
Even Black Cats Cannot Stay Hidden in the Dark:
Full-band De-anonymization of Bluetooth Classic Devices

Marco Cominelli, Francesco Gringoli
CNIT/University of Brescia, Italy

Margus Lind
Context Information Security, Scotland

Paul Patras
The University of Edinburgh, Scotland

Guevara Noubir
Northeastern University, Boston, USA

Abstract—Bluetooth Classic (BT) remains the de facto
connectivity technology in car stereo systems, wireless
headsets, laptops, and a plethora of wearables, especially
for applications that require high data rates, such as
audio streaming, voice calling, tethering, etc. Unlike in
Bluetooth Low Energy (BLE), where address randomiza-
tion is a feature available to manufactures, BT addresses
are not randomized because they are largely believed to
be immune to tracking attacks. We analyze the design
of BT and devise a robust de-anonymization technique
that hinges on the apparently benign information leaking
from frame encoding, to infer a piconet’s clock, hopping
sequence, and ultimately the Upper Address Part (UAP)
of the master device’s physical address, which are never
exchanged in clear. Used together with the Lower Address
Part (LAP), which is present in all frames transmitted, this
enables tracking of the piconet master, thereby debunking
the privacy guarantees of BT. We validate this attack by
developing the first Software-defined Radio (SDR) based
sniffer that allows full BT spectrum analysis (79 MHz)
and implements the proposed de-anonymization technique.
We study the feasibility of privacy attacks with multiple
testbeds, considering different numbers of devices, traffic
regimes, and communication ranges. We demonstrate that
it is possible to track BT devices up to 85 meters from the
sniffer, and achieve more than 80% device identification
accuracy within less than 1 second of sniffing and 100%
detection within less than 4 seconds. Lastly, we study the
identified privacy attack in the wild, capturing BT traffic
at a road junction over 5 days, demonstrating that our
system can re-identify hundreds of users and infer their
commuting patterns.

I. INTRODUCTION

Wireless communications have profoundly changed

how people share information and access services. Un-

fortunately, due to the intrinsic broadcast nature of

wireless channels, the immense benefits unlocked often

come at the cost of exposing users to a variety of

privacy-invasion attacks. Location information leakage

is a particular concern, as this underpins more sophisti-

cated threats, such as user tracking, identity discovery,

and pinpointing of home/work premises. Furthermore,

discovery of behaviors, preferences, and individuals’

social networks are at risk, which can potentially lead

to effective social engineering.

Location privacy has been investigated extensively

since the early days of cellular communication systems,

when Temporary Mobile Subscriber Identity (TMSI)

was introduced with GSM to increase the difficulty

of user tracking. This later evolved into a completely

anonymized 5G registration procedure, whereby the Sub-

scription Permanent Identifier (SUPI) is never sent in

the clear, but instead is encrypted using an asymmetric

Elliptic Curve Integrated Encryption Scheme (ECIES) to

generate Subscription Concealed Identifiers (SUCI) [1].

In recent years, however, the privacy attack surface has

expanded significantly with the pervasiveness of mobile

and sensing devices, open mobile platforms (running un-

trusted code), diverse wireless connectivity options, and

the availability of SDR platforms. For instance, faulty

implementations of paging messages in LTE networks

allow attackers to collect IMSIs through passive sniff-

ing [2]. This questions the effectiveness of SUCI, given

that it is possible to downgrade a terminal’s connectivity

from 5G to 3G via jamming, and subsequently use one

of the many SDR-based IMSI catching tools [3] to reveal

a target’s identity. Tracking threats were also identified

in Wi-Fi, where the unique Medium Access Control

(MAC) address of devices, which is present in periodic

probe packets, has been exploited by marketing and

location analytics companies [4], or to covertly identify

individuals’ routes in cities [5]. Such privacy threats led

to MAC address randomization features released with

popular mobile operating systems [6], making tracking

534

2020 IEEE Symposium on Security and Privacy

© 2020, Marco Cominelli. Under license to IEEE.
DOI 10.1109/SP40000.2020.00091

harder and receiving praise from privacy advocates.

Naturally, consumers are increasingly concerned about

the implications of location information disclosure, as

confirmed by user surveys [7] and location privacy

protection legislation [8], [9].

Four billion Bluetooth-powered devices are projected

to be shipped by the end of 2019, making this technology

embedded in virtually every phone, car, laptop, mouse,

keyboard, game console, and wearable device [10].

Bluetooth comprises two main specifications [11]: Blue-

tooth Classic (BT) and Bluetooth Low Energy (BLE).

BT remains the dominant standard, as it is the only

one supporting the Advanced Audio Distribution Profile

(A2DP) required for audio streaming applications, e.g.,

in cars (Apple CarPlay, Android Auto, etc.) and headsets.

Despite its weak cryptographic foundations for protect-

ing the devices address, there is a common belief that

BT is immune to tracking attacks demonstrated against

BLE [12]. This is in part due to the perceived difficulty

of capturing and analyzing 79 channels over 79 MHz of

spectrum, the fact that communicating devices hop at a

rate of 1,600 hops/second (transmitting on each channel

for less than a millisecond), and that a BT Device Ad-

dress (BDADDR) is not sent in the clear but obfuscated

through whitening mechanisms that depend on the clock

of the master. Address randomization was incorporated

in BLE, likely due to its simpler communications design

and hence increased susceptibility to tracking. Instead,

BT obfuscation measures were still believed to be secure

against tracking, therefore addresses continue to be fixed,

as per the initial design.

In this work, we demonstrate through a combination of

signal processing and iterative inference that it is possible

to overcome BT obfuscation and uncover the entire,

meaningful part of a device’s address, thereby enabling

reliable user tracking. We show that implementing our

approach on inexpensive hardware is practical and we

can achieve high de-anonymization accuracy in real-
time, even at a distance from targets. While this opens

new avenues for constructive use, such as profiling

vehicular traffic for planning purposes, or studying Blue-

tooth’s co-existence with other wireless technologies, the

privacy implications are significant. Importantly, while

countermeasures such as address randomizations in BLE

and Wi-Fi, correct usage of LTE paging messages, and

replacement of IMSI with SUCI, may hinder the tracking

of users connected to such networks, billions of BT-

powered devices are already deployed, which may be

impossible to patch with an evolved privacy-preserving

BT version. In fact, no plans to address the privacy

problems of BT are on the horizon and it is even unclear

whether such evolution would be technically feasible.

In addition, while IMSI-catching attacks are active and

can be easily detected [13], [14], BT de-anonymization

is purely passive, which renders the identification of

attackers impossible. Fortunately, affordable and fully

functional technical solutions that could break BT pri-

vacy within short observation windows have yet to be

developed. Our work changes that.

Existing solutions: Due to the ever-growing popular-

ity of BT technology, a number of solutions have been

developed for analysis and debugging purposes. Pro-

fessional high-end products enable full-band BT traffic

analysis [15], [16], yet are very expensive and built on

proprietary software that cannot be modified by users,

and their tracking ability is unspecified.

Few open-source alternatives, such as Ubertooth

One [17], exist. Albeit cheap, these are limited to cap-

turing traffic on a single channel at a time, therefore

cannot follow multiple connections concurrently. Still,

as Ubertooth is advertised as capable of infringing BT

privacy, we perform a thorough performance comparison

between this solution and our approach in Sec. VIII. SDR

solutions that employ inexpensive radio front-ends, such

as HackRF or LimeSDR, have wider bandwidth and are

more flexible, yet are either limited to capturing simple

BLE control traffic [18] or not fully functional [19]. At

best, all these can extract the LAP of a connection’s mas-

ter, which is insufficient for mounting privacy breaching

attacks. We review relevant research that makes use of

such platforms in Sec. X.

Challenges: Multiple BT sessions happen on different

channels at the same time, following hopping sequences

that are unknown to an adversary and derived from the

unknown master clock. Even if sniffing with multiple re-

ceivers tuned simultaneously on all the 79 channels used

by BT, synchronizing the traces must be precise, other-

wise ambiguities arise in the explanation of a sequence of

packets exchanged. Further, figuring out a connection’s

hopping sequence is hardly enough for an attacker to

guess the master’s clock and UAP, from which this

sequence and data scrambling (whitening) are derived,

which offer in some sense a level of confidentiality.

Contributions: To the best of our knowledge, we

present the first full-band BT sniffer, in which all the

relevant computations related to synchronization, demod-

ulation, dewhitening, and decoding are combined with a

multi-frame iterative inference algorithm that we propose

to overcome BDADDR obfuscation and de-anonymize

all the meaningful parts of addresses. Our techniques

535

and system are flexible, as they can be instantiated with

a range of SDR platforms with different bandwidths, can

intercept traffic on all 79 BT channels simultaneously,

while several of the system’s components are amenable

to parallelization on general-purpose workstations. With

these, (i) we demonstrate that, contrary to widespread be-

lief, layer 2 communication in BT is completely exposed

to re-identification and tracking, as device addresses can

be inferred and the obfuscation can be circumvented by

attackers in real-time; (ii) we extensively evaluate the

potential of privacy attacks enabled by our system with

various distances, device densities, and traffic regimes,

using controlled testbeds with 26 embedded devices, a

connected car and a wireless headset. We show that it

is feasible to track BT devices within a 85 m range,

achieving 80% identification within less than 1 s and

100% within less than 4 s; and (iii) we study in the

wild the effectiveness of the privacy attack uncovered,

targeting moving vehicles, without storing sensitive in-

formation, and showing that an adversary may be able to

infer users’ daily commuting patterns. Lastly, we discuss

the large-scale surveillance risks the privacy-infringing

attack identified enables, as well as how to mitigate the

vulnerability revealed. We release open-source all the

code we used in this paper on GitHub1.

II. BLUETOOTH CLASSIC OVERVIEW

BT is a wireless technology operating in the 2.4 GHz

Industrial, Scientific, and Medical (ISM) band, whose

specification version 5.2 has been recently released [11].

The standard amounts to over 3,000 pages and navigating

this is rather involved. Thus, we begin by describing the

BT frame format and the procedure adopted by devices

to whiten (and hence obfuscate) frames and identity

prior to transmission. For completeness, we include an

overview of the BT protocol operation in Appendix A.

Frame Format and Identity Obfuscation

The structure of a BT frame is shown in Fig. 1.

Similar to other wireless technologies, BT frames are

preceded by a Preamble (4 bits). This is followed by a

Sync Word (64 bits) and an 18-bit header. Payloads are

optional in BT frames, as some of these are used for

discovery/control functions. The Sync Word is obtained

from the 24-bit LAP to which 6 bits of a Barker

sequence [20] are appended to improve auto-correlation

properties. Based on this, an expurgated (64,30) block

code with bit-wise XOR of a 64-bit pseudo-random

1Interested readers can download and test the code from
https://github.com/bsnet/btsniffer

Fig. 1: BT frame format. Only the optional payload field

can be eventually encrypted.

Data in
(LSB first)

0 1 2 3 4 5 6 7

Fig. 2: LFSR used for computing the HEC based on

header data; initialized with UAP and LSB set to 0; final

content is the HEC, transmitted from bit 7 to bit 0.

noise (PN) sequence is derived [21]. This preserves

the LAP while preceding it with 34 coded bits that

guarantee a large Hamming distance between sync words

of different addresses. In some cases, a fixed 4-bit Trailer

encompassing a zero-one pattern follows, to be used for

extended DC compensation. The preamble together with

the Sync Word (and Trailer) form the Access Code. The

Access Code is not subject to any further encoding and

as such the LAP will appear in clear.

The frame header consists of two parts: the header

data (10 bits) that encompasses a 3-bit Active Member

Address (AMA) of a slave, a 4-bit type field, and three

1-bit flags; and the Header Error Check (HEC) (8 bits).

The HEC is generated using the Linear Feedback Shift

Register (LFSR) shown in Fig. 2, whose internal 8-bit

state is initialized with the master’s UAP. The whole

header is then whitened using another LFSR (shown

in Fig. 3) whose 7-bit state is initialized with bits

c6, . . . , c1 of the master’s clock (clk) and by setting the

bit in position 6 to 1. We summarize this procedure in

Fig. 4. The whitened header is then passed through a 1/3

Forward Error Correction (FEC) block.

Note that different UAPs generate different HEC val-

ues, while different master clock values produce different

whitened sequences. Reversing the UAP and clk for

every frame is arguably computationally expensive, since

Data in
(LSB first)

Data out

0 1 2 3 4 5 6

Fig. 3: LFSR used for frame (de-)whitening. Bits 0 to 5

are initialized with bits clk1−6 of the master’s clock; bit

6 is always initialized with 1.

536

Fig. 4: BT HEC generation and header whitening.

brute-forcing these from intercepted frames would re-

quire 214 iterations per frame. Thus the HEC and header

whitening procedure is expected to ensure enough iden-

tity privacy. In what follows, we debunk this assumption.

III. THREAT MODEL

Next we discuss the attacker capabilities envisioned

and overview a set of plausible adversarial scenarios that

would be enabled by de-anonymizing BT devices.

A. Attacker Capabilities

We assume attackers control portable computers, to

which SDR front-ends that can be tuned on the 2.4 GHz

band are attached (e.g. HackRF, LimeSDR, USRP, etc.).

These could be battery powered or attached to fixed

or mobile power supplies in covert locations (rooftops,

balconies, tunnels, power buses, or cars). The attackers

should be within wireless reception range of the victim

devices, while this range could be potentially extended

by employing directional antennas. We expect attackers

to have some knowledge of signal processing, familiarity

with the BT wireless communications standard, and

reasonable command of computer programming.

B. Adversarial Scenarios

We distinguish three main types of attacks that are en-

abled through exploitation of BT device re-identification:

(1) user tracking and surveillance; (2) stalking and

espionage; and (3) compromising physical assets.

1) User tracking and surveillance: It is conceivable

that policing agencies and state-sponsored entities would

deploy BT sniffing and de-anonymization tools on pub-

lic transport and in key transport hubs (airports, train

stations, bridge crossings, tunnels, etc.) to (i) gauge

footfall or traffic flow; (ii) identify movement patterns

of groups of individuals; or (iii) track the precise where-

abouts of a sensitive asset. BT device identity could

be linked to individuals via sales databases, car plate

recognition software, or CCTV and face recognition al-

gorithms. Likewise, commercial actors would use similar

infrastructure in theaters, cafés, shopping malls, etc. to

monitor customers and orchestrate targeted marketing

campaigns. On the other hand, city councils could hinge

on knowledge of citizen flows to improve the provi-

sioning of public services (including waste management,

transportation, lighting), admittedly at a privacy cost.

2) Stalking and espionage: As SDR hardware is

increasingly more affordable and open-source tools

abound, a crowd-sourced stalking systems would be

straightforward to design if the identity of a BT de-

vice could be reversed from overheard frames. For

instance, a malicious user would post the BT identifier

of an ex-partner or celebrity to a community controlled

sniffing network, in order to know their whereabouts

and cause emotional distress. Similarly, competing busi-

nesses or rival states could send victims allegedly free-

replacements of BT-powered gadgets (earpods, smart-

watches, etc.) with known identifiers, which would be

subsequently tracked via crowdsourced location-sensing,

to infer undisclosed locations of the victims.

3) Compromising physical assets: De-anonymization

of BT devices can also underpin Man-in-the-Middle

(MITM) attacks that can have severe consequences on

victims, without necessarily being immediately obvious.

For example, a team of attackers could coordinate to

fake the presence of a victim near personal assets located

remotely. This would enable unlocking smart-locks, ve-

hicles, or access to computing infrastructure.

IV. FULL-BAND BLUETOOTH SNIFFING

We develop an SDR-based sniffing system that enables

fast interception of BT traffic, in view of breaking

the communication secrecy and re-identifying devices.

We describe the system architecture, data acquisition

process, and data processing pipeline implemented.

A. System Architecture

Fig. 5 gives an overview of the full-band BT sniffing

system developed. This relies on an SDR front-end for

raw wireless signal acquisition in the 2.4 GHz band. The

front-end is connected via USB 3.0 to and driven by

signal processing software running on the host computer.

Our design is sufficiently flexible to allow for SDR

platforms operating with different spectral widths, e.g., a

single board such as the Ettus N310 capable of capturing

the entire 79 MHz bandwidth used by BT, two Ettus

B210 boards, each covering 40 MHz of spectrum and

their output being synchronized, or any of these tuned

to capture an arbitrary spectral width.

The acquired signal samples are then processed. First,

they are passed to a channelizer, which can be configured

537

Fig. 5: Proposed full-band BT sniffing system. Raw

signal is captured using SDR front-end while channel-

ization, demodulation and frame decoding are performed

on host computer. BT master re-identification is achieved

by reversing HEC computation and whitening.

to output the Radio Frequency (RF) signals observable

on a precise set of individual BT channels, depending on

the computational capabilities of the host and whether

these allow for real-time or off-line sample processing

and analysis. The signals on each acquired channel are

transferred to Gaussian Frequency-shift Keying (GFSK)

demodulation blocks, which output the corresponding bit

sequences. A separate module identifies for each channel

the beginning of BT frames, based on the bit streams

resulting from demodulation. The structure of the system

makes it easy to implement in parallel the demodulation

and frame decoding pipeline.

Depending on the number of channels selected for

capture and the computing power, the BT frames ac-

quired are stored in RAM or on PCI Express Solid State

Drive (SSD), together with a timestamp, to aid frame

sequence reconstruction. Data acquisition and processing

can either work sequentially (“off-line” functionality), or

concurrently, if the time required to process fixed-length

traces is less than the time needed to acquire the same

trace (“on-line” operation). The latter is dependent on

platform computational power and achievable, e.g., with

a double-buffer approach (where a buffer is filled with

new data while data in the other one is processed).

A separate module that we describe in Sec. V fetches

from memory the sniffed frames and exploits weaknesses

in the HEC computation and header whitening to re-

identify the BT master devices of target connections.

B. Data Acquisition

The first task performed by our system is sampling

from the full 79 MHz band used by BT. Different

SDR platforms are suitable for this operation. For our

experiments we adopt two Ettus B210 boards. Each of

these supports full-duplex operation with up to 56 MHz

of real-time bandwidth, which is not sufficiently wide to

capture all BT channels. Hence, the need for deploying

two such boards. We tune the central frequency of the

two boards on 2,421.5 MHz and 2,460.5 MHz respec-

tively, and configure them with 44 MHz of receiving

bandwidth each. We allow a small overlap (5 MHz)

between the bandwidths of the two receivers, to facilitate

output trace synchronization without the need for an

expensive external clock.

Synchronization across channels is of paramount im-

portance to our system, as de-anonymizing BT addresses

requires to analyze frames captured by different SDRs

with a common time reference. This is further needed

for debugging purposes, to be able to explain a sequence

of messages transmitted over different channels at dif-

ferent time instants. Hence, we devise a μs granularity

synchronization method that doesn’t require coherent

capture. In essence, we use an external BT dongle to

transmit periodically (every 1 s), on a channel that is

captured by both interfaces, a reference frame with a

known address and whitening parameters, in which we

embed a Sequence Number. Should such a dongle not

be available, we allow for transmitting the sync frame

with one of the SDRs used for capture, given their

common full-duplex capabilities. The sync frame shall

be received by both SDR boards and therefore be present

in both traces. Reception should be simultaneous, hence

the timing offset between captures is easily compensated.

SDRs usually employ a complex sampling technique;

this means that with a 44 MHz sampling frequency

we can effectively acquire 44 MHz of spectrum. Two

values are recorded with each sampling interval, each

corresponding to a component of a complex sample and

generally referred to as in-phase (I) and quadrature (Q)

components. The complex samples are also called I/Q

samples. We quantize with 1 byte the I/Q sample com-

ponents, which results in an 88 Msamples/s sampling

rate. In turn, this translates into a 176 MB/s data rate

that the host system must handle. This can be managed

if writing to ramdisk or to an m.2 SSD (which supports

at least twice the required rate).

C. Data Processing

Channelizer: To be able to separate the spectral

components of the wideband signal acquired previously

and distinguish the frames transmitted on the different 79

BT channels, the first component of the data processing

chain we implement is a channelizer. This comprises a

digital down-converter scheme, by which the complex

input signal is first shifted to baseband, then passed

through a Finite Impulse Response (FIR) filter [22] with

1 MHz bandwidth. Since high-frequency components are

538

removed by the filter, the output signal is decimated

to reduce the data rate. By tuning the local oscillator

onto the central frequency of each target BT channel,

we extract the corresponding narrowband I/Q symbols.

Channelizer speed can be greatly increased by using

polyphase filters to directly separate all the narrowband

BT channels from the wideband signal [23].

All channels are subsequently processed by 79 de-

modulation and frame decoding blocks, fed with the

corresponding baseband signals.

Demodulation: The I/Q samples for a single channel

are fed into a GFSK demodulation block that outputs the

corresponding binary data. GFSK is a digital frequency

modulation technique whereby symbols are first filtered

by a Gaussian filter and then used to modulate the carrier

signal. BT employs a binary modulation scheme with

bandwidth-bit period product of 0.5.

A well-known technique for demodulating FSK sig-

nals is based on measuring the phase difference Δφ
between two consecutive samples of the corresponding

baseband signal. Assuming that the high frequency com-

ponents are filtered out by the channelizer, Δφ will have

the same sign as the frequency deviation of the signal

from the carrier and will satisfy the relation −π <
Δφ < π. Given two successive I/Q samples (I1, Q1)
and (I2, Q2), the phase difference between them can be

measured using some simple trigonometric computation.

However, since what is relevant to our task is only the

sign of Δφ, we can avoid trigonometry by verifying that

for −π < Δφ < π the following holds:

sign (Δφ) = sign [sin(Δφ)] = sign (I1Q2 − I2Q1) .

Frame decoding: Once the demodulation step is

completed, we can detect and decode BT frames on

each channel. Recall that every bit stream output by

demodulators contains two samples per bit period; this

oversampling proves necessary to counteract phase noise

effects at the receiver. Instead of recovering one bit

value from the samples within the same bit period, the

decoder will treat each binary sample as a bit. All the

processing performed here is intended to be repeated

for each sample. The following and preceding bits are

evaluated, advancing in a two by two fashion in the

stream of binary samples.

By examining possible preambles with candidate sync

words that follow, we can detect with high confidence

the boundaries of BT frames, which we subsequently

examine for re-identifying masters of target connections.

Fig. 6: Processing logic for inferring the UAP of a BT

master from the whitened header.

V. RE-IDENTIFYING BLUETOOTH DEVICES

BT has been long considered to provide good user

privacy, because (i) devices stop responding to Inquiry

frames after establishing a connection, (ii) they change

channels every 625 μs following a “secret” pattern that

is only known to communicating peers (hopping), and

(iii) their identity remains ambiguous, as the frames

exchanged only contain half of the BDADDR (the LAP)

of the master and the contents are obfuscated using a

per-frame “pseudo-key” that depends on the master’s

UAP and part of its clock (whitening). Our full-band

sniffing system presented in the previous section breaks

the first two identity protection features, as it enables

adversaries, which supposedly neither know the channel

nor the pseudo-key, to capture frames in a target session.

In what follows, we show that it is possible to re-identify

devices by exploiting weaknesses in the design of the

header error check and header whitening mechanisms.

These enable us to derive the master’s UAP.2

To find the UAP of a device, we need to (i) first

identify which 6-bits of the master clock were used to

whiten a frame header and de-whiten it, and (ii) infer

what UAP value produces a HEC value that matches

the HEC in the de-whitened header. We illustrate this

logic in Fig. 6. Note that the HEC is produced using

a polynomial that is initialized with the UAP. For any

given 6 bits of the master clock (clk), only one UAP will

recover a valid HEC. With this in mind, we first employ

Algorithm 1 to identify the (UAP, clk) pairs that could

be valid. In general, for each sniffed WhitenedHeader

wh, we look for (ui, clki) pairs and the corresponding

DeWhitened HeaderData hdi, with 0 ≤ i < 64 such that

the following holds:

wh = [hdi | HEC(hdi, ui)]⊕ w(clki),

2Recall that the 2-byte Non-significant Address Part (NAP) is
never used, but merely present for compliance with EUI-48 standards.
Knowing the LAP and UAP, the NAP can be inferred using L2CAP
echo requests.

539

where | is the concatenation operator, HEC(hdi, ui) is

the bilinear map that generates the 8-bit HEC sequence

and w(clki) is the map that generates the whitening

sequence. In the following we will express the latter as

w(clki) = w’(clki ⊕ 26), where w’ is the linear map

implemented by a LFSR that is identical to the one that

generates the whitening sequence but without the static

initialization of the internal state’s Most Significant Bit

(MSB), and 26 makes such initialization explicit. We also

introduce notation for this mapping’s upper and lower

parts, i.e., w′ = w′
hd|w′

hec, which whiten respectively

the HeaderData and the HEC that are concatenated in

the above equation. Let (u, clk) be the actual UAP

and clock value, and hd the actual HeaderData. We

can use the following equation to compute the other

valid (albeit incorrect) UAP values from the (also incor-

rect) corresponding clocks and the associated (incorrect)

HeaderData values:

HEC(hdi, ui) = HEC(hd, u)⊕ w′
hec(clki ⊕ clk)

hdi = hd⊕ w′
hd(clki ⊕ clk).

After introducing clki = clki ⊕ clk and reworking the

equations, we obtain

HEC(0, ui) = HEC(w′
hd(clki), u)⊕ w′

hec(clki).

The above shows that values ui of the UAP that our

search algorithm computes can be obtained by taking

all possible values of the clock 0 ≤ clki < 64, they

depend only on the correct value of the UAP, and they

do not change over consecutive (and likely different)

transmitted HeaderData. We also note that the UAP

values for clocks that are each the 1’s complement of

the other are the same. After observing that the 1’s

complement of clock clki can be written as clki⊕(26−1)
(remember that these are 6-bit values), the above follows

from the following equality:

HEC(w′
hd(2

6 − 1), 0) = w′
hec(2

6 − 1).

Finally, let u be the correct UAP and clk(n) the

sequence of actual clock values. The search algorithm

cannot distinguish them from incorrect candidates u′ and

clk′(n) that verify the following equalities:

clk′(n) = clk(n) + 32,

HEC(0, u′) = HEC(w′
hd(32), u)⊕ w′

hec(32).

The dewhitened HeaderData corresponding to the can-

didate can be easily determined from the “correct” one,

as hd′ = hd ⊕ w′
hd(32) = hd⊕0xC0. This means that

after dewhitening, the incorrect candidate would have

Algorithm 1 Identifying plausible (UAP,clk) pairs.

1: set good list = []

2: for clk = 0:63 do
3: Header = DeWhiten (WhitenedHeader, clk)

4: for UAP = 0:255 do
5: HEC’ = ComputeHEC(HeaderData, UAP)

6: if HEC’ == HEC then
7: push (UAP, clk) into good list

8: end if
9: end for

10: end for

a different MSB in the packet type and different flow

control bit. This could be later used for discriminating

such incorrect candidate from the real UAP.

One key observation is then that in this list of 64 pairs

there are only 32 different UAPs. From this list, we can

remove wrong candidates by executing Algorithm 2 on

successive frames with the same LAP, until the list is

reduced to u, u′. This algorithm verifies the consistency

between the timestamps of the frames and the clock

values that are associated to a candidate UAP. It is also

worth noting that the execution of Algorithm 2 on the

first two frames received allows us to discard at least

the 1’s complement of the clock for any candidate UAP,

unless the time difference between the received packets

is exactly 64 · 625 μs. Thus, with only two frames we

can effectively reduce our search space from 256 to 32

unique pairs (UAP,clk) or less. When only two possible

clock values (with the 32 tick delay as demonstrated

above) remain (and hence two possible UAPs), further

ambiguity can be resolved only by examining the Header

data de-whitened with the two possible clocks and keep-

ing the UAP for which the inferred Header makes sense.

VI. TESTBEDS

We implement the designed full-band BT sniffing

system using two Ettus USRP B210 SDR boards, con-

nected to the same antenna using a splitter and to the

host via separate USB 3.0 controllers. The host runs

a GNU/Linux operating system and is equipped with a

quad-core Intel Xeon W-2123 CPU, 32 GB of memory,

and a Samsung NVMe SSD with 480 GB of storage.

To evaluate the potential of the devised system to

intercept BT traffic, its ability to compromise user pri-

vacy through re-identification and sustain tracking, we

employ the following three set-ups: a controlled indoor

multi-device testbed, a controlled single-connection set-

540

Algorithm 2 Removing implausible UAPs from candi-

date list.

1: set t1, t2 the times in μs when consecutive frames

with same LAP were received

2: ΔT = round((t2 − t1)/625)
3: for (UAP, clk) ∈ good list do
4: clk’ = (clk + ΔT) mod 64
5: Header = DeWhiten(WhitenedHeader, clk’)

6: HEC’ = ComputeHEC(HeaderData, UAP)

7: if HEC’ == HeaderHEC then
8: update (UAP, clk) = (UAP, clk’)

9: else
10: remove (UAP, clk) from good list

11: end if
12: end for

up, and an “in the wild” environment. We detail the

particularities of each of these testbeds next.

A. Controlled Multi-device Testbed

We conduct the first set of experiments using 26

Raspberry Pi 3 (RP) embedded boards, which have

an integrated Broadcom Bluetooth chipset. We further

attach a YBLNTEK Bluetooth USB dongle with CSR

chipset to 24 of them. We establish two BT sessions

between each pair of devices with two BT interfaces

(internal plus dongle), and a single session between

the remaining two RPs. This allows us to establish 25

simultaneous BT connections, which we seek to monitor.

We develop scripts to enable dynamic control of the con-

nections and traffic exchanged between peers. With this

testbed, we are able to evaluate the performance of our

system against known ground truth, thereby establishing

a system performance baseline.

B. Controlled Single-connection Testbed

The second testbed serves to investigate the success of

sniffing a single connection while varying the distance

between the ‘attacker’ and ‘target’. For this, we consider

two representative use cases, namely (1) a Ford S-

Max car (equipped with CarPlay streaming functionality)

that connects to a mobile phone (Apple iPhone SE)

and (2) a phone (Huawei P20) streaming to a headset

(Sony WH1000-XM3). Also in these scenarios, a full-

band trace is first recorded using two B210 SDRs and

processed on the same workstation as before.

C. In-the-wild Environment

Lastly, we measure the performance of our system

in the wild, using two distinct set-ups: (1) a smaller

version of our system with a single SDR and capable

of processing up to 16 channels in real-time, which is

deployed on the 4th floor of a building (14.5 m elevation)

and connected to a Yagi-Uda antenna with 13 dB gain,

pointed at a traffic junction for a total of 5 days, and

(2) a vehicular testbed, whereby the sniffing system is

deployed within a car that travels on the highway for

∼2.5 hours and processes 4 channels over 8 MHz of

spectrum. With both set-ups we aim to estimate how

many distinct cars equipped with BT can be observed

and infer user commuting patterns.

Privacy preservation in data collection: In our in-

the-wild experiments, we do not persistently store any

information that could identify individual users (e.g., the

actual discovered BT address). Instead, we compute on

the fly a hash of this information, which is kept in RAM

for as little as necessary and only to generate the statistics

presented here. We also dispose of RF recordings to

prevent future privacy breaches that could arise, e.g., via

physical interface fingerprinting.

VII. EVALUATION

In this section we provide a comprehensive evaluation

of the designed BT sniffing and re-identification system.

We begin by assessing in our controlled environment

the time required to re-identify devices, in the pres-

ence/absence of traffic and with varying number of

devices. We compare the performance of our system

in terms of detection time and accuracy against that of

Ubertooth [17], which is the only existing open-source

commodity platform for BT sniffing. We then study the

impact of the distance to target on device detection time,

via experiments with CarPlay and wireless headset sys-

tems. We use this set-up to also investigate how choosing

different (sub)sets of channels for sniffing affects the

re-identification performance. Finally, we investigate the

potential of attacks on user privacy in the wild, assessing

how many connected cars we can identify and inferring

user commuting patterns. The following section gives

a detailed comparison with Ubertooth, the only open

platform with functionality similar to that of our system,

while in Appendix B we take the sniffer on the highway

and offer further perspectives on the seriousness of the

privacy threats our platform enables. Our systematic

study will demonstrate that concerns for BT user privacy

are well justified.

A. Re-identification Time

In the controlled multi-device environment where we

establish 25 BT sessions (see Sec. VI-A), each session

541

0 1 2 3 4 5 6 7 8

Detection time [s]

0

0.2

0.4

0.6

0.8

1
P

ro
ba

bi
lit

y
ECDF of detection time

Traffic off
Traffic on

Fig. 7: ECDF of the detection time (i.e., active sniffing

until UAP detection), with and without traffic. Experi-

ments with the multi-device setup (25 connections).

can be configured to generate IP packets using iperf.

We consider two scenarios: (1) with no IP traffic, so

that only BT keep-alive frames are transmitted, and

(2) with IP traffic between peers (similar to streaming

applications). We position the sniffer’s antenna at ap-

proximately 2 meters from the targets (all RP devices

are placed next to each other on a 1 meter wide board).

We perform full-band sniffing for 30 seconds and process

each captured trace starting from three different points

in time, separated by 2 seconds. We then measure the

time required to detect all sessions. The obtained results

are shown in Fig. 7, where we report the Empirical

Cumulative Distribution Function (ECDF) of the time

required to retrieve LAPs and identifying the UAPs for

each connection. Once found, we discard a UAP and

restart re-identification from scratch. In this way, we

can obtain statistical significance of detection times by

running our technique on a single trace.

Observe that when IP traffic is present, our system

can detect and de-anonymize 80% of the BT sessions

within less than 1 s of sniffing. In the absence of data

traffic, we still require only 2 s of traffic to detect 80%

of sessions. All connections are identified in just over 3

seconds when connections exchange traffic and in less

than 7 seconds if only keep-alive frames are present.

Turning attention to the time required to compute

the UAP of the master for each connection, in Fig. 8

we plot the histograms of the trace time required when

IP traffic is absent/present. We remark that the average

time between the first observation of a BT session and

the successful resolution of the associated UAP is only

516 ms when IP traffic exists on the connection, while

1.119 s are required when the connection is up but not

actively used to transmit data.

0.00 0.44 0.89 1.33 1.78 2.22 2.67 3.11 3.56 > 4.00

Detection time [s]

0

20

40

60

C
ou

nt

Traffic off

0.00 0.22 0.44 0.67 0.89 1.11 1.33 1.56 1.78 > 2.00

Detection time [s]

0

20

40

60

C
ou

nt

Traffic on

Fig. 8: Histogram of the time required to determine the

master’s UAP in a BT session, with and without traffic.

B. Impact of Distance to Target

Next, we focus on assessing the impact of the distance

to a target connection on re-identification performance.

For this purpose, we work with the controlled single

device testbed (see Sec. VI-B), considering both outdoor

(CarPlay) and indoor (headset) scenarios.

We report in Fig. 9a the performance of our sys-

tem when we seek to intercept and de-anonymize a

connection between the vehicle and the phone, as we

increase the distance from the sniffer, while measuring

the average number of UAPs solved per second (top sub-

plot) and the time require to compute the target UAP

(bottom sub-plot). Frames are assumed to be correctly

received if the Access Code is valid and the 1/3 FEC

decoding of the Header does not need error correction

(i.e., all bits within 3-bit groups have the same value).

We compute statistics when the target connection is 40 m

away from the sniffer and does not perform any audio

streaming and respectively when at a 85 m distance, with

streaming on. To put things into perspective, we also

consider a “garage” scenario where the car is very close

to the sniffer and the phone streams music to it.

The first thing to observe is the notable difference

between the “garage” scenario and the “outdoor” ones

in terms of time required to successfully solve a target

UAP (bottom). This can be attributed to the fact that

RF signals attenuate with the distance and the medium

becomes more prone to noise and external interference.

The median time to solve UAPs outdoors is in the

300 ms range. We also note that the number of frames

processed before a successful UAP resolution, when the

BT connection is idle and respectively used to stream

music, is comparable. On average, fewer than 7 frames

need to be sniffed when the CarPlay connection is

542

garage, stream 40m, no stream 85m, stream
0

10

20

30

E
[p

kt
s/

in
fe

re
nc

e]

garage, stream 40m, no stream 85m, stream
0

200

400

600

S
ol

ve
 ti

m
e

[m
s]

(a) CarPlay experiment

walk 1-10m 10.0m 17.3m 27.5m 38.4m
0

5

10

15

E
[p

kt
s/

in
fe

re
nc

e]

walk 1-10m 10.0m 17.3m 27.5m 38.4m
0

50

100

150

200

S
ol

ve
 ti

m
e

[m
s]

(b) Headset experiment

Fig. 9: Success of privacy attacks as a distance to target increases in the two single-connection setups. Boxplots of

the time required to solve the UAPs (top) and the number of packets needed (bottom).

actively used, while approximately 11 frames are needed

if the connection is up but not used to stream music.

In Fig. 9b, we show the results of similar experi-

ments conducted in the headset scenario, i.e., where a

connection between a mobile phone that streams music

to a wireless headset is targeted at different distances.

In the “walk” experiments, the target is moving within

a 10 m range from the sniffer, while the rest of the

measurements correspond to cases where the user is in

a fixed location at the indicated distances. It is clear that

the performance of our system depends on the distance to

the target connection, i.e., we can solve the target UAP

much faster if the BT devices are closer. However, in

all cases less than 6 frames are needed to re-identify

the master UAP. This is consistent with the CarPlay

experiments in which the phone was streaming music.

C. Impact of Number of Channels Sniffed

Undoubtedly, the number of channels employed for

sniffing impacts on the accuracy of the sniffing and re-

identification system, but also on applicability. Sniffing

fewer channels at a time would make real-time surveil-

lance possible, but can also miss some potential targets.

To understand how monitoring different parts of the

spectrum used by BT affects the success of attacks, we

conduct new experiments in the CarPlay scenario where

the phone streams music, whilst we sniff frames on all

channels, half of them, then 20, 10, 2, and respectively

1 channel(s). Results are summarized in Fig. 10.

It comes at no surprise that we are able to infer

the UAP of the target connection within milliseconds,

if all channels are observed. The performance degrades

only marginally if we listen on either the lower or the

upper part of the spectrum. The target UAP can still

All chans Low chans High chans 19-38 29-38 34-38 37-38 38

Observed BT channels

0

200

400

600

800

1000

1200

In
fe

re
nc

e
tim

e
[m

s]

Fig. 10: Time required to solve the target UAP in the

CarPlay scenario, as number of channels sniffed varies.

9 10 11 12 13 14 15 16 17 18 19

Time of day [hour]

10

20

30

40

50

60

70

80

D
ev

ic
e

co
un

t

Day 1
Day 2
Day 3
Day 4
Day 5

Fig. 11: Number of unique car UAPs solved by our

system, averaged every 15 mins, over 5 days of activity.

be determined within tens of milliseconds if 20 or 10

channels are observed. Performance degrades rapidly

though, as with 2 channels the median solving time is

approximately 400 ms, while a single channel yields 1 s

median solving times. We further investigate the impact

of sniffed spectral width in the wild, in Sec. VII-D.

543

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Device #

8

10

12

14

16

18

20

22
T

im
e

of
 d

ay
 [h

ou
r]

Fig. 12: Commuting patterns for 30 of the recurring users detected over 5 days of capture. Symbols are shown in

alternate blue/red color to better discriminate different days of capture.

1 2 3 4 5 6 7 8 9 10
UAP count ratio

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

ECDF of 16 vs 4 channels detection gain

Fig. 13: Performance comparison between the 16-

channel and 4-channel sniffer in terms of number of

unique UAPs resolved in the wild. 60% of the time, at

least 3× more UAPs solved with 16-channel sniffer.

D. Surveillance Attacks

Up to this point, all experiments have been conducted

in controlled environments. In what follows we present

results in the wild (see Sec. VI-C), whereby we use our

system to demonstrate its surveillance capabilities.

With our sniffing and re-identification system pointing

at a one-way road segment ahead of a traffic junction,

we first count the number of vehicles that have BT tech-

nology on board and which we can be de-anonymized by

an attacker during typical working hours (9 AM to 7:30

PM). We are able to detect cars up to a distance of 114.38

m, as confirmed by measurements with a car we control.

We illustrate the statistics gathered in Fig.11, where we

plot the number average number of cars observed every

15 mins. On average we detect ∼200 devices every hour.

As expected, we note more intense traffic around 9 AM,

12:30 PM and 6 PM – typical start/end of work shift and

lunch times.

We further examine the commuting patterns of the BT-

powered cars discovered. In particular, we record when

a de-anonymized device has been seen by our sniffing

system during each of the days when we collected mea-

surements. We report these results in Fig. 12, revealing

the serious privacy issues to which BT users are exposed.

Arguably, one may infer information about a user’s

personality, routine, and behavior from the observed

commuting patterns. For instance, we note the precise

commuting times of cars 1, 3, 16, 20, 26, and 27.

We further examine the implications of the number of

channels observed in the wild on the number of connec-

tions that can be detected. Specifically, we investigate

how many more BT connections could be detected and

de-anonymized when sniffing on 16 channels versus 4.

The obtained results are shown in Fig. 13. Observe that

on average we are able to detect and re-identify 3.31

times more connections when using 16 channels during

the same amount of time, which is largely consistent

with the controlled experiments reported in Fig. 10.

We also experiment with our system when this is

placed inside a car and assess its sniffing performance

while driving on the highway. We include the obtained

results in Appendix B

VIII. COMPARISON AGAINST EXISTING SOLUTIONS

Ubertooth One is an “open source wireless develop-

ment platform suitable for Bluetooth experimentation”.

It connects to hosts via USB and handles the MAC and

PHY layers through custom firmware that controls a

CC2400 transceiver. Its main advantage is the low price

tag, which comes with the drawback of only being able

to capture a single channel at a time. To discover on-

going sessions, the platform either stay on a set channel

(which can be useful when trying to detect multiple

active sessions) or hops “randomly” (to increase the

chances of meeting a session). Being hardware based,

the platform cannot be updated and the CC2400 radio

544

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
time [s]

0

0.2

0.4

0.6

0.8

1
P

ro
ba

bi
lit

y
ECDF of Car Testbed

8-channel sniffer
Ubertooth

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
time [s]

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

ECDF of Speaker Testbed

8-channel sniffer
Ubertooth

Fig. 14: ECDF of the time needed to resolve UAPs in

two different testbeds. Continuous lines: data traffic on.

Dashed lines: no traffic.

Ubertooth 1 channel 4 channels 16 channels
0

5

10

15

20

25

U

A
P

s
so

lv
ed

Traffic off

Ubertooth 1 channel 4 channels 16 channels
0

5

10

15

20

25

U

A
P

s
so

lv
ed

Traffic on

Fig. 15: Comparison in terms of UAPs resolved in 10 s

of sniffing between Ubertooth and our system limited to

different numbers of channels.

can only work with BT frames encoded at the Basic

Rate (i.e., 1 Mb/s).

Next, we give a detailed performance comparison

between Ubertooth and our system, considering different

scenarios; namely, we examine the time required by each

platform to discover the UAP of an Android Auto session

and of a connection between a BT loudspeaker and a

smartphone, with and without active traffic on the BT

link. Fig. 14 shows the ECDF of these measurements. In

both cases, while our approach takes less than a second

to discover the UAP in over 95% of the experiments,

irrespective of whether traffic is present or not, Ubertooth

struggles to solve the UAPs. When no data is exchanged,

it requires more than a minute in 20% of the experiments

conducted. This makes it incompatible with high mobil-

ity scenarios where observation times can be very short.

We also assess how many devices could be discovered

within 10 s in the multi-device testbed described in

Sec. VI-A, and report the results obtained in Fig. 15.

Note that the performance of our system in single-

channel mode of operation is comparable to that of

Ubertooth (fixed on the same channel); while Ubertooth

detects on average one more UAP than our system

when traffic is exchanged, our system again performs

better in the absence of traffic. To understand the reason

behind Ubertooth’s behaviour discrepancy, we examine

its sniffing code. We find that, differently to what is

reported in the documentation, Ubertooth does not use

timestamps of consecutively captured frames in recov-

ering target UAPs, as we do in our system. Instead, it

removes implausible UAPs iteratively, based on some

sanity checks on the frame’s payload. While this is fairly

effective when payloads are present in the frames, the

approach does not work when only NULL or POLL

frames are exchanged for keeping sessions alive. In these

situations, Ubertooth has to wait a considerable time

before collecting a useful data frame. For instance, in the

previous Car Testbed experiment, such frames are those

carrying instructions for updating the car’s display. To

make things worse, only a fraction of these frames can

be captured, since the hopping sequences followed by

Ubertooth is different than that followed by the devices.

In addition, it is worth noting that while our solution

only identifies valid LAPs, Ubertooth might exhibit false

positives in these scenarios.

Finally, we note that, even though we relied on B210

SDRs by Ettus for implementation and testing, it would

be straightforward to port our system to other platforms,

as long as they support IQ sampling. For instance,

it would be interesting to evaluate our system using

HackRF One, an SDR platform that provides up to

20 MS/s, and synchronising multiple devices through

clock daisy-chaining. With a single HackRF One, and

limiting the capture to just 8 or 16 channels, we antic-

ipate it is possible to achieve very good performance

at a price even lower than that of Ubertooth. We leave

such experimentation for future work. We remark that

the open-source nature of our system and the flexibility

it offers (as compared to proprietary ‘black-box’ com-

mercial platforms) lowers the entry barrier for attackers

and future research into BT security alike.

IX. DISCUSSION

The BT vulnerability we uncover can have serious

privacy implications as users rely increasingly more on

connected devices. Arguably, the most serious risk is that

of protracted surveillance, whereby a user’s locations can

be tracked with concealed wireless equipment, once their

identity is linked to that of a BT device they own. For

545

instance, road video footage used together with vehicle

license plate recognition software could be employed to

identify a smart car owner and the car’s BT address.

It would then be possible to track the person without

expensive video infrastructure, by only using BT sniffers,

as the system we presented. This is feasible with our

approach if deploying a camera next to the developed

sniffer, pointing this towards incoming traffic. One can

acquire a video frame every 100 ms, process it, and

discard the data. Character segmentation and optical

recognition [24] can be used to detect plate numbers.

As wearables adoption grows [25], both the risk of

surveillance and potential benefits of passenger flow

monitoring could be exploited with our BT sniffing

(and de-anonymization) system in urban settings. This

would require deployment of sniffing infrastructure only

at strategically selected hubs/checkpoints, such as airport

terminals, train stations, road tunnels, or bridge cross-

ings. For instance, there are only 21 main bridges and

16 tunnels that connect Manhattan to other boroughs of

New York City and New Jersey. Deploying our system at

such locations could offer insights into commuter flows.

Mitigation: Preserving BT device anonymity would

require a new revision of the Bluetooth standard. While

it is unreasonable to expect the whitening and HEC

generation procedures to be modified, given the number

of BT devices already on the market, full address or UAP

randmomization should be feasible. Cryptographically

generated addresses similar to those used in BLE or pro-

posed for IPv6 [26] could be used, by which the 64-bit

device identifier would be created with a cryptographic

hash of information exchanged by peers during pairing.

X. RELATED WORK

Connection oriented Bluetooth tracking was proposed

in [27] for room-level indoor localization of users,

with the goal of colleague searching and optimization

of building heating/cooling. However, the system only

works as long as target devices deliberately perform a

one-off registration. Early room-level tracking without

explicit user consent exploits the Bluetooth inquiry pro-

cess (see, e.g., [28], [29]). Bluetooth devices commonly

become “undiscoverable” after pairing, which questions

the practicality of early tracking approaches. Spill and

Bittau investigate the feasibility of eavesdropping on

undiscoverable devices and develop the first open-source

BT sniffer [30]. This solution is limited to a single

channel, relies on cyclic redundancy checks that are

not present in many BT profiles (or are encrypted),

which yields high false positive and miss detection rates,

questioning it practicality, as we have shown. Recent

work uses passive sniffing based on Ubertooth together

with active inquiry scanning to empirically verify the

feasibility of this approach for forensics and surveillance

purposes [31]. The value of the findings is limited,

given the shortcomings of single-channel sniffing and

imprecise detection of this platform. A dual-radio Uber-

tooth setup is used in [32] to jam and predict adaptive

hoping sequences, in view of BT/BLE sniffing. De-

anonymization is however not pursued, unlike in our

approach which doesn’t require active jamming, since

we are able to eavesdrop on all channels simultaneously.

Previous work also scrutinizes BLE privacy. Beacons

were used to establish a user’s indoor location [33],

which together with physical fingerprinting [34] can

underpin user tracking. M. Ryan highlights the simplicity

of snooping on BLE by exploiting the advertisement

messages sent periodically on dedicated channels [35].

Although the standard introduces address randomization,

Fawaz et al. show that more than 200 BLE devices

studied reveal their presence to adversaries and propose

an external management solution to mitigate this prob-

lem [12]. An SDR tool for BLE/Wi-Fi debugging is pro-

posed in [36], where multi-channel capture is considered.

BT is however substantially different than BLE and with

the advent of SDR platforms and the growing popularity

of connected car/wireless entertainment based on BT,

user privacy is at risk, as we revealed.

XI. CONCLUSIONS

We practically demonstrated that BT is inadequate for

ensuring user identity and location privacy. We proved

that apart from a 1/2 uncertainty about a master’s UAP,

which can be resolved through header data inspection,

the meaningful part of the master BT address is recov-

erable with a limited number of packets and without

requiring to examine the frames’ payloads, which can

be encrypted. We empirically proved the benefits of

capturing the entire BT spectrum with a full-band SDR

system that we developed. With the decreasing costs of

SDR platforms, BT sniffing will no longer be confined

to single-channel sniffing. As such, user privacy is at risk

and calls for revising the Bluetooth specification.

ACKNOWLEDGEMENTS

This material is based upon work partially supported

by Arm Ltd, the National Science Foundation under

Grant NSF/DGE-1661532, and the European Commis-

sion (EC) in the framework of the H2020-ICT-2016-2017

project ORCA (Grant agreement no. 732174).

546

REFERENCES

[1] E. C. Jimenez, P. K. Nakarmi, M. Naslund, and K. Norrman.
Subscription identifier privacy in 5g systems. In 2017 Interna-
tional Conference on Selected Topics in Mobile and Wireless
Networking, MoWNeT 2017, 2017.

[2] C. Sørseth, S. X. Zhou, S. F. Mjølsnes, and R. F. Olimid.
Experimental analysis of subscribers’ privacy exposure by lte
paging. Wireless Personal Communications, 109(1):675–693,
2019.

[3] S. F. Mjølsnes and R. F. Olimid. Experimental assessment of
private information disclosure in lte mobile networks. In ICETE
2017 - Proceedings of the 14th International Joint Conference
on e-Business and Telecommunications, volume 4, pages 507–
512, 2017.

[4] Bloomberg. Euclid Analytics Inc - Company profile and news,
Accessed: Sept. 2019.

[5] Wired. Tracking devices hidden in London’s recycling bins are
stalking your smartphone, August 2013.

[6] Arstechnica. iOS 8 to stymie trackers and marketers with MAC
address randomization, June 2014.

[7] Kassem Fawaz and Kang G Shin. Location privacy protection
for smartphone users. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pages
239–250. ACM, 2014.

[8] United States Senate Judiciary Committee. Location Privacy
Protection Act of 2014, June 2014.

[9] Official Journal of the European Union. Regulation (EU)
2016/679 of the European Parliament and of the Council of
27 April 2016 on the protection of natural persons with regard
to the processing of personal data and on the free movement
of such data, and repealing Directive 95/46/EC (General Data
Protection Regulation), May 2016.

[10] Bluetooth SIG, Inc. Bluetooth Market update, 2019.

[11] Bluetooth SIG, Inc. Bluetooth Core Specification v5.1, Jan.
2019.

[12] Kassem Fawaz, Kyu-Han Kim, and Kang G. Shin. Protecting
privacy of BLE device users. In USENIX Security, August 2016.

[13] A. Dabrowski, N. Pianta, T. Klepp, M. Mulazzani, and
E. Weippl. Imsi-catch me if you can: Imsi-catcher-catchers.
In ACM International Conference Proceeding Series, volume
2014-December, pages 246–255, 2014.

[14] S. Park, A. Shaik, R. Borgaonkar, and J. . Seifert. Anatomy of
commercial imsi catchers and detectors. In Proceedings of the
ACM Conference on Computer and Communications Security,
pages 74–86, 2019.

[15] Ellisys. Bluetooth analyzers comparison chart. https://www.
ellisys.com/products/btcompare.php, Accessed: Sept. 2019.

[16] Frontline. Sodera Wide Band Bluetooth Protocol Ana-
lyzer. http://www.fte.com/products/sodera.aspx, Accessed: Sept.
2019.

[17] Project ubertooth. http://ubertooth.sourceforge.net/, Accessed:
June 2019.

[18] Photosware. The Photos Project. https://github.com/pothosware/
PothosCore, Accessed: June 2019.

[19] gr-bluetooth. Bluetooth for gnu radio. http://gr-bluetooth.
sourceforge.net/, Accessed: June 2019.

[20] R. H. Barker. Group synchronizing of binary digital sequences.
Communication Theory, pages 273–287, 1953.

[21] L.H. Charles Lee. Error-Control Block Codes for Communica-
tions Engineers. Artech House, 2000.

[22] Alan V. Oppenheim, Alan S. Willsky, and Ian T. Young. Signals
and Systems (2nd Edition). Pearson, 1996.

[23] F. J. Harris, C. Dick, and M. Rice. Digital receivers and
transmitters using polyphase filter banks for wireless com-
munications. IEEE Transactions on Microwave Theory and
Techniques, 51(4):1395–1412, April 2003.

[24] Tesseract Open Source OCR Engine.
https://github.com/tesseract-ocr/tesseract, Accessed: Oct.
2019.

[25] Mordor Intelligence. Smart Wearable Market - Growth, Trends,
and Forecast (2019 - 2024). 2019.

[26] Tuomas Aura. Cryptographically generated addresses (cga). In
International Conference on Information Security, pages 29–43.
Springer, 2003.

[27] Simon Hay and Robert Harle. Bluetooth tracking without
discoverability. In Proc. International Symposium on Location
and Context Awareness (LoCA), Tokyo, Japan, May 2009.

[28] Mortaza S. Bargh and Robert de Groote. Indoor localization
based on response rate of bluetooth inquiries. In Proc. ACM
International Workshop on Mobile Entity Localization and
Tracking in GPS-less Environments, MELT ’08, pages 49–54,
San Francisco, California, USA, 2008.

[29] V. Kostakos. Using bluetooth to capture passenger trips on
public transport buses. Personal and Ubiquitous Computing,
pages 1–13, 2008.

[30] Dominic Spill and Andrea Bittau. Bluesniff: Eve meets alice
and bluetooth. In USENIX WOOT, 2007.

[31] M. Chernyshev, C. Valli, and M. Johnstone. Revisiting Urban
War Nibbling: Mobile Passive Discovery of Classic Bluetooth
Devices Using Ubertooth One. IEEE Transactions on Informa-
tion Forensics and Security, 12(7):1625–1636, July 2017.

[32] Wahhab Albazrqaoe, Jun Huang, and Guoliang Xing. Practical
bluetooth traffic sniffing: Systems and privacy implications. In
Proc. ACM MobiSys, 2016.

[33] S. Kajioka, T. Mori, T. Uchiya, I. Takumi, and H. Matsuo.
Experiment of indoor position presumption based on rssi of
bluetooth le beacon. In Proc. IEEE Global Conference on
Consumer Electronics (GCCE), Oct 2014.

[34] Tien Dang Vo-Huu, Triet Dang Vo-Huu, and Guevara Noubir.
Fingerprinting Wi-Fi Devices Using Software Defined Radios.
In Proc. ACM WiSec, 2016.

[35] Mike Ryan. Bluetooth: With low energy comes low security.
In USENIX Workshop on Offensive Technologies, Washington,
D.C., 2013.

[36] Francesco Gringoli, Nahla Ali, Fabrizio Guerrini, and Paul
Patras. A flexible framework for debugging iot wireless ap-
plications. In IEEE Workshop on Metrology for Industry 4.0
and IoT, 2018.

[37] B. S. Peterson, R. O. Baldwin, and J. P. Kharoufeh. Bluetooth
inquiry time characterization and selection. IEEE Transactions
on Mobile Computing, 5(9):1173–1187, Sept 2006.

APPENDIX

A. Bluetooth Protocol Operation

We briefly describe basic concepts that we use to

explain our device address de-anonymization attack.

a) Physical Layer: BT adopts a Frequency-

hopping Spread Spectrum (FHSS) channel access

scheme. The 2.4 GHz band is divided into 79 contiguous

channels, each of 1-MHz. Data frames are modulated

using binary GFSK after bits are obfuscated through a

547

whitening procedure. By this, data is passed through a

LFSR initialized with part of the internal clock.

All BT frames start with an Access Code followed

by a header. Different types of frames are defined for

different services (e.g., keep-alive, audio streaming, etc.),

each of which has specific FEC following the header

that is protected with Hamming codes. As we show, we
exploit the header protection mechanism to reverse the
obfuscation applied over the entire frame.

b) MAC Layer: Throughout the different phases

a BT device undergoes when communicating, from

advertising (i.e. when a device is “discoverable” or

“scannable”), to scanning, and data exchange, it hops

across different channels 1,600 times per second. The

exact hopping sequence is negotiated and shared by ac-

tively communicating devices. Each piece of BT equip-

ment is identified by a 6-byte MAC address that does

not change over time. This address is logically divided

into three parts: a 2-byte NAP, a 1-byte UAP, and a

3-byte LAP. Devices form “piconets”, where a master

periodically polls slaves and all the frames exchanged

contain the LAP of the master.

c) Network Formation: A master establishing a

piconet initiates a discovery procedure to identify and

connect to other devices within range. For this, the

master broadcasts inquiries over 32 wake-up carriers,

which are equally spaced in the 79 MHz range, hopping

following a pseudo-random sequence that is derived from

its MAC address. Such packets are identified by an

Inquiry Access Code (IAC) that is known to all devices.

All devices listen periodically (every 1.28 s) for in-

quiries on a single frequency chosen from the set of 32

wake-up carriers, for a total duration of 11.25 ms. This

“inquiry scanning” frequency also changes, according to

the device’s own hopping sequence. When receiving an

inquiry frame, a device enters a back-off procedure and

remains on the channel where the inquiry was received,

for a random number of time slots uniformly distributed

in the [0, 1024) range (in order to reduce the probability

of collision with others that have received the same

inquiry). After back-off, the device returns to inquiry

scan mode and, upon receiving a second inquiry, it

replies in the next slot with a Frequency Hopping Syn-

chronization (FHS) message, which contains the address

of the device and its clock offset [37]. Note that non-
discoverable devices may no longer respond to inquiries
after establishing communication with a master.

If an inquiry is successful, the master enters a paging

mode and hops on a sequence derived from the slave’s

address, sending a page message to the device it wants

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

Time [min]

0

50

100

150

200

250

C
ar

 #

Slow traffic episode 1

Slow traffic episode 2

Fig. 16: Unique UAPs detected at different times during

an approximately 2.5-hour drive on the highway.

to connect to. This contains a so-called Device Access

Code (DAC) derived from the lower 24 bits of the paged

device’s address. An acknowledgement is sent back,

which contains the slave ID. The master then sends a

FHS frame, which the slave will use to subsequently

follow the master’s hopping sequence; this is computed
based on the master’s UAP and part of its clock. This

sequence is confirmed with another page response. The

master then assigns a 3-bit AMA to the slave and the

connection is established.

B. Privacy Infringements on the Move

Another experiment we conduct is with our sniffing

system deployed inside a car, with the antenna pointing

opposite to the direction of movement, while we drive

the car on the highway. Our aim is to assess how many

unique UAPs an attacker could infer under different

traffic conditions, as the sniffing system moves with

speeds ranging between 5 and 120 km/h depending on

road congestion levels, and verify how often we identify

the same target, thereby offering perspectives on the

surveillance risks to which connected cars are exposed

through the de-anonymization attack we uncover.

Fig. 16 illustrates our findings. Over the entire travel

duration, our system is able to detect over 250 dis-

tinct BT-powered cars. More importantly, during periods

when traffic is slow, we can re-identify several targets

multiple times. This highlights the potential of employ-

ing the privacy attack we uncover to follow targets while

remaining visually undetectable, since many of these

vehicle are hundreds of meters away from the sniffer,

mostly not within line of sight.

548

