the reader to the diagram of Figure 2

which presents the specific internal details of each system.

A. TEE Attack Surface
TEE systems expose a wide attack surface that can potentially

be exploited to compromise the overall security.

I01. SW drivers run in the TEE kernel space: In general,

a TEE system requires the existence of drivers in the SW to

mediate access to security-sensitive devices, e.g., a fingerprint

sensor for user authentication purposes, or the display frame-

buffer for secure output of DRM-protected content. Given that

drivers tend to be complex and a traditional source of bugs,

they should not run in the TEE kernel space (i.e., in S-EL1

mode). Trustonic and Nvidia follow this approach by adopting

a microkernel architecture where drivers run in the SW user

space (S-EL0). In contrast, Qualcomm, Huawei, and Linaro

run TEE drivers in S-EL1 mode. Both Qualcomm and Linaro

adopt a monolithic architecture where all the privileged code

runs in kernel space. Huawei delegates some of the trusted OS

functionality to user space, namely the job of controlling the

lifecycle of TAs which is assigned to a privileged TA called

GlobalTask (see Figure 2).

I02. Wide interfaces between TEE system subcomponents:
These interfaces have become worryingly large for TEE

systems. In Android OS, at least four daemons have privileged

access to the TrustZone driver. The SMC call interface exposed

by the TEE kernel gives NW software access to a considerable

number of TAs (e.g., Trustonic TEE counts 32 different TAs).

The set of commands handled by TAs also tends to be fairly

large. For instance, the Widevine TA implements 70 different

commands, many of them manipulate complex media data

structures. The TEE kernel exposes a large number of system

calls to TAs: 69 syscalls in Qualcomm’s TEE. Moreover,

access permissions to the TEE system calls are frequently

coarse-grained, such as in Qualcomm TEE where TAs have

promiscuous access to all system calls. In certain cases, the

interface provided by the secure drivers can grow very large,

such as in the Trustonic TEE, where the TA that controls access

to the fingerprint device driver gives access to virtually every TA

deployed in the TA. Most of these issues have been instrumental

for the development of the exploits listed in Table I.

I03. Excessively large TEE TCBs: Part of the design philoso-

phy of a TEE system is that it should rely on a small TCB. To

verify whether this principle holds for the studied TEE systems,

we analyzed their TCB sizes based on their firmware and, when

available, on their source code. Given that TAs implement

security-sensitive REE functions, we include in the TCB both

1420



System Core (bin / src) TAs Details

Qualcomm TEE
(Google Pixel XL)

1.61MB / – 2.71MB Binary contains the secure monitor (96.2KB) and QSEOS(1.50MB). TAs include device
management: bootlocker (76 kB); Android services: keymaster (332 kB), fingerprint (600 kB);
DRM and decoding: venus (924 kB), Widevine (391 kB); Common libs: cmnlib32,64(204/256 kB)

Trustonic TEE
(Samsung S7)

350KB / – 5,02MB The monitor (140KB) and trusted OS (210 KB) binaries are separate. There are 3 built in TAs,
and 33 loadable TAs taking, which add to 5.02MB, implementing Android system functionality,
DRM, kernel integrity management, secure element I/O, etc, either as TAs or drivers.

Huawei TEE
(Huawei P8 Lite)

744KB /– 479KB Secure monitor (47KB) based on ATF. Trusted OS binary contains kernel (305KB) and GlobalTask
(329KB). TAs include libc shared library (5KB) and implement Android system services, e.g.,
keymaster (188KB) and gatekeeper (27KB), amongst several others services.

Nvidia TEE
(Nvidia Tegra)

97KB / 123Kloc 80KB The kernel (60KB/23kloc) is based on little kernel (lk) and the monitor we consider ATF Monitor
(36.9KB/100kloc). Two test TAs are considered, trusted_app1 (45KB), implements two tests,
swapping operands, and copying a string to a buffer. The second, trusted_app2 (35KB), increments
the operands by one, and then overwrites them when replying to the client.

Linaro TEE
(Hikey960)

365KB /210Kloc - The kernel (328.5KB/110kloc), incorporates pseudo-TAs: kernel modules benefiting from full
S-EL1 privileges. In Linaro TEE the monitor is the ATF (36.9KB/100kloc).

Linux (4.14.rc7) 19MB / 15Mloc - Linux kernel on hikey960 configured with a number of kernel services and drivers built in.

seL4 (kernel) 166.5KB / 19Kloc - Formally verified microkernel. When configured correctly guarantees logical task separation.

Table IV
TCB sizes of TEE systems vs. reference OSes (respectively above and below the middle line): Values obtained from TEE binaries and loadable TAs in firmware

/ system image file system. For open source systems, software was compiled enabling optimizations. Lines of code were counted using SLOCCount [55].

trusted OS and TAs. Table IV presents our results comparing

them against a few reference OSes. We find that TCBs of

TEE systems are substantial, e.g., reaching 1.6 MB in the

Qualcomm TEE. Further, these numbers are conservative since

additional TAs that are not included the firmware package can

be dynamically loaded. Strikingly, some TAs have individually

considerable sizes. With such sizes, confidence in the full

correctness of these TAs is weakened: since TAs accept inputs

from the NW via SMCs, potential vulnerabilities are exposed

to easy exploitation. To put TCB sizes in perspective, Table IV

shows that although existing TEE kernels are significantly

smaller than the Linux kernel (by about three orders of

magnitude), most of them are growing considerably larger

than a microkernel of comparable complexity (seL4).

B. Isolation between Normal and Secure Worlds

A TEE system must enforce strong isolation between NW

and SW while enabling efficient communication across worlds.

In some TEE systems, this isolation can be undermined by the

exposure of dangerous system calls by the TEE kernel.

I04. TAs can map physical memory in the NW: Certain ap-

plications, e.g., for DRM-protected video rendering, require an

efficient shared-memory mechanism that allows for exchanging

high volumes of data across worlds with low latency. However,

some TEE systems provide mechanisms that can easily be

abused for privilege escalation. For example, Qualcomm TEE

exposes a trusted OS system call that allows any TA to map

any physical memory belonging to the NW, including to the

REE OS kernel. As a result, by compromising a TA, an attacker

can automatically takeover the Android OS by scanning the

physical address space for the Linux kernel and patch it to

introduce a backdoor (see E6 in Table I).

In contrast, Trustonic TEE prevents TAs from mapping in and

modifying physical memory. Instead, this operation is restricted

to specific driver TAs. Hence, TAs willing to exchange data

volumes via shared memory must issue a request to a dedicated

driver TA. Samsung uses this approach to split the functionality

of the TrustZone-based Integrity Measurement Architecture

(TIMA): a TA driver provides the ability to map physical

memory while another TA uses this service to measure the

integrity of system image. A white list is used to prevent access

to the TA driver by arbitrary TAs. However, the white list is

hard-coded in the TA driver and the number of allowed TAs

reaches 34, which is fairly large. By compromising any of

these TAs, an attacker has free way to hijack Android.

I05. Information leaks to NW through debugging channels:
Another source of isolation breaches is caused by leakage

of information from the SW to the NW via TEE debug

mechanisms. Some exploits described in Table I have been

facilitated by this feature. A privilege escalation attack [18]

leverages a system call of the Huawei TEE that allows a TA

application to dump its stack trace to a memory region in the

NW. Using this mechanism, the attacker can learn the physical

address space of the GlobalTask and use this information

to craft the exploit. Debugging logs exposed to the NW are

also common in the Trustonic TEE which may help disclose

sensitive information about the internals of TAs.

C. Memory Protection Mechanisms

Most TEE system exploits have been facilitated by poorly

designed memory protection mechanisms. Table V summarizes

our findings with respect to the mechanisms implemented for

each analyzed TEE system. We highlight the following issues.

I06. Absent or weak ASLR implementations: In all analyzed

TEE systems, ASLR is either absent or poorly implemented. In

Trustonic TEE, TAs are all loaded into the same fixed address in

the virtual address space (0x1000). Each TA is provided with a

common library which is also mapped to a constant address for
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Mechanisms Qualcomm Trustonic Huawei Nvidia Linaro

User ASLR �� � � � �
Space SC � � � � �

GP � � – – –

XP WXN WXN � UXN/PXN UXP/PXN

Kernel KASLR � � � � �
Space SC � � � � �

XP WXN WXN � UXN/PXN UXN/PXN

Table V
Memory protection mechanisms for user and supervisor modes. Filled circle:
fully implemented. Half-circle and empty circle: partially implemented or not

implemented. Dash: implementation-related information not found.

each TA (0x7D01000). Thus, any vulnerability found in a TA

can be exploited without requiring extra effort in determining

the TA’s loading address. Furthermore, this common library,

named mcLib (see Figure 2), contains a substantial amount of

code, which can provide a source of gadgets to call functions,

invoke trusted OS system calls, etc.

Likewise, Huawei, Nvidia, and Linaro TEEs offer no ASLR

mechanisms. The Qualcomm TEE provides a form of ASLR

for all TAs but uses only a small segment of physical memory

into which the TA code is loaded. All TAs are loaded into

a relatively small region of continuously allocated physical

memory spanning around 100MB in size. Consequently, the

amount of entropy offered by the ASLR is limited by this

region’s size. Thus, while it would be theoretically possible

to implement high entropy ASLR by using a 64-bit virtual

address space, the ASLR implemented by Qualcomm TEE

is limited approximately to 9 bits, which greatly reduce the

number of guesses an attacker would need to try to guess a

TA’s base address. None of the studied TEE systems features

KASLR, i.e., ASLR for the TEE kernel.

I07. No stack cookies, guard pages, or execution protection:
In addition to ASLR, modern OSes employ additional memory

protection mechanisms. Stack cookies (SC) are unique values

that help detect stack smashing instances and abort the program

execution. Guard pages (GP) delimit the mutable data segments

in each process (namely, stack, heap, and global data) to

prevent attackers from using an overflow in one segment to

corrupt another by triggering a fault in case of illegal access.

Execution protection (XP) prevents programs from executing

within certain memory regions and can be achieved by various

means. On Arm, the WXN bit in the SCTLR register can be

used whereby writable memory regions are implicitly marked

as Execute Never (XN). Another option is to use memory page

attribute XN, Unprivileged XN (UXN), and Privileged (PXN).

However, TEE systems only partially implement these mech-

anisms (see Table V), which has facilitated exploitation [18].

Trustonic TEE, in spite of its security-driven goals, lacks stack

cookies, making it relatively easy to exploit stack overflows

in vulnerable TAs. It allocates both globals and stack from

the TA’s data segment without providing guard pages in

between. Moreover, the memory layout places the stack at

the end of the data segment and the globals before it; this is

the perfect configuration for overflowing one region into the

other. Qualcomm TEE implements randomized pointer-sized

stack cookies, but it does not provide guard pages between

Figure 3. Secure boot process: Implements a chain of trust that starts with the
execution of a trusted component – Trusted Board Boot – stored in an on-SoC
ROM. Then, each loaded component verifies the authenticity and integrity
of the subsequent module, or modules, and loads them if no anomalies are
detected. A vendor digitally signs the SW image with its private key, while
the respective public key (or its digest) is burned, or flashed into a one-time
programmable memory, typically eFuses. The public key is used to verify that
the binary has not been modified and it was provided by the vendor.

globals, heap, and stack. Huawei TEE has no stack canaries,

no data execution protection, and no write-protected .text

section, possibly because Huawei TEE is based on the Micrium

μ/OS, an RTOS which leaves aside most of the said memory

protection mechanisms to deliver maximum performance.

D. Trust Bootstrapping

We report a number of architectural issues which might un-

dermine the process of trust bootstrapping by client applications

– local or remote – on a TrustZone-assisted TEE platform.

I08. Lack of software-independent TEE integrity reporting:
Secure boot ensures the authenticity of the software running

on a device. Figure 3 illustrates a possible secure boot process,

including the booting of TAs. However, Arm TrustZone lacks

the hardware mechanisms for securely reporting the software

integrity measurements to a remote third party. In the absence of

hardware support, remote attestation needs to be implemented

in software by one of the TEE components. This weakens the

security of remote attestation as it requires the correctness of

all SW software of the trust chain running in EL3 mode.

I09. Ill-supported TA revocation: Problems have been iden-

tified with the way Android OEMs deal with TA revocation

[17]. TA revocation is necessary to prevent patched TAs from

being downgraded. Updates allow for vulnerabilities and other

errors to be corrected, increasing the overall security of the

device. To make them easier to update, TAs are usually loaded

from the REE filesystem and to prove their authenticity they

are digitally signed. However, the TEE must revoke old TAs to

prevent attackers in the REE from intentionally loading an old,

known vulnerable TA and exploiting it to gain code-execution

within the TEE. The successful downgrading of the Widevine

TA to a previous, known vulnerable, version in Qualcomm and

Trustonic TEEs has been shown [17].
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Class Subclass # Bugs

Validation Bugs Secure Monitor 2 (1.07%)

Trusted Applications 62 (33.16%)

Trusted Kernel 52 (27.81%)

Secure Boot Loader 5 (2.67%)

Functional Bugs Memory Protection 32 (17.11%)

Peripheral Configuration 8 (4.28%)

Security Mechanisms 11 (5.88%)

Extrinsic Bugs Concurrency Bugs 11 (5.88%)

Software Side Channels 4 (2.14%)

Table VI
Number of bug reports involving implementation issues.

V. IMPLEMENTATION ISSUES

In addition to architectural weaknesses, many TEE vulner-

abilities are caused by implementation bugs. To characterize

the prevalence of these issues, our primary source consisted of

bug reports retrieved from public CVE databases and vendor

bulletin reports. Table VI lists how we classified all the analyzed

bugs into a few meaningful categories which we present below.

A. Validation Bugs

A common type of software bugs in TEE systems involves

improper handling of input and/or output values which we

refer to by the name validation bugs. Examples include buffer

overflows, incorrect parameter validation, mishandled integer

overflows, etc. Bugs of this nature are very prevalent and

frequently used as entry points for privilege escalation. They

can be found in all major components of existing TEE systems.

I10. Validation bugs within the secure monitor: By exploit-

ing a bug in the secure monitor, an attacker can automatically

gain full control of the device. For instance, the vulnerability

abused by exploit E1 for hijacking the Qualcomm TEE kernel

(see Table I) allowed an attacker to write a zero double word

anywhere in the SW memory by crafting an input into an SMC

call. To reduce the chance of critical bugs, most TEE systems

(excepting Qualcomm TEE) use Arm’s reference monitor (ATF)

implementation (see Figure 2). Unfortunately, critical validation

bugs have been reported within ATF itself. Ironically, one bug

was located on a C macro whose goal was to help detect

arithmetic overflows (CVE-2017-9607). Shown in Listing 1,

any AArch32 code relying on this macro to detect integer

overflows is not protected. This means that multiple monitor

entry points that use this macro could be vulnerable.

I11. Validation bugs within TAs: Besides the secure monitor,

TAs are mostly exposed to attacks from the NW through

the SMC interface. As it turns out, the largest fraction of

vulnerability reports in TEE systems corresponds to validation

bugs within TAs. For instance, critical vulnerabilities in the

ESECOMM trustlet can be leveraged to compromise client

applications such as Samsung Pay [16]. In Trustonic TEE,

validation bugs can be exploited systematically using the

respective bug fixes [39]. Some TA validation bugs (e.g., CVE-

2016-5349) may allow for direct privilege escalation into the

Linux kernel through boomerang attacks [56], in which a

/* Evaluates to 1 if (ptr + inc) overflows, 0 otherwise.
* Both arguments must be unsigned pointer values (i.e.

↪→ uintptr_t). */
#define check_uptr_overflow(ptr, inc) \

(((ptr) > UINTPTR_MAX - (inc)) ? 1 : 0)

Listing 1. Vulnerability in ATF macro. Located in header file
include/lib/utils_def.h, this macro aims at detecting arithmetic overflows
when computing the sum of a base pointer and an offset. However, if the
sum of the input base pointer and offset wraps around, unpredictable behavior
might occur. In AArch32 images, it fails to detect overflows when the sum of
its two parameters falls into the (232, 264 - 1) range.

signed int __fastcall sys_call_overwrite(int a1, int a2) {
signed int v2; // r3@2
int v4; // [sp+0h] [bp-14h]@1
int v5; // [sp+4h] [bp-10h]@1
v5 = a1;
v4 = a2;
if ( *(_DWORD *)a1 == 0x13579BDF ) {
// write (*(int*)(arg1 + 0x18C) + 7) >> 3 to arg2
*(_WORD *)v4 = (unsigned int)(*(_DWORD *)(v5 + 0x18C) + 7)

↪→ >> 3;
v2 = 0;

}
return v2;
}

Listing 2. Reverse-engineered syscall from Huawei TEE (RTOSck) without
any input check. An attacker can overwrite memory anywhere in NW or SW.

vulnerable TA does not properly validate the input memory

addresses, allowing an attacker to access NW memory region

and read or write memory allocated to REE apps or OS.

I12. Validation bugs within the trusted kernel: By hijacking

a TA, an attacker may successfully elevate its privileges by

exploiting a vulnerability in the TEE kernel’s system call

interface. For instance, an attack on the Huawei TEE [18]

relied on a vulnerable system call where its inputs are entirely

unchecked for bypassing a security check within the trusted

kernel (see Listing 2). Even more worrisome, the Qualcomm

TEE kernel lacks any code for validating supplied input pointers,

which means that all the system calls are vulnerable [14].

I13. Validation bugs in secure boot loader: The boot loader

may also be prone to attacks by exploiting validation bugs upon

system bootstrap. An example is documented in CVE-2017-

7932. This vulnerability is due to a stack-based buffer overflow

in the X.509 certificate parser which allows an attacker to

potentially install or load a crafted X.509 certificate during the

image verification. As a result, the legitimate TEE software

image can be replaced to attain arbitrary code execution.

B. Functional Bugs

By functional bugs we refer to programming errors caused,

not by flaws in validating inputs/outputs, but by inconsistencies

between the implementation and the program specification

intended by the programmer (e.g., incorrectly programming

of a cryptographic algorithm). We identified three types of

functional bugs that can lead to security breaches in TEEs.

I14. Bugs in memory protection: Some functional bugs may

introduce security vulnerabilities in the memory protection

mechanisms of a TEE system. For instance, a vulnerability
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reported for ATF [57] involves a configuration error of memory

translation tables which allows read-only memory areas to

always be executable in the context of the S-EL1. In OP-

TEE, we identified 15 bug reports causing memory protection

vulnerabilities. For instance, one error in the OP-TEE’s secure

monitor code responsible for saving and restoring FIQ registers

for ARMv7 may allow the REE to escalate privileges to obtain

code execution in the TEE [58].

I15. Bugs in configuration of peripherals: Misconfiguration

of certain peripherals may also be security-critical. In Qual-

comm TEE, a flaw disclosed as CVE-2016-10423, allows a TA

to read data on an SPI interface previously opened by another

TA due to non-exclusive access of the SPI bus. In OP-TEE,

one patch [59] aimed to fix a misconfiguration of the pseudo

random number generator causing an insufficient source of

entropy for the cryptographic libraries used within OP-TEE.

I16. Bugs in security mechanisms: Another potential source

of vulnerabilities is the existence of bugs in the implementation

of security protocols or cryptography primitives. In ATF, an

attacker could bypass the Amlogic S905 SoC secure boot

process [51] due to a deficiency in the authentication checks,

where only the integrity of the boot image was checked, not

the signature. In OP-TEE, for example, a Bellcore attack

vulnerability in LibTomCrypt could compromise a private RSA

key (CVE-2017-1000412), and a hardcoded security key for

RPMB result in the key leakage (fix on 23 Jan 2017).

C. Extrinsic Bugs

Lastly, we use the term extrinsic bugs to refer to program-

ming defects that are not related with validation of values or

functional correctness of code, but with the proper handling of

external factors that might introduce security vulnerabilities. In

particular, we identify two classes of bugs that fit this category.

I17. Concurrency bugs: Caused by the interference of multiple

concurrent programs, we consider concurrency bugs as extrinsic

because their manifestation depends on factors external to the

program itself (e.g., thread interleaving). Some concurrency

bugs may introduce security vulnerabilities within TEE systems.

For instance, in OP-TEE, one bug due to concurrent access to

the file system by different TAs [60] allowed a TA to delete

a directory on trusted storage while being created by another

TA. Samsung reported two race condition vulnerabilities in

the TIMA driver deployed in Trustonic TEE (SVE-2017–8974

and SVE-2017–8975). A specific instance of race conditions

may lead to TOCTOU vulnerabilities, where some aspect of

the system state changes after a condition check, such that

the condition-check results are no longer valid. A TOCTOU

vulnerability was reported in a DRM TA of the Nvidia TEE

which may lead to privilege escalation (CVE-2017-6296).

I18. Software side-channels: Another instance of bug types

that we consider to be extrinsic is software side-channels,

which are caused by specific implementation artifacts that

are foreign to the program logic but can reveal undesired

information based on the program execution time. For example,
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Figure 4. Hardware architecture of a TrustZone-assisted TEE system, including
programmable logic present in FPGAs. The fully shaded boxes represented the
trusted components exclusively allocated to the TEE software running in the
SW, SPI/UART, for example, allow communication with off-SoC peripherals
(e.g., for biometric authentication or smartcard interaction). Partially colored
boxes represent components that can be partially, or totally, restricted to the
SW, such as DRAM, and storage (e.g., to provide secure storage to TAs).

a timing side-channel was found in the cryptographic library

LibTomCrypt used by OP-TEE’s trusted kernel (CVE-2017-

1000413). This vulnerability was caused in the optimization

of modular exponentiation which leaked information about the

exponent. It was fixed by ensuring constant time exponentiation.

VI. HARDWARE ISSUES

TEEs rely not only on the correctness of the software

architecture and implementation, but also on the correctness of

trusted hardware components. Figure 4 provides an overview

of the typical hardware architecture of a TrustZone-assisted

TEE system and shows how these components are connected

by an AXI bus. Since hardware components are part of the

TCB of a TEE, the TEE developers must correctly configure

and interface with these components, as well as carefully take

into consideration all the implications of the microarchitecture.

A. Architectural Implications

TEE developers must be well aware of all architectural

hardware components, such as FPGAs, and all architectural

details, both inside and outside the SoC boundary.

I19. Attacks through reconfigurable hardware components:
Reconfigurable platforms, i.e., FPGA SoCs, combine a con-

ventional CPU architecture with programmable hardware

logic. Although there is no evidence of massive adoption of

reconfigurable platforms in the context of mobile devices, OP-

TEE supports the Xilinx Zynq-7000 and Zynq UltraScale+

platforms on its mainline. Unfortunately, the addition of new

hardware increases the attack surface. Configurable hardware

within FPGA SoCs is typically connected to the main bus,

which means that hardware must block access to memory

regions that are managed by the software running in the

main CPU. On TrustZone-enabled systems, the AMBA AXI
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Component Attack Device SoC TEE Outcomes

Cache

[19] Freescale i.MX53 i.MX53 (ARMv7-A) – Cache rootkit can evade NW and SW detection

[20] Raspberry Pi2 BCM2836 (ARMv7-A) Self Developed AES 128-bit key recovery

[21] Galaxy S6 Exynos 7420 (ARMv8-A) Trustonic TEE AES 128-bit key recovery

[22] Freescale i.MX53 i.MX53 (ARMv7-A) Self-Developed AES 128-bit key recovery

[23]
Samsung Tizen TV (ARMv7-A) SecureOS Cross-Core Covert Channels demonstrated by

transmitting images from SW to NWHikey Kirin 620 (ARMv8-A) Linaro TEE

Branch Predictor [61] LG Nexus 5X Snapdragon 808 (ARMv8-A) Qualcomm TEE Extract 256-bit private keys from Keystore TA

DRAM [62] - Cortex A-9 (ARMv7-A) Trusty Derive RSA private key

Table VII
Microarchitectural issues exploited to attack TrustZone-assisted TEEs.

interface includes an additional control bit (NS bit) for both

read (ARPROT) and write (AWPROT) channels on the main

system interconnect. This lets all hardware components become

aware of the security state of the CPU. Nevertheless, some

unusual exploits can take advantage of reconfigurable hardware

logic to break the security of TrustZone-based systems [24, 25].

One attack explores malicious hardware deployed on an FPGA

to break the secure boot process [24]. In a study about NS bit

propagation to FPGA, six different attacks were exposed using

small malicious modifications on the hardware logic [25].

I20. Attacks through energy management mechanisms:
Software-exposed energy management mechanisms can pose

significant challenges to system security, possibly in subtle

ways. For instance, CLKSCREW [63] relies on a malicious

(non-secure) kernel driver to push frequency and voltage

regulators to operate beyond the vendor-recommended limits,

until the point of inducing faulty computations. By influencing

the computation of SW operations, it is possible to break

the TrustZone hardware-enforced boundaries to extract secret

cryptographic keys and bypass code signing operations.

B. Microarchitectural Side-Channels

In addition to architectural-level details, the security of TEEs

also depends on microarchitectural details (e.g., caches). In this

section, we discuss three major classes of microarchitectural

aspects that can affect the security of TrustZone-assisted TEEs.

I21. Leaking information through caches: On TrustZone-

enabled processors, cache memory is shared between the

secure and normal worlds. Although the secure cache lines are

not accessible by the NW, both worlds are guaranteed equal

rights when competing for the use of cache lines. This cache

coherence design improves system performance at the cost of

cache contention between the two worlds [19]. This contention

is the main source of exploitation for extraction of information

from the SW by monitoring caches from the NW. R. Guanciale

et al. [20] implemented a low-noise cache storage channel

which can successfully extract a 128-bit key from an AES

encryption service. ARMageddon [21] uses the Prime+Probe

technique to infer activities on the SW and distinguish whether

a provided key is valid or not. TruSpy [22] also leverages

Prime+Probe to recover a full 128-bit AES encryption key

in two different ways. Prime+Count was also employed for

enabling cross-world covert channels on TrustZone [23].

I22. Leaking information through branch predictor: The

branch predictor can also be leveraged to attack TrustZone.

Modern processors include a branch target buffer (BTB) unit,

which stores the computed target addresses of taken branch

instructions and fetches them when the corresponding branch

instructions are predicted [64]. Since the BTB is shared between

NW and SW, Prime+Probe can be performed to leak secure

information to the NW. The process encompasses priming

the BTB by executing many branches, and later let the victim

process execute which will evict the attacker BTB entries. When

the attacker gets control of execution, the attacker re-executes

those branches to detect mispredictions. Given that the internal

hardware structure of the BTB works at byte granularity instead

of cache-line granularity, this particular attack vector increases

considerably the spatial resolution of the probe mechanism. A

256-bit private key has been fully recovered from Qualcomm’s

hardware-backed keystore [61].

I23. Leaking information using Rowhammer: Rowhammer

is a software-induced hardware fault that affects DRAM

memories and enables an attacker to flip bits in physical

memory by solely performing memory read operations [65, 66].

This type of attack has been explored to subvert TrustZone [62].

A malicious Linux kernel module is used to generate faults

to a specific NW target address using Rowhammer, while a

secure signature service running on a Trusty TEE instance uses

the secure private RSA key to sign a specific message. If the

private key is allocated in a secure memory region adjacent

to the secure/non-secure memory boundary, the Rowhammer

generated by high-rate memory read operations on the non-

secure memory border induces faults on the secure one,

corrupting the private keys and generating a faulty RSA

signature. After retrieving a faulty generated signature on the

Linux side, it is possible to deduce the private key. Among

the discussed microarchitectural issues, this attack is harder to

conduct because it generally requires a higher degree of control

over the environment; plus, it is relatively easy to mitigate it.

VII. DEFENSES FOR TRUSTZONE-ASSISTED TEES

This section presents a compilation of defense techniques

that can help overcome the architectural, implementation,
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Architectural Issues Implementation Issues Hardware Issues

Att. Surf. Wor. Iso. Mem. Pro. Tru. Boot. Val. Bugs Fun. Bugs Ext. Bugs Arch. Imp. Micro. S.D.

2014 TLR [67] � � � � � � � � �
2015

TrustICE [68] � � � � � � � � �
SeCReT [69] � � � � � � � � �

2016

OSP [70] � � � � � � � � �
CaSE [71] � � � � � � � � �
R. Guanciale et al. [20], ARMageddon [21], Truspy [22] � � � � � � � � �

2017

BOOMERANG [72] � � � � � � � � �
Komodo [73] � � � � � � � � �
MIPE [74] � � � � � � � � �
vTZ [3] � � � � � � � � �
CLKSCREW [63], Jacob et al. [24], Benhani et al. [25] � � � � � � � � �

2018

TFence [75] � � � � � � � � �
PrivateZone [76] � � � � � � � � �
RustZone [77] � � � � � � � � �

2019

TEEv [78] � � � � � � � � �
PrOS [79] � � � � � � � � �
SANCTUARY [80] � � � � � � � � �
Ginseng [81] � � � � � � � � �
K. Ryan [61] � � � � � � � � �

Table VIII
Examples of representative papers that contribute with relevant defense techniques (Dxx) for overcoming reported TrustZone-assisted TEE issues. For

architectural issues, filled circle in attack surface, world isolation, memory protection, or trust bootstrapping: the paper proposes D01, D02, D03, D04, respectively.
For implementation issues, a filled circle in validation bugs means it proposes any of D05, D06, or D07; in functional bugs proposes D07; and in extrinsic bugs, D06
or D07. For hardware issues, architectural implications and microarchitectural side-channels have a filled circle, respectively, if the paper proposes D08 or D09.

and hardware issues prevalent in commercial TEE systems.

Table VIII presents examples of some representative papers

that introduced some of these defenses. These examples are

shown chronologically, from 2014 to 2019. A filled bullet

indicates that the respective paper implements at least one

defense technique that can help address the issue indicated in

the heading of the corresponding column. The caption of the

table provides the reading key for interpreting which defenses

(numbered as Dxx) are relevant for each class of TEE issues.

A. Architectural Defenses

We highlight four relevant techniques that can help mitigate

the architectural issues identified in existing commercial

TrustZone-assisted TEEs. Each technique addresses a particular

subclass of issues presented in Section IV.

D01. Multi-isolated environments: This technique can be

employed to reduce the excessively large attack surface of

commercial TEE systems (see I01, I02, and I03). Multiple

isolated environments (other than the standard TA sandboxes

in SW) help to reduce exposure of TEE systems to attacks by (a)

increasing the isolation granularity between TEE components,

thus containing the extent of potential damage caused by

a security breach, and/or (b) limiting the amount of code

that runs in the SW, thereby reducing the chances of highly

damaging SW privilege escalation attacks. Different variants

have been proposed. One line of work aims at creating

strongly isolated compartments within the NW itself where

TAs would be allocated. To protect TAs, TrustICE [68] and

SANCTUARY [80] leverage different features of the TZASC.

OSP [70], PrivateZone [76], and vTZ [3] instead, explore the

hardware virtualization extensions available in NW (NS-EL2)

to implement isolated environments. A second line of research

retains TAs within the SW but aims to strengthen the isolation

between them, e.g., TEEv [78] and PrOS [79] implement a

minimalist hypervisor in SW, allowing TAs to run on multiple

isolated secure guest OSes. Due to the current lack of hardware

virtualization support in SW, both systems use same-privilege

isolation to secure the hypervisor from secure guest OSes.

D02. Secure cross-world channels: Isolation between worlds

can be threatened by vulnerabilities in SW triggered from

the NW. In particular, the reported TEE deficiencies that can

undermine this isolation (see I04 and I05) may lead to the

extraction of sensitive data from SW. Although these specific

issues can be addressed by fixing vulnerable TEE kernel

system calls, cross-world isolation can further be strengthened

by secure NW-SW channels. Proposed by different authors,

these mechanisms help to overcome two existing limitations

in mainstream TEEs: (1) absent or weak authentication when

accessing TEE resources from NW and (2) potentially insecure

shared-memory for data exchange within the channel. SeCReT

[69] provides a session key (to REE applications) that can

be utilized to encrypt the messages. To protect the session

key from untrusted REE kernel, SeCReT interposes mode

switches from/to the kernel and removes the key from memory

during kernel mode execution. TFence [75] further removes

this kernel dependency by creating a partially privileged

process – a shielded portion of the REE application process –

which can directly communicate with TEE. Both TEEv [78]

and SANCTUARY [80] implement exclusive shared memory,

and PrivateZone [76] enables communication without sharing

memory, i.e. through data copies. Aravind et al. [72] use pointer

sanitization for preventing boomerang attacks.
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D03. Encrypted memory: Existing deficiencies in TEE mem-

ory protection (I06 and I07) can mostly be addressed with

mechanisms from mainstream OSes (e.g., ASLR, stack cookies).

Nevertheless, commercial TEEs can provide stronger security

defenses, e.g., against cold boot attacks, by implementing

encrypted memory capability. In contrast to Intel SGX, Trust-

Zone does not provide built-in support for on-chip memory

encryption. To bridge this gap, CaSE [71] allows TAs to

run entirely from the cache and ensures that their state is

encrypted while written back to main memory. Along the same

vein, Ginseng [81] protects variables tagged by the application

programmer as “sensitive”, by allocating them on CPU registers

and encrypting them at runtime before saving them in memory.

D04. Trusted computing primitives: Commercial TEEs rely

on secure boot to guarantee the integrity of the TEE image.

However, this mechanism, per se, is insufficient to enable a

TA’s client – local or remote – to verify the integrity and identity

of both TEE and TA binaries (see I08, I09). To overcome this

limitation, commercial TEEs can implement additional trusted

computing primitives that help provide such guarantees, namely

remote attestation and sealed storage. For instance, TLR [67]

includes a sealed storage primitive that allows for protecting

data cryptographically and bind it to specific hash values of

the TEE/TA software stack. Komodo [73] demonstrates how to

implement, for TrustZone-assisted TEEs, the security protocols

of sealed storage and remote attestation as originally specified

for enclaves (i.e., Intel SGX’s secure environments for TAs).

There is also a body of work in trusted I/O path primitives [82,

83] which aims at providing secure access to peripherals. Given

that we identified a relatively small number of vulnerabilities

involving access to peripherals, which can be mitigated using

standard hardware features for I/O mediation (e.g., SMMU,

bus bridges), Table VIII omits such references.

B. Implementation Defenses

With respect to defenses that can be leveraged to improve the

implementation correctness of TEE components and TAs, we

underline three main techniques. Some of these techniques can

be applied to prevent more than one single type of bugs, i.e.,

validation, functional, and/or extrinsic bugs (see Section V).

D05. Managed code runtimes: Commercial TEE systems are

mostly written in the C programming language which allows

for compiling highly efficient code but do not provide memory

safety. However, many validation bugs are caused by memory

violation errors introduced by the programmer. In alternative

TEE systems, such as in TLR [67], TAs are not compiled to

native code, but rather to .Net managed code which is then

interpreted by a small-sized managed code runtime (akin to

a JVM). At the expense of some performance overhead, the

managed runtime helps to prevent validation bugs, e.g., by

implementing run-time memory checks and garbage collection.

D06. Type-safe programming languages: Researchers have

explored the idea of using type-safe programming languages

to implement specific components of TrustZone-assisted TEE

software. Notably, RustZone [77] is an extension for OP-TEE

where TAs are implemented in the Rust programming language.

Given that Rust provides memory and thread-safety, RustZone

can help prevent validation bugs and some concurrency bugs

responsible for crippling TA software (see I11). The Rust

programming language has also been used in Ginseng [81] for

implementing a large part of the software that runs in monitor

mode, i.e., the GService (see I10).

D07. Software verification: Implementation bugs tend to exist

due to a mismatch between the expected requirements of a piece

of software and its actual implementation. Software verification,

which comprises techniques such as model checking, symbolic

execution, and formal methods, aims at preventing this mis-

match by ensuring that the implementation fully satisfies all

envisioned requirements. For this reason, it has the potential to

help prevent all three classes of prevalent TEE implementation

bugs. However, these techniques can be challenging to apply in

practice, not only because they require considerable effort and

skill, but also because they are difficult to scale for complex

programs. Despite these obstacles, important advances have

been achieved with the formal verification of specific TEE

components, e.g., a small TEE monitor named Komodo [73],

which implements the specification of Intel SGX enclaves, and

a memory manager called MIPE [74].

C. Hardware Defenses

Next, we cover relevant countermeasures known to date for

addressing hardware issues affecting TrustZone-assisted TEEs.

D08. Architectural countermeasures: Hardware manufactur-

ers tend to increasingly pack more components into the SoC

chips, becoming very difficult for TEE designers to fully

understand its implications to the security of a TEE system. To

prevent a growing abuse of reconfigurable hardware technology

(see I19), researchers have proposed: (1) the inclusion of

a small hardware wrapper into all IP cores endowed with

an AXI interface so as to restrict their operation during

system boot [24]; (2) the implementation of a dedicated AXI

interconnect for secure devices [25]; and (3) the inclusion of

a non-secure only port to connect all non-sensitive memory-

mapped IP cores and restrict its operation through memory

protection mechanisms (e.g. SMMU) [25]. To prevent misuse

of hardware voltage regulators (see I20), a possible approach is

to place specific operation limits into the software (i.e., drivers)

or into the hardware itself [63].

D09. Microarchitectural countermeasures: One way to pre-

vent cache side-channels (see I21) is through careful implemen-

tation of cryptographic algorithms in software [20–22, 61] or

using dedicated hardware (e.g., specific ISA instructions such

as AESD and AESE in Armv8-A) [21] to prevent information

leakage in cryptographic-related operations. Another path is to

leverage cache maintenance techniques to prevent information

leakage through caches. For TrustZone-assisted TEEs that

do not use shared L2 cache, one approach is to flush the

L1 cache on every SW exit [80]. If shared L2 cache is

used, although cache flushing (total or selective) or cache

normalization operations performed at every SW entry and
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Dedicated
RAM

Cross-World
Isol.

Encryp. Mem.
Protection

Ring
Attestation

Previously
Exploited

Communication
w/ REE

CPU
Extensions

Arm TrustZone [1] � MMU + HW � -2 sec. boot. � sh. mem.

Intel SGX [84] � MMU + HW � 1 remote att. � data copy

Intel SMM [85] � MMU � -2 sec. boot. � sh. mem.

Sanctum [86] � MMU + HW � -2 sec. boot. � data copy

Co-Processors
Apple SEP [87] � Phys. + HW � -3 sec. boot. � sh. mem.

Qualcomm SPU [88] � Phys. + HW � -3 sec. boot. � sh. mem.

Chips

Intel ME [89] � Phys. � -3 sec. boot. � sh. mem. + HECI

Google Titan-M [90] � Phys. � -3 sec. boot. � SPI/USB/I2C

TPM [91] � Phys. � -3 sec. boot. � SPI/I2C/LPC

Virtualization
Windows VSM [92] � MMU � -1 sec. boot. � sh. mem.

AMD SEV [93] � MMU � -1 remote att. � sh. mem.

RISC-V
Multizone [94] � PMP � -2 sec. boot. � data copy

Keystone [95] � PMP � -2 remote att. � sh. mem.

Table IX
Dedicated RAM: used for allocation of security-sensitive state and isolation from potentially insecure main RAM. Cross-world isolation: implemented using
memory management components (MMU / PMP) or in combination with HW-specific features (e.g., TrustZone’s TZASC); dedicated off-SoC chips achieve

isolation through physical separation. Encrypted memory: filled circle indicates that hardware-enforced memory encryption is supported. Protection Ring:
classified in five levels [26], i.e., 1 (user), 0 (kernel), -1 (hypervisor), -2 (monitor), -3 (off-chip). Attestation: if the TEE runtime can perform local attestation
only (i.e. secure boot), or remote attestation also. Previously exploited: black circle indicates publicly known exploits to TEE systems enabled by that particular

technology. Communication mechanisms with REE: shared memory, data copying, and communication bus (e.g. USB or SPI).

exit may be sufficient to prevent cache-storage attacks [20],

L1 flushing may not be able to prevent Prime+Probe attacks

in multicore systems [21]. In this case (which also holds for

all aforementioned cases), cache partitioning can prevent an

attacker from leveraging contention with victim [21, 22, 80].

Carefully implemented cryptographic algorithms seem also to

be effective at preventing breaches through the BTB (see I22).

This was shown and highlighted by Keegan et al. [61], where

different versions of an algorithm were able to render side-

channels ineffective. To prevent Rowhammer attacks (see I23),

TEEs must avoid the use of memory at the NW-SW boundary.

VIII. BEYOND TRUSTZONE-ASSISTED TEES

Although our work is focused on TEEs specifically assisted

by TrustZone, there are alternative TEE-enabler hardware

technologies. In this section, we briefly present some related

technologies and highlight their main features in Table IX.

One class of hardware technologies provides a set of CPU

extensions where the processor is augmented with circuitry

that implements specific TEE-enabling security functionality.

TrustZone fits this category as well as technologies such as

Intel Software Guard Extensions (SGX) [84], Intel System

Management Mode (SMM) [85], and Sanctum [86], for

instance. Separate co-processors in the SoC, such as Apple

Secure Enclave Processor (SEP) [87] or Qualcomm Secure

Processing Unit (SPU) [88], may include dedicated non-volatile

storage and RAM which allows for reducing shared hardware

resources and help prevent side-channel attacks [21, 96]. In

dedicated security chips, the runtime environment comprises a

processor, memory, and persistent storage. For instance, Intel

Management Engine (ME) [89] is a firmware based on Minix

OS that runs on a separate processor in Intel systems. It is

designed to be an almost fully independent system, with access

to many peripherals and its own secure boot functionality.

Some security chips may be equipped with tamper detection,

as in the case of the Titan-M [90]. Others, such as Trusted

Platform Module (TPM) [91], implement specific functions for

trusted boot, remote attestation, and other primitives. Hardware

support for virtualization can also be used for implementing

TEEs. In Windows’ Virtual Secure Mode (VSM) [92] the

hypervisor establishes two hierarchical privileges modes VTL0

(analogous to the normal world) and VTL1 (analogous to secure

world). AMD Secure Encrypted Virtualization (SEV) [93]

provides the ability to encrypt virtual machine memory using

hardware-accelerated memory encryption. Lastly, RISC-V is an

instruction set architecture which, although not widely deployed

yet, can also be used for implementing TEEs [94, 95].

IX. CONCLUSION

This paper presents a vulnerability study of TrustZone-

assisted TEEs. Despite the common belief that TEEs are

secure due to their hardware-enforced isolation capability

and small TCB, our study reports on numerous pieces of

evidence that question this assumption. In particular, current

TEE systems have serious limitations at the implementation,

architecture, and hardware levels that potentially introduce

exploitable vulnerabilities affecting millions of devices. Based

on our analysis, we highlight multiple state-of-the-art defenses,

proposed by the research community, which we believe can

make commercial TEE systems substantially more secure.
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