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Abstract—One reason for not adopting cloud services is the
required trust in the cloud provider: As they control the
hypervisor, any data processed in the system is accessible to them.
Full memory encryption for Virtual Machines (VM) protects
against curious cloud providers as well as otherwise compromised
hypervisors. AMD Secure Encrypted Virtualization (SEV) is the
most prevalent hardware-based full memory encryption for VMs.
Its newest extension, SEV-ES, also protects the entire VM state
during context switches, aiming to ensure that the host neither
learns anything about the data that is processed inside the VM,
nor is able to modify its execution state. Several previous works
have analyzed the security of SEV and have shown that, by
controlling I/O, it is possible to exfiltrate data or even gain
control over the VM’s execution. In this work, we introduce
two new methods that allow us to inject arbitrary code into
SEV-ES secured virtual machines. Due to the lack of proper
integrity protection, it is sufficient to reuse existing ciphertext to
build a high-speed encryption oracle. As a result, our attack no
longer depends on control over the I/O, which is needed by prior
attacks. As I/O manipulation is highly detectable, our attacks
are stealthier. In addition, we reverse-engineer the previously
unknown, improved Xor-Encrypt-Xor (XEX) based encryption
mode, that AMD is using on updated processors, and show, for
the first time, how it can be overcome by our new attacks.

I. INTRODUCTION

Virtual Machines (VMs) are a very important part of today’s

cloud computing market. They significantly ease technical

aspects of hosting. On the customer side they allow for flexible

resource scaling, due to their low setup time. Furthermore,

multiple VMs can run on the same physical machine, because

the hypervisor – the software that manages the virtualization

– provides one sided isolation, by preventing the VM from

accessing other software running on the host. Thus, the hosting

provider can make better use of its hardware.

Apart from that, potential customers still cite data privacy

concerns toward cloud service providers as a main reason not

to adopt cloud solutions, especially in cases where the hosting

location within a given jurisdiction cannot be guaranteed. Per-

forming sensitive computations in VMs requires the customer

to fully trust the hypervisor, since the hypervisor has direct

access to all virtualized resources.

Security solutions like full disk encryption only partially

address this issue, since the data is still vulnerable when

being decrypted and stored in the RAM at run time. Pro-

viding full isolation between the hypervisor and the VM has

been studied extensively by researchers as well as industry

[9, 21, 22, 23, 24, 34]. Intel Software Guard Extensions

(SGX) [9, 20, 27] was the first widely available solution

for protecting data in RAM. However, it only can protect

a small chunk of RAM, not the VM as a whole [17]. In

2016, AMD introduced Secure Memory Encryption (SME)

and Secure Encrypted Virtualization (SEV) [24] to protect

the entire system memory. SME provides drop-in, AES-based

RAM encryption. SEV extends this for VMs by using different

encryption keys per VM, in order to prohibit the hypervisor

from inspecting the VM’s main memory. This was a first

step towards full isolation. The Linux kernel support for SEV

was mainlined in early 2018 [8]. In February 2017, AMD

introduced SEV Encrypted State (SEV-ES) [23], which offers

additional protection against manipulating the state of a VM

during context switches. While SEV-ES does not need new

hardware, it requires extensive modifications to the Linux

kernel. According to AMD, the corresponding patches are

mostly finished, however support for SEV-ES has not been

mainlined, yet [25]. Intel is also working on a solution similar

to SME/SEV, called Total Memory Encryption (TME)/Multi-

Key Total Memory Encryption (MKTME) [21], but did not

yet publish corresponding processors. A detailed comparison

between Intel SGX and AMD’s memory encryption can be

found in [28].

This work focuses on AMD’s solutions for providing full

isolation between hypervisor and VM, as it is the most preva-

lent full memory encryption. All prior attacks have either been

mitigated by SEV-ES or used I/O to move known plaintext into

encrypted pages. We show that our attack vector is available

even without user-controlled I/O or access to unprotected I/O

operations. Instead, we only require minimal knowledge about

the system to compromise and completely take over the VM.

To achieve this, we bootstrap an encryption oracle from just

a few megabytes of known plaintext, allowing us to place

and execute arbitrary code in the VM. We identify the lack

of integrity protection as the main reason for this weakness,

and postulate that full security against our attacks can only

be achieved by implementing a proper integrity protection

scheme. As an independent contribution, we also show that

AMD’s updated XEX-based memory encryption mode is still

vulnerable to the previous attacks.

A. Our Contribution

• We exploit the missing integrity protection of SEV to place

arbitrary code in a SEV-ES secured VM, without relying
on any I/O operations.
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• For this we bootstrap an encryption oracle just by moving

existing ciphertext within the VM’s memory.

• We show the security impact of the emulated cpuid
instruction by abusing it to create a high-performance

encryption oracle.

• We reverse engineer the new XEX encryption mode, that is

used on updated processors, and infer the associated tweak

values. We show that this mode is just as vulnerable as

the previous XE-based encryption mode which has been

exploited by prior attacks.

• We discuss previously proposed and new countermeasures,

and evaluate their impact on our attacks.

II. BACKGROUND

A. AMD Memory Encryption

Secure Memory Encryption (SME) To protect against an

attacker with physical access to a system, AMD introduced

SME in 2016 [24]. SME encrypts data before writing it to

RAM, which renders it useless for an attacker attempting to

access the data, e.g., via a cold boot attack or Direct Memory

Access (DMA) [10, 18, 36]. The encryption and decryption

are controlled by the Secure Processor (SP), an ARM-based

co-processor.

A special bit in the page table – the so-called C-bit – is

used to indicate whether a page should be encrypted [24].

However, changing the C-bit does not change the content of

the page, only whether it is interpreted as encrypted or not.

There is no coherency between mappings of the same memory

location with different C-bit values, or different encryption

keys. Thus, changing the encryption status requires flushing all

involved CPU caches. In case the Operating System (OS) does

not support SME, Transparent SME (TSME) can be used: In

TSME mode, all memory pages are encrypted independently

from the value of the C-Bit.

When the system boots, a random memory encryption key

is created and stored in the SP [24]. Subsequently, memory

writes are encrypted, and memory reads are decrypted. For

both the encryption and decryption, the SP uses AES in

conjunction with a physical address-based tweak.

Secure Encrypted Virtualization (SEV) The SEV technol-

ogy was introduced together with SME in 2016. The goal of

SEV is to protect a VM from a malicious or compromised

hypervisor. This is achieved by using the memory encryption

technology of SME with a different encryption key for each

VM and the hypervisor itself. All keys are stored in the SP

and are not accessible by any other party.

Due to the different encryption keys, a hypervisor attempt-

ing to access data of a VM would get a decrypted version

using the hypervisor’s key, rendering the generated plaintext

useless. However, the VMs can use the hypervisor’s key to

intentionally share information.

A known issue of SEV is the lack of encrypting the Virtual

Machine Control Block (VMCB), which is a data structure

describing the state of a VM. It includes information like

the VM’s configuration and register contents. It also provides

means for communication between the hypervisor and the

VM: For example, if the VM exits due to an interrupt, the

processor stores appropriate metadata (e.g., a memory address)

in this structure. The lack of encryption can be exploited to

manipulate the execution flow of the VM and leak sensitive

information like [19, 33] have shown.

SEV Encrypted State (SEV-ES) To address these issues,

AMD introduced SEV-ES [23] as an extension for SEV. SEV-

ES splits the VMCB into two areas: The control area and the

save area. The unencrypted control area contains information

that must always be available to the hypervisor in order to

manage the VM, e.g., flags for interrupt injection. The save

area contains all of the other information from the VMCB, and

is protected against access or manipulation from the hypervisor

by encrypting it when the VM exits. However, since certain

operations require the VM to share data from its save area with

the hypervisor (e.g., reading and writing certain registers when

emulating cpuid), AMD introduced the Guest Hypervisor

Communication Block (GHCB), which basically is a shared

page, allowing communication between guest and hypervisor.

They introduced a new exception, which gets triggered by

operations that require the VM to share information with the

hypervisor, allowing the guest to copy the required data from

the VMCB to the GHCB before the #VMEXIT. When the VM

is resumed, it can copy the data back to its VMCB.

Encryption mode Like SME, SEV and SEV-ES provide drop-

in memory encryption, but for VMs. The memory encryption

has no ciphertext expansion, which means that structure and

size of the memory remain unchanged with and without en-

cryption. Similar techniques like Intel SGX [14] store Message

Authentication Code (MAC) tags for each memory block,

which allows for strong integrity protection, but comes with

significant overhead. In contrast, AMD does not store any

integrity protecting metadata, which is very convenient for the

user in terms of transparency and space-efficiency.
AMD achieves an implicit block level integrity protection

through the encryption: Changing any bits in a ciphertext block

results in a garbled and for the attacker unpredictable plaintext

block. Also, the usage of an address-based tweak should make

it difficult to decrypt a valid ciphertext at another address and

get a meaningful plaintext. One thus has to assume that the

VM execution will eventually halt if it encounters random data

blocks (i.e. invalid opcodes or state variables) – there are no

means of reliably detecting whether the ciphertext has been

tampered with.
Since both SME and SEV use the same technique for

the encryption process, they suffer from the same problems

regarding integrity. These problems are even more severe in the

case of SEV, because an attacker with hypervisor permissions

can easily manipulate or copy the RAM content of a VM.

B. Memory Encryption using Tweakable Block Ciphers
One popular method for storage encryption are tweak-

able block ciphers, such as AES-XTS [1], which is, e.g.,

used in Apple’s FileVault, MS Bitlocker and Android’s file-

based encryption. Tweakable block ciphers provide encryption
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without data expansion as well as some protection against

plaintext manipulation. A tweak allows to securely change

the behavior of the block cipher, similar to instantiating it

with a new key, but with little overhead. If the tweak is,

e.g., a function of the block address, the encryptions for each

block appear independent, which prevents numerous attacks on

the ciphertext, such as frequency analysis, block moving and

several more. However, without proper integrity protection,

several attacks remain possible, i.e., randomizing the plaintext

(by altering the ciphertext), replaying old values and traffic

analysis by monitoring location-specific changes.

AES-XTS includes ciphertext stealing, which allows

expansion-free block encryption for arbitrary-length plaintexts

by using previous ciphertext for padding. Memory in RAM

and the uncore part of the CPU is always handled in blocks

of 64 bytes, which is a multiple of the 16 byte block size

of AES. Thus, ciphertext stealing is not needed, reducing the

XTS mode to the original Xor-Encrypt-Xor (XEX) mode by

Rogaway [32]. XEX and Xor-Encrypt (XE) are methods to

turn a block cipher such as AES into a tweakable blockcipher,

where a tweak-derived value is XORed with the plaintext

before encryption (and XORed again after encryption in the

case of XEX).

C. Nested Paging

On most common OSs, processes use Virtual Addresses

to access data [15]. Those VAs are translated into Physical

Addresses, which determine where the data is located in the

physical memory. The mappings between VAs and PAs are

stored in the page table.

On virtualized systems, two different page tables are used.

Within the VM, the VA used by the guest, the Guest Virtual

Address (GVA), is translated to the Guest Physical Address

(GPA). The GPA is the address which the VM considers to be

the PA. However, on the host system itself another page table is

introduced, to allow multiple VMs to run on the same physical

machine. This second page table is called the Second Level

Address Translation (SLAT), or Nested Page Table (NPT) [5].

The NPT translates the GPA into the Host Physical Address

(HPA), the actual address of the data in physical memory.

When SEV is active, the page table in the guest is encrypted

and thus not accessible by the hypervisor. However, the

hypervisor is still responsible for managing the NPT. This

allows the hypervisor to infer information about the VM’s

memory assignment by monitoring the entries in the NPT.

The NPT cannot be accessed by the VM. It is therefore not

possible for the VM to prevent the hypervisor from overwriting

permissions in the NPT. Multiple attacks make use of this

possibility to gather information about where the VM stores

critical data [12, 19, 26, 30, 31].

D. Instruction Interception

In a virtualized environment, there are two reasons which

cause a VM to trigger a #VMEXIT, which hands control back

to the hypervisor. One reason are interrupts and exception

handlers, which need hypervisor assistance, e.g., page faults

due to swapped pages.
The second reason is the interception of special instructions

[6]. Two prominent examples for this are the cpuid and the

rdtsc instruction. The cpuid instruction allows querying a

wide span of CPU information, including an accurate model

number, a list of supported features and the system’s topology.

Changing the returned registers allows the hypervisor fine

grained control over the hardware features it exposes to the

guest. The rdtsc instruction returns the current state of

the core-private timestamp counter. OSs and other programs

may use this counter for cycle-level time measurements. If a

VM is live-migrated from one host to another, the cpuid
and rdtsc values on both machines might be different.

Emulating these instructions allows the hypervisor to convey a

consistent picture of the system state. Whether an instruction

is intercepted or not can be configured in the VMCB.

E. Previous Attacks on SEV

Manipulating VMCB Hetzelt and Buhren [19] explore the

idea of manipulating the general purpose registers stored in

the VMCB to create an encryption/decryption oracle. In order

to move data from memory into a register or vice versa,

they manipulate the RIP register in the VMCB, to construct

corresponding gadgets. SEV-ES mitigates these attacks.

I/O-based attacks Du et al. [16] build an encryption oracle,

which is based on self-generated network traffic. They require

that an Nginx web server is running in the VM and exploit

its memory management behavior, allowing them to locate the

content of specifically crafted, self-generated HTTP packets in

the VM’s RAM.
Morbitzer et al. [31] leverage the hypervisor’s control over

the NPT in order to swap GPA mappings. In combination with

a network service running inside the VM, which returns some

resources on request, they build a decryption oracle. In the

first phase, they locate the GPA where the response of the

network service is stored by repeatedly sending requests and

monitoring the page fault side channel. In the second phase,

they manipulate the NPT so that the GPA of the returned

resource points to another memory location. Thus, the content

of this memory location is returned on the next request. In

their follow-up work [30], they show how to locate GPAs that

might contain secret data, like encryption keys.
Li et al. [26] exploit the fact that DMA operations issued by

the VM are currently performed via an unencrypted bounce

buffer. They demonstrate that this can be used in combination

with network I/O, to create an encryption/decryption oracle. If

the VM performs network I/O, the packets are copied to the

bounce buffer, before they are processed by the network card.

To create an encryption oracle, they manipulate incoming data

in the bounce buffer before the VM copies it into its private

memory. For the decryption oracle, they manipulate the data

that the VM wants to send before it gets copied from the VM’s

private memory into the bounce buffer. To detect the memory

locations and hit the correct timing, they use the page fault

side channel.
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Fingerprinting Applications Werner et al. [33] showed two

independent results. First, they use the unencrypted VMCB

to reconstruct code executed in the VM by singlestepping the

VM while observing the changes to the unencrypted register

values in the VMCB. Like [19] they also use the unencrypted

VMCB to encrypt/decrypt data. This is mitigated by SEV-ES.

In their second result, they show how to use a performance

counter subsystem called Instruction Based Sampling (IBS)

to detect which applications are running in the VM. They

leverage that IBS leaks the GVA of return statements, and

show, that the distance between return statements uniquely

identifies specific versions of applications. They claim that

the guest cannot detect whether IBS is activated. This result

holds under SEV-ES.

Security of AMD-SP In [13] Buhren et al. take another

attack vector. They examine the security of the AMD SP,

which forms the root of trust for SEV. The SP only executes

signed firmware images. However, they found a bug in the

signature check mechanism, allowing them to execute manip-

ulated firmware on the SP. While newer firmware versions fix

that bug, there is no rollback prevention mechanism. Thus an

attacker can just load a vulnerable firmware version. Using

a modified firmware, they are able to extract the private key,

used by the SP to authenticate itself as an AMD device.

Data Faults In [11], Buhren et al. explore the idea of per-

forming classical fault attacks on application data in memory.

They flip a bit in a ciphertext block, in order to create garbled

plaintext. They demonstrate how to use this to perform a fault

attack on RSA CRT. They implemented their attack for SME

and required that the attacker is able to run an unprivileged

application and can perform DMA memory access. However,

it should also be possible to migrate this attack to SEV.

III. REVERSE ENGINEERING THE ENCRYPTION MODE

In order to predict how the plaintext that corresponds to

a ciphertext block changes, when the ciphertext block gets

copied to a new memory location, we reverse engineer the

AES encryption mode, particularly the address-based tweak

function. Only with this knowledge we are able to inject

meaningful data into the VM via ciphertext moving.

As shown in [16], AMD uses a tweaked AES encryption

to avoid that a ciphertext block appears multiple times due

to an identical plaintext. If AMD would not have added any

randomization, it would have been trivial to move ciphertext

blocks, and easy to fingerprint applications by detecting certain

repeating patterns in memory, e.g., alignment bytes between

functions, or zeroed pages.

Since an encrypted block does not have any kind of tag or

temporal information, AMD uses a function of its physical ad-

dress to compute the associated tweak value. In the following,

we summarize our findings on that function and verify and

extend the results from [16].

A. XE Encryption Mode

According to [16], the processor contains a fixed array of

16-byte tweak constants ti for i ≥ 4. Given a physical address

TABLE I. The first three tweak constants on an Epyc 7251 processor. We
denote the first one as t4, since there are no dedicated constants for the least
significant bits 3 to 0. This also implies that each tweak constant has a length
of 16 bytes.

t4 82 25 38 38 82 25 38 38 82 25 38 38 82 25 38 38
t5 ec 09 07 9c ec 09 07 9c ec 09 07 9c ec 09 07 9c
t6 40 00 00 18 40 00 00 18 40 00 00 18 40 00 00 18

p, where bit(p, i) represents its i-th least significant bit for

i ≥ 0, the tweak value T (p) is defined as

T (p) :=
n−1⊕
i=4

bit(p, i) · ti,

This means, that for each physical address bit the respective

tweak constant is XORed, if that bit is 1.

A 16-byte plaintext block m ∈ {0, 1}n with physical

address p is then encrypted as

EncK(m, p) := AESK (m⊕ T (p)) .

Similarly, decryption of a ciphertext c uses the inverse trans-

formation

DecK(c, p) := AES−1
K (c)⊕ T (p).

This construction is a variant of the XE mode of opera-

tion [32].

We can exploit the missing integrity protection, to compute

all tweak constants ti: We encrypt a block m with physical

address p, copy the ciphertext to other addresses qj and decrypt

it there. By doing this, the tweak values of the source address

p and the target addresses qj are XORed:

DecK (EncK (m, p) , qj)

= AES−1
K (AESK (m⊕ T (p)))⊕ T (qj)

= m⊕ T (p)⊕ T (qj)

= m⊕ T (p⊕ qj).

This allows us to build a system of linear equations, whose

solution are the tweak constants:
⎛
⎜⎜⎜⎝

p⊕ q1
p⊕ q2

...

p⊕ qn−4

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

tn−1

tn−2

...

t4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

m⊕ T (p⊕ q1)
m⊕ T (p⊕ q2)

...

m⊕ T (p⊕ qn−4)

⎞
⎟⎟⎟⎠ .

The first few constants are shown in Table I. Each constant

consists of a repeating pattern of 4 bytes, thus reducing its

entropy to at most 32 bits.

The tweak constants on our Epyc 7251 mostly equal those

from [16], who used a Ryzen 7 1700X. This suggests that

AMD hardcoded these values, or at least uses a fixed seed

to generate them on startup. However, even fully randomizing

these values on boot would not add any security, since they

are shared across VMs and the hypervisor thus could easily

compute them in advance, as shown above.
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We also performed these experiments on an AMD Ryzen

1950X, which only has SME support. On our first measure-

ments we found that t8 = t9 = 0, which led to repeating pat-

terns within an encrypted page, if the plaintext was all zeroes;

some time later, after applying several operating system and

BIOS updates, the tweak values t8 and t9 changed, removing

those patterns. This leads us to the conclusion that the tweak

values are influenced by firmware.

In summary, these results show, that XE schemes in com-

bination with missing integrity protection leak information

about the tweak function. This is problematic especially in

the context of RAM encryption, where the tweak function is

required to have low computational complexity.

B. Updated XEX Encryption Mode

We conducted the same experiments on an Epyc Embedded

3151 processor, which was released about 8 months after the

Epyc 7251, and on an Epyc 7401P processor, which was

released together with the Epyc 7251. On both processors,

the system of linear equations did not have any solutions, i.e.,

AMD must have changed the encryption mode.

To reverse engineer the new encryption mode, we assumed

that AMD did not greatly deviate from their previous im-

plementations, and thus conducted a few experiments with

slightly modified functions which used the same tweak values

as before. This approach proved successful and yielded the

new encryption function

EncK(m, p) := AESK (m⊕ T (p))⊕ T (p),

and the matching decryption function

DecK(c, p) := AES−1
K (c⊕ T (p))⊕ T (p).

As these equations show, AMD chose to use the XEX [32]

mode of operation, where a second tweak value is XORed to

the AES encrypted ciphertext; in this case, both tweak values

are identical.

The altered encryption function significantly complicates

calculating the tweak constants, since simply decrypting a

ciphertext at a different position does not yield usable results

anymore:

DecK (EncK (m, p) , q)

= AES−1
K (AESK (m⊕ T (p))⊕ T (p)⊕ T (q))⊕ T (q).

Instead, the attacker needs to guess T (p)⊕ T (q) and add this

number to the ciphertext before decrypting. She can then check

her guess by computing

DecK (EncK (m, p)⊕ T (p)⊕ T (q), q)
?
= AES−1

K (AESK (m⊕ T (p)))⊕ T (q)

= m⊕ T (p)⊕ T (q).

If all 128 bits of the tweak constants were chosen randomly,

this operation would become infeasible; however, AMD still

uses the repeated 4-byte pattern, so each tweak constant has

only 32 bits of entropy.

Guessing these tweak constants is still computationally

expensive, since one has to flush the respective TLB entry

and the CPU caches when changing the encryption status of

a page. We managed to partially work around this penalty by

parallelizing our guesses, taking only around 30 minutes for

each tweak constant. Given that even the newer CPUs still use

the same tweak constants for every VM, the hypervisor can

pre-compute the table once in advance, so the slightly higher

computation time becomes negligible in terms of security.

In summary, we showed that AMD implemented the well-

known XEX encryption mode. However, the tweak values have

very low entropy and depend linearly on the physical memory

addresses, enabling a malicious hypervisor to compute the

entire table of tweak constants nevertheless. In the next two

sections, we will exploit this fact and show how known

plaintext can be used to place arbitrary code and data in the

encrypted VM.

IV. CIPHER BLOCK MOVING ATTACK

As we have seen in the previous section, we can compute

the tweak values for any physical address. In this section we

show how a malicious hypervisor can use the knowledge of

the tweak values together with known plaintext and missing

integrity protection, to place 16-byte blocks containing some

consecutive, controlled bytes.

This narrow attack vector already suffices to insert early

returns in functions and skip parts of code, as shown in Section

V. In Section VI, these byte sequences are exploited to build

a full 16-byte encryption oracle, which allows us to execute

arbitrary code on the highest privilege level within the VM.

Contrary to previous work [16, 26], which has used network

I/O to create an encryption oracle, we do not need any control

over the plaintext that gets loaded into the VM in order to

inject arbitrary data/code: Instead we simply use the plaintext

that is already inside the VM anyway.

A. Attacker Model

We assume that the attacker controls the hypervisor, which

implies control over the NPTs and the ability to modify the

VM’s RAM. The attacker knows at least parts of the guest

kernel’s binary, which might be due to the unencrypted /boot
partition or by using fingerprinting (see Section VIII-D). We

assume that the VM is secured by SEV-ES, implicating that

the initial VM image cannot be tampered with and the VMCB

is protected. We do not require, that the VM communicates

over the network or uses disk I/O.

B. Tracking Guest Execution

To be able to make the VM execute hypervisor-supplied

code while being in a known state, we need to follow and

eventually suspend its execution. We achieve this by using

the page fault side channel, which has first been introduced

in the context of Intel SGX [35]. A schematic overview can

be found in Figure 1. Since we control the hypervisor, and

therefore the host page table, we can mark the relevant VM

pages as not writable or not executable. If the VM then tries to
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GPA rw- GPA rw-GPA r-x

Guest Page Table

HPA rwx HPA rwx HPA rw-

Host Page Table

GVA GVA GVACode:

rip

1. Remove execute
permission

2. Page fault is raised due
to missing execute permission

Fig. 1. Page fault side channel. When the VM tries to execute an instruction,
the GVA which the program counter (rip) is pointing to has to be resolved
to a HPA. This is accomplished by performing a walk through the NPTs,
while checking the respective permission flags. The hypervisor can force the
VM to page fault by removing the execute flag in the host page table entry.
Subsequently, the hypervisor learns which page the VM tried to execute. The
same method can be used for detecting memory writes, by clearing the write
flag instead.

issue a memory write or execute an instruction, a page fault is

triggered and the corresponding hypervisor interrupt handler

is called. The page fault exception contains the GPA where

the fault occurred. The execution of the VM can be resumed

by marking the VM’s page as writable respectively executable
within the host page table.

Our attacks require computing tweak values, which in turn

depend on HPAs, so we have to infer the latter for both the

source and destination GPAs. The NPTs provide this transla-

tion. Since we aim at injecting and executing code in the VM,

we need to find GPAs that are mapped as executable inside

the guest. We cannot directly inspect the page tables inside the

VM, but we can acquire this information by monitoring for

page faults due to missing execute permissions via the page

fault side channel.

The guest kernel is a suitable target for code injection

attacks, because it is executed with the highest privileges and

is loaded to consecutive GPAs. On modern Linux kernels, the

base GPA, to which the kernel gets loaded, is randomized

by Kernel Address Space Layout Randomization (KASLR).

We present two methods for finding the guest kernel when

KASLR is active. The Linux kernel is booted in two steps.

First a small bootstrapper is loaded (to a fixed GPA) that,

amongst other setup tasks, is responsible for loading the actual

kernel and for performing the KASLR. In the first approach,

we use our cipher block moving attack to modify the code

of the bootstrapper, such that the KASLR code is never

executed. That way, the kernel is always loaded to a fixed GPA.

We present a more detailed description in case study V-A.

For the second approach, we monitor the naturally occurring

page faults during VM startup. We exploit, that the kernel

is loaded to continuous GPAs and that the memory accesses

before loading the kernel to a randomized address, are quite

deterministic. This allows us to identify the memory accesses

related to loading the kernel, which gives us the GPAs of the

kernel.

At the moment, AMD’s patched Linux kernel cannot be

complied to run as a SEV-ES guest and use KASLR at the

same time, as the compile time options for these features ex-

clude each other (see CONFIG SEV ES GUEST and CON-

FIG RANDOMIZE BASE in arch/x86/Kconfig in AMD’s

kernel repository [2]). We are not aware of any fundamental

conflict between these two features and thus suspect that this

is only a temporary implementation issue. We tested these

methods on SEV secured machines, but as they do not rely on

an unencrypted VMCB they should also work with SEV-ES.

As mentioned in the attacker model, the kernel code can be

assumed to be entirely known to the attacker and thus serves

as a reliable source for ciphertext blocks with known plaintext,

which can be copied to other places in the kernel to trigger

malicious behavior.

C. Placing partially controlled Plaintext

Knowing the destination address in VM memory we can

now start to construct our attack primitive. Since SEV lacks

any integrity protection, the hypervisor can modify the con-

tents of the entire guest’s memory. Randomly guessing ci-

phertexts is rather unlikely to yield meaningful plaintext and

will, especially in the case of code, most probably crash the

VM. However, since we can compute the tweak values for any

given address, we can re-use existing ciphertext blocks after

applying slight adjustments.

We assume that we want to place a 16-byte block m at

address p. We then need to find an address q holding a known

16-byte plaintext block m′, which satisfies the following

property:

m⊕ T (p) = m′ ⊕ T (q)

⇔ m′ = m⊕ T (p)⊕ T (q)

Copying the corresponding ciphertext block from q to p and

decrypting it, yields the desired plaintext block m:

DecK (EncK (m⊕ T (p)⊕ T (q), q) , p)

= AES−1
K (AESK (m⊕ T (p)⊕ T (q)⊕ T (q)))⊕ T (p)

= (m⊕ T (p)⊕ T (q)⊕ T (q))⊕ T (p)

= m.

To target the XEX encryption mode the copied ciphertext

block needs to be slightly adjusted, by adding T (p)⊕ T (q):

EncK (m⊕ T (p)⊕ T (q)) , q)⊕ T (p)⊕ T (q)

= AESK (m⊕ T (p))⊕ T (p).

Decrypting this at address p will then yield m.

The complexity of the bit sequences a malicious hypervisor

is able to create with this method is limited by several factors.

The first is the diversity of the known plaintext blocks, i.e.,

whether they have enough entropy. The next limitation is the

32-bit periodicity of the tweak values (which we can control by

choosing the HPA a GPA gets mapped to), so we can expect
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to be able to control at most 4 bytes of any 16-byte block

in a reliable way. Finally, for our processors we found that

only 28 tweak constants are linear independent, so for each

guest page the hypervisor can choose from up to 228 different

base addresses which yield different ciphertext blocks. This

suggests a rough upper bound of 3 bytes per block, which an

attacker is likely to be able to fully control, if given enough

plaintext and memory.

In our experiments, we found that we can very reliably find

a fitting pair m′/q for any sequence of two bytes, given about 8
MB of known plaintext. We copied the .text (code) section

of the Linux kernel bootstrapper as it gets loaded into memory,

which can be easily located due to the lack of randomization

of its load GPA. In addition, we can use the .text section of

the kernel binary itself, after locating it in memory with one

of the previously described methods.

D. Code Injection

We now show how the two controlled bytes per block can

be used to modify existing VM code, allowing us to redirect

the control flow and to insert arbitrary 2-byte instructions.

Instructions on x86-64 have variable length and might share

prefixes, so we have to consider whether we change or break

an existing instruction when injecting our 16-byte block. Also

we have to ensure that the uncontrolled bytes of our block do

not get executed. The easiest way to achieve this is by finding

a 16-byte aligned instruction and overwriting it with a short

branch instruction, like ret or jmp (Figure 2). This simple

modification already suffices to completely disable KASLR

(see Section V-A).

Finding a 16-byte aligned instruction for an injection point

is rather easy for 64-bit code: For performance reasons,

most compilers align functions and frequently used chunks

of functions to an architecture-specific value, which usually

happens to be 8 bytes on x86-64, so we can expect around

every second function to be aligned to a 16-byte boundary.

To avoid executing the uncontrolled bytes of a block, we

always have to insert a jump instruction – which takes both

usable bytes of a block, so this method only allows us to skip

small parts of the underlying code.

To insert other instructions, we propose the layout shown in

Figure 3. First we inject a jmp at a 16-byte aligned instruction.

With this, we jump to offset 14 of the following block, where

we can place an arbitrary two byte instruction (payload). Then

we can use the first two bytes of the following block to again

jump to the next payload location. This way we maximize the

amount of consecutive bytes that we can control.

In Section V we successfully use this method to disable

KASLR and illustrate a fast cpuid-based 16-byte encryption

oracle. Finally, in Section VI, we build another 16-byte en-

cryption oracle which solely relies on ciphertext block moving

and the ability to provoke a context switch between hypervisor

and VM at a precise moment in time. We demonstrate how

the latter can be achieved by using emulated instructions or

page faults. In contrast to the cpuid-based 16-byte encryption

oracle, this final encryption oracle does not depend on the

capability of the hypervisor to modify the result of emulated

operations, so it is difficult to mitigate without introducing

proper integrity protection. Both encryption oracles allow us

to execute arbitrary code within the VM.

V. ATTACK CASE STUDIES

A. Control Flow Modification for KASLR

To be able to track VM execution, the hypervisor needs

to know the base GPA of the kernel, which is randomized

by KASLR. In order to perform a first demonstration of our

attack primitives, we disable KASLR using the one-block code

injection method from Section IV-D, effectively placing the

kernel at a well-known, constant GPA.

When loading the kernel, the bootstrapper code calls

the function void choose_random_location(...),

which is defined in /boot/x86/compressed/kaslr.c. The function

checks whether the user provided the nokaslr command line

option; if this is the case, it returns immediately. Else the

function computes random physical and virtual base addresses

for the kernel and writes them into the supplied pointer

arguments. So, to disable KASLR, it is sufficient to place a

ret at an early location in the function.

To find the right point in time to modify

choose_random_location, we utilize the page fault

side-channel as explained in Section IV-B. We remove the

write permissions to the physical page after the first part

of the targeted function is copied. This causes a page fault

to be triggered as soon as the boot loader is done copying

the first part of the function and tries to copy the next one.

When handling the page fault, the hypervisor places the block

containing the ret instruction, and then resumes execution.

In our experiments, the targeted function was always located

near the end of the bootstrapper’s .text section, which

means that we already have a few MB of known plaintext at

this point, depending on the kernel binary. In addition, the

ret instruction only requires a 1-byte opcode, which greatly

reduces the amount of known plaintext that is needed to

inject the instruction. As stated above, AMD’s patched Linux

kernel can currently not be configured to both use KASLR

and run as an SEV-ES guest. Thus we only tested this attack

on SEV secured VMs (without the ES extension).

B. Using CPUID as an Encryption Oracle

Our code injection primitive can be combined with the

hypervisor-emulated (intercepted) cpuid instruction to gain

control over certain general purpose registers and build a high

performance 16-byte encryption oracle.

As explained in II-A, the content of the VMCB gets

encrypted and integrity protected upon a #VMEXIT in case

SEV-ES is enabled. This prevents a malicious hypervisor from

manipulating its content; however, in order to emulate instruc-

tions like cpuid, the value of certain registers is still shared

via the GHCB. While the guest owner may disable instruction

emulation, they are an important virtualization feature that

allows for fine-grained control over exposed hardware features
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??13

13 48f3 48 85 c0 74 ff c2 48 89 15 b0 2e 10 00 ff 10 48 89 05 a7 2e 10 00 48 89 05... ...

test
rax, rax

je
+0x13

inc
rdx

mov
qword [...], rdx

call
[rax]

mov
qword [...], rax

f3 48 85 c0 eb ?? ?? 05 a7 2e 10 00 48 89 05... ...

test
rax, rax

jmp
+0x13 ??

?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??

(a)

(b)

Fig. 2. Example for changing execution flow by replacing one 16-byte block of code. While the base program (a) branches conditionally depending on
the value of the rax register, the patched version (b) has this branch replaced by an unconditional one. The remainder of the inserted block consists of
uncontrolled bytes, which are not expected to form a sequence of meaningful instructions.

pay
load

jmp
+0x1c

pay
load

jmp
+0x1c

jmp
+0x1c

pay
load

control flow

2 Bytes 14 Bytes

uncontrolled

uncontrolleduncontrolled

uncontrolleduncontrolled

uncontrolled

Fig. 3. A sequence of consecutive 16-byte blocks blocks are chained together
to get small contiguous chunks of code, which are connected by unconditional
2-byte jmp instructions to avoid executing the uncontrolled bytes in between.
Thus two bytes of every second block can be used to execute arbitrary 1-
byte or 2-byte instructions (payload). The last payload may either redirect to
original code (e.g., by returning), or enter a loop.

as well as keeping the VM’s environment consistent in case

of live migration.

OS kernels frequently call the cpuid instruction during

startup to retrieve information about the system’s capabilities

and topology. Since the results of these calls often get directly

stored in memory for caching purposes (e.g., the vendor

string), this poses an easy target for injection attacks.

First we determine the HPA of the cpuid call and the

associated memory store; then we inject a block containing

an unconditional jump to the cpuid instruction after the

memory store in order to create a loop. On each cpuid call,

the hypervisor sets the return registers, resumes execution and

waits for the next cpuid call. When this call occurs, the data

from the last call has been stored, so the hypervisor can copy

the encrypted data to the desired location.

We implemented this exploit in the get_model_name
function (arch/x86/kernel/cpu/common.c) of the

Linux kernel, since it writes the cpuid result to a contiguous

block of 16 bytes, which can be directly used as an encryption

oracle. One could also use our basic injection attack to create

such a cpuid loop. The results can be stored on the program’s

stack memory, whose GPA can be determined by the stack

detect gadget which will be presented in the next section.

Since we only need one VM/hypervisor context switch per

16-byte block, this channel is very efficient: We encrypted

1’000’000 blocks (16 MB) within around 37.5 seconds, sug-

gesting a bandwidth of around 3.41 MBit/s or 426.67 KB/s.

VI. EXECUTING ARBITRARY CODE

The previous two examples have shown that even little

modifications of control flow can have a severe effect on the

system’s overall security. However, our ultimate goal is to

execute arbitrary code, without having to rely on the ability to

control register contents through an intercepted instruction, or

use of I/O. We will advance the 4-byte block chaining method

from IV-D, to inject a program into the VM, which writes

arbitrary data into a 16-byte block of memory. This block

encryption oracle enables us to execute arbitrary code with

kernel privileges inside the VM. We show that the oracle can

be easily used to construct a decryption oracle as well.

The basic idea is to inject a small code gadget into the VM,

that performs some computations in order to write 4 bytes of

plaintext into a 32-bit register. Next we push this register onto

the stack, to get an encrypted version of our plaintext; this

serves as an intermediate 4-byte encryption oracle, so we are

able to control 2 + 4 = 6 consecutive bytes. We then use this

increased payload size to repeat the same process with 64-bit

registers, finally giving us control over the full 16 bytes of a

block.

A. Triggering the Hypervisor

The proposed attack needs careful synchronization between

VM and hypervisor, such that the hypervisor can suspend

execution at a precise point in time and modify guest memory.

We propose two different mechanisms to achieve this. The first

mechanism utilizes the cpuid instruction, which is emulated

by the hypervisor and features a 2-byte opcode: Each time

cpuid is executed, the hypervisor is called to emulate it. So,

by interleaving the injected instructions with cpuid calls, we

can precisely redirect execution to the hypervisor.
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The cpuid calls clobber the eax, ebx, ecx and edx
general purpose registers, so they are not usable for the

constructed gadgets. Also, the eax register (which determines

the requested leaf ID) should be cleared beforehand to avoid

calling additional handling logic in the hypervisor – leaf 0 just

returns the vendor ID.

It is convenient to use the cpuid instruction because it has

a simple handler in the KVM hypervisor. Instead of cpuid,

we could also use other instructions that are intercepted by

the hypervisor and require at most a 2-byte opcode, like

rdtsc (for a complete list see [6]). As stated in II-D,

instruction interception is important, as it, for example, allows

fine grained control over exposed hardware features as well as

live migration. However, as stated in II-D, the guest owner can

choose to disable instruction interception for the VM, with the

downside of losing the mentioned functionality.

A more complex alternative to the cpuid-based execution

transfer is the usage of the page fault side channel, which

also allows a precise interruption of the VM. If we want

to interrupt the VM between two injected instructions, we

ensure that they reside on two different pages p1 and p2, and

remove the execute permission in the hypervisor’s NPT. This

way, the VM gets interrupted before the first instruction in p2
gets executed. We then remove the execute permission for p1,

such that the hypervisor gets triggered another time to remove

execute permissions for p2 once again.

In the following we will use <sync> to express that one

of the just described mechanisms must be used, to interrupt

the VM at a certain point in time.

B. Finding the Stack

In order to use the stack for our encryption oracle, we need

to get the HPA of the related stack pages. We solve this

problem by combining the synchronisation mechanism with

the page fault side channel.

We use the attack primitive from Section IV-D to construct

an instruction sequence <sync>; push rdi; <sync>.

<sync> triggers the hypervisor, which then removes write

access from all memory pages belonging to the VM, and

resumes execution. The following push rdi tries to write

to the non-writable stack memory page, and subsequently

raises a page fault in the hypervisor. The page fault exception

information yields the corresponding GPA and thus the HPA

of the stack. However, on SEV-ES the page offset is masked

out. To overcome this, we take a copy of the whole page,

while the hypervisor is handling the page fault and compare

it with the content of the page at the second <sync>. The

position of the ciphertext block that was changed by the push
rdi operation gives us the exact offset of the stack inside the

page.

If the write address of the push rdi is near the end of a

page, the hypervisor may issue an extra pop rdi instruction

to ensure that the next stack operation writes to the same page.

This also significantly eases restoring original execution after

inserting the encryption oracle code.

aa bb cc dd 00 00 00 00 aa bb cc dd 00 00 00 00
?
?

00 08
rsp+0x00
rsp+0x10

1) push rsi
2) push rsi

esi = 0xddccbbaa

Fig. 4. Layout of stack after pushing the 32-bit esi register. The stack pointer
is decreased when pushing a register, so, depending on the stack pointer’s
original alignment, we might have to push the register another time to set the
lower address part of a 16-byte block. Since this is a 64-bit operation, the
(zeroed) higher 32-bits of rsi are pushed as well. Due to the endianness of
x86 the lower significant bytes end up first, the higher bytes last. We thus
finally get a 16-byte block where we control the first 4 bytes.

C. 4-Byte Encryption Oracle

Originally, x86 only supported 16-bit and 32-bit operands.

When the CPU vendors implemented support for native 64-

bit operations, they did not add new opcodes for every

general purpose instruction (e.g., arithmetic and memory-

to-register/register-to-memory); instead, they introduced the

REX prefix, which, when put before an instruction’s opcode,

upgrades its operands to 64-bit mode. Since in 32-bit mode

most general purpose instructions are encoded using at least

2 bytes, this prefix extends them to 3 bytes – but our attack

primitive only supports 2 bytes of payload. However, when

adding 64-bit support, the 1-byte push reg instructions

were redefined to only support 64-bit registers, so we can use

the payload to perform stack writes. We thus can use 32-bit

instructions to control the lower half of some registers, and

then push those onto the stack. Hence we can control the lower

4 bytes of a 16-byte block, so the possible payload is doubled,

enabling us to use 64-bit instructions for the next step.

x86 is a little endian system, so when we push a register to

the stack, its bytes are stored in reversed order. This means, if

we set the least significant 32 bits of a register and push it to

the stack, those bits will be placed at lower addresses (Figure

4). If the stack pointer has been 16-byte aligned before our

first push, the controlled bytes will then reside in the middle of

the 16-byte block, where we cannot chain them with another

block. So we have to push the register a second time – now the

stack pointer is 16-byte aligned, and the payload resides at the

block beginning. Depending on the stack page offset and the

amount of blocks being created, one might have to add some

pop instructions to free up stack space before proceeding with

the next block.

As a last building block, we need a gadget to place an

arbitrary 32-bit value into a register. This gadget can be con-

structed via a simple combination of increments and left shifts:

First, the register is cleared by XORing it with itself (this also

automatically clears the upper 32-bit of the corresponding 64-

bit register). To add a 0 bit, the register is just shifted; to

add a 1 bit, the register is incremented and then shifted. This

will take at most 31 rounds until the most-significant bit has

been set. All the involved instructions have 2-byte opcodes.

The final block layout forming the 32-bit oracle is shown in
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jmp +0x1c
xor esi, esi

jmp +0x1c
<sync>

0x00 0x02 0x10 Case 1: Set next bit to 0

A

shl esiB

Case 2: Set next bit to 1

inc esiA

shl esiB

Case 3: Write to stack and reset

2x push rsiA

jmp nextB

2x nop

jmp +0x1c
A

jmp +0x1c
B

jmp -0x62

next:

Virtual Machine Hypervisor

0x0e

Fig. 5. Schematic of the 4-byte encryption oracle. Each row represents a 16-byte block (not to scale), control flow jumps are denoted by arrows. On each
use of the sync mechanism from Section VI-A (for example a cpuid call), the hypervisor replaces blocks A and B depending on the desired action: It may
either shift 0s and 1s into esi, or push the rsi register two times to the stack to get an encrypted 16-byte block. This process can be repeated arbitrarily
often.

Figure 5. To move the payload from the location where it gets

encrypted to another memory location, we need to consider

the XOR difference of the tweaks used at these two memory

locations and XOR it with our payload before using the 4-byte

oracle.

In summary, we are now able to control 4 bytes per 16-byte

block. In the next paragraph, we show that this is sufficient to

inject a program allowing us to control a whole 16 byte block.

D. 16-Byte Encryption Oracle

The 16-byte encryption oracle works very similar to the

4-byte encryption oracle. First, we ensure that the stack is 16-

byte aligned; if we used the described process for creating the

4-byte encryption oracle, we already have this information.

Then we use the same strategy as in the 4-byte encryption

oracle to load the two 64-bit chunks of our plaintext into 64-

bit registers and push them onto the stack. Since we made

sure that the stack was 16-byte aligned before the first push

operation, we now have an entire 16-byte aligned 16-byte

block in memory, which only needs to be copied to the desired

location.

The formerly introduced 4-byte oracle allows us to use

6-byte instruction gadgets, so after subtracting the neces-

sary jmp instructions we can use 4 bytes of payload. This

is sufficient for most 64-bit register-to-register arithmetic.

Though there might be more efficient methods for assigning

hypervisor-defined values to a 64-bit register, we reuse the

increment/shift method for sake of simplicity.

The implementation is very similar to the 4-byte oracle: All

instructions involving the target register (rsi) are extended to

64-bit using the REX opcode prefix. Additionally, instead of

pushing rsi twice, it is only pushed once and another iteration

is started to push another value. This way, we can fully control

all 128 bits of the plaintext block. Figure 6 shows an excerpt

of a gadget using a 3-byte opcode payload.

48 ff c6 eb 1a

inc
rsi

jmp
+0x1c

??

Fig. 6. Example for injection of a 3-byte opcode payload followed by an
unconditional jump, using a block created with the cipher block moving
primitive, and one block from the 4-byte encryption oracle. It is desirable
to fully use the 4 bytes from the encryption oracle, since finding a fitting
block for the cipher block moving primitive requires more complexity, when
the number of payload bytes increases.

In summary, we are able to encrypt arbitrary 16-byte values,

by injecting a program into the VM that performs some

computations in order to write data into encrypted memory

owned by the VM.

E. Code Execution allows stealthy Decryption

Throughout this section we have shown how to execute

arbitrary code via a self-bootstrapping, non I/O dependent

encryption oracle. This of course raises the question if it is

possible to create a decryption oracle, with a similarly low set

of requirements. We now show how a decryption oracle can

be constructed by extending an idea of Hetzelt and Buhren

[19].

As explained in Subsection II-A, the encryption status of

a page can be controlled via the C-bit, in each page table

entry. This allows the VM to share pages with the hypervisor.

Hetzelt and Buhren show that using an encryption as well as

an decryption oracle, the hypervisor can insert a shared page

into the page table of a process running inside the VM. The

hypervisor can then copy the content of an encrypted page

into the shared page. In their approach, they use a decryption

oracle in order to find a free entry in the page table of a victim

process running in the VM. We do not need a decryption oracle

for this approach: Allocating a shared page, as well as copying

some data to it, can be done via an injected program instead.
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Thus, we conclude that the existence of an encryption oracle

immediately implies a decryption oracle. Furthermore this

method is very stealthy compared to using loggable network

communication to extract data, like in [26, 31]. In addition

this allows for very high throughput, as the copy rate of the

injected program is only limited by the VM’s ability to write

to RAM.

VII. COMPARISON TO RELATED WORK

First, we present a performance analysis of our 16 byte

encryption oracle, before comparing it to encryption (and

decryption) oracles constructed in related work.

Throughput of our oracle We performed our experiments on

two different setups. Initially we used an AMD Epyc 3151

CPU with 16 GB of RAM. The host was running Ubuntu

19.04 with Linux kernel version 5.0.18 and the guest was

running Ubuntu 19.04 with kernel 5.0.0-27-generic with 1 GB

of RAM. The used QEMU version was 2.12.0. As the BIOS

on this machine does not yet support SEV-ES, we also used

a machine with an Epyc 7401P processor, that provided the

necessary BIOS support, to verify our results under SEV-ES.

As mentioned in the introduction, SEV-ES needs extensive

software support in the Linux kernel, the QEMU emulator

and the UEFI of the VM. We used the versions from AMD’s

official repositories [2, 3, 4]. We made use of the SEVered

framework [29] to inject page faults into the VM.

To evaluate the performance of our encryption oracle, we

set up a program that waits for a trigger before calling

the function in which we injected our gadgets. First, we

bootstrap the 16-byte encryption oracle via the stack detect

gadget and the 4-byte encryption oracle. Then we use it a

thousand times to encrypt 16 bytes of payload data. On our

unoptimized prototype the setup part takes 0.62 seconds and

the payload encryption needed 75.86 seconds. This translates

to a throughput of 211 Bytes per second for the 16 byte oracle.

Our prototype implementation focuses on ease of imple-

mentation and debugability, thus the performance can be

improved by writing more than one bit to the rsi register

before interrupting the computation via the sync mechanism.

A sequence of zeroes could be written by inserting an x-bit

left shift (4 byte opcode), instead of performing x rounds with

a single bit left shift. Furthermore we could simply increase

the number of instructions we execute each round, to decrease

the number of interrupts/context switches and write operations

which require expensive flushes.

Comparison We compare our results to encryption/decryption

oracles constructed in related work. If not stated otherwise all

attacks assume a malicious hypervisor. An overview can be

found in Table II.

Du et al. [16] were, to the best of our knowledge, the first to

discover the original encryption mode of SME as well as the

tweak values. Their experiments were performed on an AMD

Ryzen CPU without SEV support (AMD Epyc 7xx1 CPUs

were not readily available at that time). They constructed an

encryption oracle for a self-built simulation of SEV. Their

TABLE II. Comparison of different approaches for encryption oracles. 1Li
et al. [26] only specify the decryption rate, but it should be similar to the
encryption rate.

Du et
al. [16]

Li et
al. [26]

cpuid
Cipher
Block

Moving
Needs service in

VM
yes no no no

Relies on I/O yes yes no no

Needs instruction
emulation

no no yes no

Encryption rate
(B/s)

unknown 2001 426670 211

attack requires knowledge of the tweak values, an Nginx server

running in the VM and is not mitigated by SEV-ES.

They found that Nginx stores parts of the data sent to it

in consecutive 16 byte blocks at fixed offsets inside a page.

Building on this, they send an HTTP packet whose payload is

designed in a way, that the parts going to these offsets contain

exactly the tweak values of said offsets. This way, the data

encrypts to a constant ciphertext, making it easily detectable

in a memory dump.

They use this to encrypt code and execute it in the VM. In

contrast to our encryption oracle they rely on self-generated

network traffic getting processed by an Nginx webserver

inside the VM as well as the discussed memory management

behavior of Nginx. It is unclear whether different services, or

even different versions of Nginx, show a similar exploitable

behavior. They do not give performance measures.

Li et al. [26] showed how to create an encryption/decryption

oracle by leveraging unprotected DMA operations, knowledge

of the tweak function and control over the NPTs. For the

demonstrated attack, they also require network traffic, whose

frequency linearly scales with the throughput of their oracles.

Their attack works with SEV-ES.

According to them, DMA is the most common method

used by VMs to perform I/O Operations. They exploit that

current IOMMU hardware (which is responsible for perform-

ing DMA) only supports one memory encryption key, while

SEV uses one key for the hypervisor as well as an additional

key per VM. Thus all DMA operations must be performed

on memory pages ps that are shared between the hypervisor

and the VM, i.e., encrypted with the hypervisor’s encryption

key. This means if the guest wants to write data via DMA, it

first needs to prepare the content in a private page pp before

copying the content into ps. Reading data via DMA works the

other way around.

The general idea for their decryption oracle is to manipulate

the content of pp, before its content is copied to ps. For their

decryption oracle they use DMA write operations. To decrypt

the memory at address q they copy it into pp, before it gets

copied to ps. In order to get the GPA of pp they use the page

fault side channel. They demonstrated their ideas based on

DMA operations related to OpenSSH network traffic.

For the decryption oracle they are limited to the packets

sent by the VM. Furthermore, they show that they can make
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their oracle harder to detect by only overwriting parts of pp
that contain known metadata spanning at least a whole 16

byte aligned block. This way, they can restore the overwritten

parts before sending the package over the network. Assuming

a packet rate of 10 packets per second they showed that their

decryption oracle has a throughput of about 200 B/s.

For the encryption oracle they can use self-generated pack-

ets, even if there is no service listening. The VM can however

observe the amount of dropped packages. They did not give

any data for the throughput of the encryption oracle. But

since the construction is similar to the decryption case, its

throughput should scale in a comparable manner with the

packet rate.

For the encryption oracle they do not state whether the idea

of replacing the payload with known metadata can be applied.

If this is not possible, the VM can observe the packages

that get destroyed by the encryption oracle. Our encryption

oracle is not affected by such problems, because we take over

the control flow that processes the data, instead of trying to

manipulate data used by the regular control flow.

Like we have shown above, our encryption oracle reaches a

slightly higher throughput with our prototype implementation,

although they based their measurements on a SSH packet rate

of 10 pps, which is quite high for user generated input (one

packet roughly equals one keystroke). Since we do not depend

on I/O, we can achieve our throughput independently of the

rate of network packages. While they claim that their approach

can be applied to any DMA I/O performed by the VM, it is

unclear which of them sport known metadata that spans at

least a 16-byte aligned memory block in order to make the

attack stealthy.

VIII. COUNTERMEASURES

Our code injection attacks, as well as the injected 16-byte

encryption oracle, build on the missing integrity protection, the

reverse engineered tweak values, known plaintext and the page

fault side channel. The high performance cpuid encryption

oracle from the case study V-B also requires that the cpuid
instruction is interceptable by the hypervisor. In the following

paragraphs we discuss how changes in these areas influence

our attack.

A. Integrity Protection

With cryptographic integrity protection, the encryption sys-

tem could detect blocks created with the cipher block moving

approach. This would prevent us from injecting code/data

into the VM, mitigating the attacks presented in this paper,

as well as all of the related work mentioned in Section VII

with the exception of the application fingerprinting presented

in [33] and the attacks on the AMD SP from [13]. In

January 2020, AMD released a whitepaper on a planned future

extension called SEV Secure Nested Paging (SEV-SNP) [7].

Instead of adding strong, cryptographic integrity protection,

they propose an access right based system called Reverse Map

Table (RMP), that assigns each physical memory page either

to the hypervisor, a specific VM or to the SP. Only the owner

of a page is given write access. The RMP will be manageable

by the hypervisor via an instruction set extension. For SEV-

SNP secured VMs, the RMP also contains the supposed GPA

of the page inside the VM as well as a ”validated” flag, that

is always false for new RMP entries. The ”validated” flag can

only be manipulated by the VM that the page is assigned to.

This way, AMD intends to prevent remapping attacks like the

one in [31], as they would require the VM to validate multiple

pages for one GPA. While this mechanism is not able to detect

that a cipher text block was manipulated, the lack of write

access to a page would prevent us from performing our cipher

block moving attack. However, given the required architectural

changes, it is not foreseeable when SEV-SNP will be available.

B. Tweak Function

Without the knowledge of the tweak values we could

no longer predict the effect of a cipher block move. [26]

claims that ”Future versions of the tweak function will be

implemented as T (k, a) where a is the physical address

and k is a random input that changes after every systems

boot”. For the non XEX version of the encryption scheme,

considered by them, this would not make any difference,

since our method from Section III can be implemented in a

kernel module to recalculate the tweak values at run time,

with very little overhead. For the XEX version, discovered

by us, we demonstrated in Subsection III-B how to brute

force the tweak values at run time, as long as they stay 32

bit periodic (or similarly low periodicity). While the tweak

recovery process takes about 30 minutes per tweak, we want

to stress that the decision to reboot is under the control of the

malicious hypervisor. However, we are unaware of any method

to directly calculate the tweak values, like it was possible with

the previous version. We believe that using 128-bit randomized

tweak values are a mitigation to this attack vector.

C. Fixing the Page Fault Side Channel

In our opinion, completely removing the hypervisor’s ability

to observe the page faults of the VM is not realistic, since the

hypervisor needs this information for memory management

purposes. However, we believe that the amount of leaked

information can be reduced, by restricting the hypervisor’s

ability to manipulate bits in the NPTs. This way we could

no longer provoke page faults, but only observe page faults

that are “naturally” triggered by the VM. This would however

most likely need major architectural changes, like instruction

set extensions. On the other hand, it would make our attack

significantly harder or even infeasible, depending on the avail-

ability of intercepted instructions as well as the RAM size of

the VM.

For the stack detection gadget, we could still use the same

general strategy. But, since we are no longer able to provoke a

page fault, allowing us to at least get the Guest Frame Number

(GFN) of the stack, we would now have to dump all of the

VM’s RAM that has ever been written to.

1494



In order to implement a sync mechanism, that allows us

to interrupt the VM at precise points in time, we are now

dependent on the availability of intercepted instructions.

We thus conclude that mitigating the page fault side channel

likely requires introducing major architectural changes. How-

ever, even in this case the hypervisor’s control over physical

memory could still be exploited to track the VM’s memory

usage.

D. Availability of Known Plaintext

For our attack, we used the Linux kernel itself as a source

of known plaintext. As customers most likely use a common

Linux distribution, it can be assumed that they are running the

kernel supplied by the respective distribution. Furthermore,

normal disc encryption setups do not encrypt the /boot
partition from which the kernel gets loaded at boot, allowing

the attacker to read the kernel binary in plaintext.

If the entire boot image is encrypted, one can use the

technique presented in Werner et al. [33]: They showed how

to use IBS to reliably fingerprint specific application ver-

sions running in SEV-ES secured VMs based on the distance

(measured by the GVA) of executed return instructions of an

application. While they only evaluated their approach for user

space applications, their result is also applicable to the Linux

kernel. Another approach is building on a method presented

in [19]: They show that the kernel location can be detected at

runtime, by removing the execute permissions from all of the

VM’s memory pages, injecting an interrupt and observing the

occurring page faults. Given the result of Werner et al., this

could also be used to fingerprint the kernel based on the GPAs

of the interrupt handler functions.

E. Emulated Operations

Whether an instruction like cpuid or rdtsc is intercepted

by the hypervisor can be configured in the control area of

the VMCB [6]. The VMCB gets encrypted and integrity

protected upon a #VMEXIT. Furthermore, it is part of the

initial attestation [23], so it cannot be manipulated by a

malicious hypervisor. The high performance cpuid-based

encryption oracle from Section V-B can thus be mitigated by

disabling interception of the cpuid instruction [6]. However,

as already stated in Section II-D, emulation of instructions is

an important virtualization feature, since it allows fine grained

control over exposed hardware features as well as simulating

a consistent environment during live migration.

In theory, the GHCB mechanism used under SEV-ES al-

lows the VM to inspect the hypervisor supplied results of

an emulated operation before it continuous its operation.

However, AMD’s current SEV-ES kernel does not implement

such checks (cf. function vmg_cpuid). For operations like

rdtsc, the effectiveness of filtering is uncertain. In the

recently released AMD-SNP whitepaper [7] AMD describes

a mechanism, that allows the VM to verify the result of the

cpuid operation by using the SP as a proxy. This is possible,

as the hypervisor cannot interfere with the result of operations

executed on the SP.

F. Detection

Another important aspect, besides direct countermeasures,

is attack detection. In the scenario of a malicious hypervisor

spying on VMs, detecting an attack could lead the guests to

switch to another service or pursue legal matters.

Since SEV itself does not provide any integrity protection

for the RAM content, this must be done by the guest and in

software. This is significantly complicated by the large number

of possible injection points, and the fact that the injected

code is only temporarily present. In addition, the program that

inspects the guests RAM content in order to find changed code,

cannot be certain that its own code is unchanged.

Another approach is detecting abnormal behavior, like the

unusual kernel base address when disabling KASLR. However,

detecting more transient abnormal behavior, like a manipulated

random number generator, is quite difficult due to the large

attack surface.

IX. RESPONSIBLE DISCLOSURE

We have informed AMD of our findings. In our discussions

they suggested that the recently released Zen 2 architecture

uses an improved tweak generation, which is no longer 4-

byte periodic and uses fresh randomness per boot, which may

significantly complicate the described attacks. However, they

did not implement an additional integrity protection, yet.

X. CONCLUSION

In this work we have shown that the lack of proper integrity

protection can be exploited to execute arbitrary code within

SEV-ES secured VMs. We have reverse engineered the new,

XEX-based encryption on updated AMD Epyc processors,

and developed a method to control plaintext bytes by mov-

ing existing ciphertext blocks. After using this method for

bootstrapping a 2-byte encryption oracle, we have shown how

to place instructions to control 4 bytes and finally 16 bytes

per plaintext block, yielding a 16-byte encryption oracle. In

addition, we have shown how to abuse the emulated cpuid
instruction to build a high performance encryption oracle.

Compared to similar attacks, our attacks works with SEV-ES

and does not rely on any I/O operations.

We have discussed various countermeasures: A stronger

tweak function and disabling instruction interception might

significantly complicate our described attacks. However, we

do not expect that a full mitigation is possible without imple-

menting a proper integrity protection, which is able to detect

modified ciphertext before decryption.

Proof of concept code is available at https://github.com/

UzL-ITS/SEVurity/.
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