
KRACE: Data Race Fuzzing for Kernel File Systems

Meng Xu Sanidhya Kashyap Hanqing Zhao Taesoo Kim

Georgia Institute of Technology

Abstract—Data races occur when two threads fail to use
proper synchronization when accessing shared data. In kernel file
systems, which are highly concurrent by design, data races are
common mistakes and often wreak havoc on the users, causing
inconsistent states or data losses. Prior fuzzing practices on file
systems have been effective in uncovering hundreds of bugs, but
they mostly focus on the sequential aspect of file system execution
and do not comprehensively explore the concurrency dimension
and hence, forgo the opportunity to catch data races.

In this paper, we bring coverage-guided fuzzing to the concur-
rency dimension with three new constructs: 1) a new coverage
tracking metric, alias coverage, specially designed to capture
the exploration progress in the concurrency dimension; 2) an
evolution algorithm for generating, mutating, and merging multi-
threaded syscall sequences as inputs for concurrency fuzzing;
and 3) a comprehensive lockset and happens-before modeling for
kernel synchronization primitives for precise data race detection.
These components are integrated into KRACE, an end-to-end
fuzzing framework that has discovered 23 data races in ext4,
btrfs, and the VFS layer so far, and 9 are confirmed to be harmful.

I. INTRODUCTION

In the current multi-core era, concurrency has been a major

thrust for performance improvements, especially for system

software. As is evident in kernel and file system evolutions [1–

4], a whole zoo of programming paradigms is introduced

to exploit multi-core computation, including but not limited

to asynchronous work queues, read-copy-update (RCU), and

optimistic locking such as sequence locks. However, alongside

performance improvements, concurrency bugs also find their

ways to the code base and have become particularly detrimental

to the reliability and security of file systems due to their

devastating effects such as deadlocks, kernel panics, data

inconsistencies, and privilege escalations [5–12].

In the broad spectrum of concurrency bugs, data races are

an important class in which two threads erroneously access

a shared memory location without proper synchronization

or ordering. Obstructed by the non-determinism in thread

interleavings, data races are notoriously difficult to detect and

diagnose, as they only show up in rare interleavings that require

precise timing to trigger. Even worse, unlike memory errors

that tend to crash the system immediately upon triggering, data

races do not usually raise visible signals in the short term and

are often identified retrospectively when analyzing assertion

failures or warnings in production logs [13].

As the state of the practice, file system developers often rely

on stress testing to find data races proactively [14, 15]. By

saturating a file system with intensive workloads, the chance

of triggering uncommon thread interleavings, and thus data

races, can be increased. However, while useful, stress testing

has significant shortcomings: handwritten test suites are far

from sufficient to cover the enormous state space in file system

execution, not to mention keeping up with the rapid increase

in file system size and complexity.
More recently, coverage-guided fuzzing has proven to be a

useful complement to handwritten test suites, with thousands of

vulnerabilities found in userspace programs [16–20]. Without

a doubt, kernel file systems can be fuzzed, and generic OS

fuzzers [21–23] have demonstrated their viability with over 200

bugs found. In addition, file system-specific fuzzers, Janus [5]

and Hydra [6], have extended the scope of file system fuzzing

from memory errors into a broad set of semantic bugs, while

the data race-specific fuzzer, Razzer [24], has shed lights on

data race detection by combining fuzzing and static analysis.

At the core of these fuzzers is the coverage measurement

scheme, which summarizes unique program behaviors triggered

by a given input in bitmaps. The fuzzer compares per-input

coverage against the accumulated coverage bitmaps to measure

the “novelty” of the input and determines whether it should

serve as the seed for future fuzzing rounds.
However, almost all existing coverage-guided fuzzers focus

on tracking the sequential aspect of program execution only

and fail to treat concurrency as a first-class citizen. To illustrate,

branch coverage (i.e., control flow transition between basic

blocks) has been the predominant coverage measurement metric.

But such a metric captures little information about thread

interleavings: different interleavings are likely to result in the

same branch coverage (Figure 2), while only a small fraction

may trigger a data race (Figure 3).
With the sequential view of program execution, existing

kernel fuzzers have been very effective in mutating and

synthesizing single-threaded syscall sequences based on seed

traces [25, 26] to maximize branch coverage. But no heuristics

have been proposed in synthesizing multi-threaded sequences

to maximize thread interleaving coverage. Last but not least,

given that data races often lead to silent failures, treating only

kernel panics or assertions as bug signals is not sufficient: a

data race checker that handles kernel complexity is needed.
To bring coverage-guided fuzzing to the concurrency dimen-

sion, in this paper, we present KRACE, an end-to-end fuzzing

framework that fills the gap with new components in three

fundamental aspects in kernel file system fuzzing:

Coverage tracking [§III] KRACE adopts two coverage tracking

mechanisms. Branch coverage is tracked as usual to capture

code exploration in the sequential dimension, analogous to

the line coverage metric used in unit testing. In addition, to

approximate exploration progress in the concurrency domain,

KRACE proposes a novel coverage metric: alias instruction

1643

2020 IEEE Symposium on Security and Privacy

© 2020, Meng Xu. Under license to IEEE.
DOI 10.1109/SP40000.2020.00078

pair coverage, short for alias coverage. Conceptually, if we

could collect all pairs of memory access instructions X↔Y such

that X in one thread may-interleave against Y in another thread,

alias coverage tracks how many such interleaving points have

been covered in execution. Consequently, if the growth of alias

coverage stalls, it signals the fuzzer to stop probing for new

interleavings in the current multi-threaded seed input.

Input generation [§IV] KRACE generates and mutates in-

dividual syscalls according to a specification [21, 27]. The

novel part of KRACE lies in evolving multi-threaded seeds and

merging them in an interleaved manner to preserve already-

found coverage as well as to maximize the chances of inducing

new interleavings. Another job of the input generator is to

produce thread schedulings, (to explore the hidden input space).

Although enforcing fine-grained control over thread scheduling

is possible [7], the scheduling algorithm does not scale to

whole-kernel concurrency, as the latter consists of not only user

threads, but also background threads internally forked by file

systems, work queues, the block layer, loop devices, RCUs, etc.,

and the total number of contexts often exceeds 60 at runtime.

As a result, KRACE adopts a lightweight delay injection scheme

and relies on the alias coverage metric as feedback to determine

whether more delay schedules are needed.

Bug manifestation [§V] KRACE incorporates an in-house

developed detector to reason about data races given an

execution trace. In essence, KRACE hooks every memory access

and for each pair of accesses to the same memory address,

KRACE checks whether 1) they belong to two threads and at

least one is a memory write; 2) these two accesses are strictly

ordered (i.e., happens-before relation); and 3) at least one shared

lock exists that guards such accesses (i.e., lockset analysis). The

challenges for KRACE lie in modeling the diverse set of kernel

synchronization mechanisms comprehensively, especially those

uncommon primitives such as optimistic locking, RCU, and

ad-hoc schemes implemented in each file system.

KRACE adopts the software rejuvenation strategy to avoid

the aging OS problem, i.e., every execution is a fresh run from

a clean-slate kernel and empty file system image. Doing so

trades performance for trackability and debuggability but is

worthwhile for data race detection. As shown in §VII-B, the

exploration gradually catches up and bypasses conventional

speed-oriented fuzzers (e.g., Syzkaller) upon saturation. KRACE

also decouples data race checking from state exploration. Unlike

prior works where the bug checker runs inline in each execution,

in KRACE, the checker only kicks in when new coverage (either

branch or alias) is reported. This prevents the expensive data

race checking from slowing down the state exploration while

still preserving the opportunity to test every new execution state

found through fuzzing. The checking progress will eventually

catch up when the coverage growth is toward saturation.

We evaluated KRACE by fuzzing two popular and heavily

tested kernel file systems (ext4 and btrfs) in recent kernel

versions and we found 23 data races, nine of which are

confirmed as potentially harmful races, and 11 are benign

races (for performance or allowed by the POSIX specification).

Fig. 1: A data race found by KRACE. This figure shows the complete
call stack, thread ordering information, and locking information when
the data race happens and the inconsistency it may cause (1 - 4).

Summary: This paper makes the following contributions:

• Concept: The alias coverage metric and interleaved multi-

threaded syscall sequence merging are novel concepts that

make coverage-guided fuzzing more effective in highly

concurrent programs, possibly as a first step toward fuzzing

for a wide range of concurrency bugs.

• Implementation: KRACE’s data race checker encodes a

comprehensive model of kernel synchronization mechanisms

in the form of over 100 kernel patches (for code instrumen-

tation), which are regularly updated as the kernel upgrades.

• Impact: KRACE has found 23 data races and will be

continuously running to find new cases. We will open-

source KRACE as well as the collection of syscall primitives

for multi-threaded execution as quality seeds for future

concurrent file system fuzzing research.

II. BACKGROUND AND RELATED WORK

The past three decades have witnessed several efforts to find

data races using various techniques. In this section, we show a

data race example, discuss the types of approaches that prior

works have taken, and introduce coverage-guided fuzzing as a

generic bug finding technique.

Example. Intuitively, a data race is caused by two threads

trying to perform unordered and unprotected memory oper-

ations to the same address. Figure 1 shows two data races

found by KRACE that happen to make a complete scenario.

The read of full is in race with both writes, as the read is

not protected by the corresponding delayed_rsv->lock as is

done on the writers’ side. According to btrfs developers, this

results in ineffective management of the reserve space internally

used by btrfs, in particular, delays in releasing the reserved

space or space releasing followed by reservation instead of

migration from one reserve to another. Reflected in the call

stack, if the execution takes the order of 1 → 2 → 3 → 4 , then

1644

block_rsv_release_bytes is inadvertently releasing bytes that

will be used by the fsync. Such a case might eventually cause

integer overflows in the reserve space but would probably

require thousands of concurrent file operations to trigger.

Data race is a special type of race condition, and hunting

data races in complex software involves two facets: 1) how to
confirm an execution is racy and 2) how to produce meaningful
executions by exploring code and thread-scheduling.

Dynamic data race detection algorithms. Most of the initial

works [28] found race conditions by relying on the happens-
before analysis [29]. However, one of the prime issues with

this approach is that it leads to false negatives. To improve the

detection accuracy, Eraser [30] proposed the lockset analysis,

in which users annotate the common lock/unlock methods and

find atomicity violations. Later, several works [31, 32] proposed

optimizations to either mitigate the overhead or minimize false

positives. To further improve the effectiveness of dynamic data

race detection, several works [33, 34] combined the idea of

happens-before relation with lockset analysis.

Unfortunately, most of these works target userspace programs

using simple synchronization primitives (e.g., those provided by

pthread or Java runtime), which only represent a small subset

of synchronization mechanisms available in the Linux kernel.

KRACE follows the same trend in combining happens-before

and lockset analysis, but unlike prior works, KRACE provides a

comprehensive framework that includes not only simple locking

methods, such as pessimistic locks (e.g., mutex, readers-writer

lock, spinlock, etc.), but also optimistic locking protocols,

such as sequence locks, and other forms of synchronization

mechanisms that imply more than just mutual exclusion, e.g.,

RCU [35] and other publisher-subscriber models.

Both lockset and happens-before analysis require code

annotations and suffer from incompleteness, i.e., a missing lock

model leads to false positives. Several works overcome this

issue with timing-based detection, i.e., a thread is delayed for

a certain duration at some memory accesses while the system

observes whether there are conflicting accesses to the same

memory during the delay [13, 36, 37]. Moreover, most of these

works resort to sampling [13, 34, 37–39], as an optimization

over completeness, to further minimize the runtime overhead

caused by tracking memory accesses or code paths.

However, complete timing-based detection relies on precise

control of thread execution speed and results in an enormous

search space (both in where to delay and how long to delay),

which again is not scalable in the kernel scope. As a result,

in terms of race detection, KRACE resorts to a trial-and-

error approach and fixes false positives introduced by ad-hoc

mechanisms along with the development. Fortunately, due to

the high coding standard and strict code review practice, ad-hoc

synchronization is not common in kernel file systems.

Code/thread-schedule exploration. The effectiveness of a

data race checker depends not only on the detection algorithm

but also on how well the checker can explore execution states

and cover as many code paths and thread interleavings as

possible. For code path exploration, prior detectors mostly rely

on manually written test suites [7, 36, 37] that do not capture

complicated cases. As shown in Figure 1, triggering the data

race would require a user thread to mkdir on the same block the

background uuid_rescan thread is working on, which (almost)

in no way can be specified in manually written test cases. An

alternative is to enumerate code paths statically [40–44], but

this is not scalable. Recent OS fuzzers adopt specification-

based syscall synthesization [5, 6, 21, 27]. However, these

fuzzers mostly focus on generating sequential programs instead

of multi-threaded programs and are not intended to explore

interleavings in syscall execution. KRACE adopts a similar

synthesization approach, but instead of focusing on single-

threaded sequences, KRACE evolves multi-threaded programs.
In the case of thread-schedule exploration, prior approaches

fall into three categories, in decreasing order of scalability but

increasing order of completeness: 1) stressing the random

scheduler with multiple trials [14]; 2) injecting delays at

runtime [13, 36, 37]; and 3) enumerating every possible thread

interleaving [7, 24]. KRACE uses delay injection, a trade-off

among scalability, practicality, and completeness.

Data race detection in kernels. KRACE shares its design

ideology with four prominent works [7, 24, 45, 46]. DataCol-

lider [45] is the first work that tackles this problem by using

randomized sampling of a small number of memory accesses

in conjunction with code breakpoint and data breakpoint

facilities for efficient sampling. DataCollider is simple enough

to detect several bugs in the Windows kernel modules. A similar

strategy is used by Syzkaller [21] with its Kernel Concurrent

Sanitizer [46] (KCSan) module. KCSan is a dynamic data

race detector that uses compiler instrumentation, i.e., software

watchpoints instead of hardware watchpoints, to detect bugs

on non-atomic accesses that violate the Linux kernel memory

model [47] using happens-before analysis.
SKI [7] focuses on comprehensive enumeration of thread

schedules with the PCT algorithm [48] and hardware break-

points. However, SKI permutes user threads only to find data

races in the syscall handlers and thus forgoes the opportunities

to find data races in kernel background threads. Furthermore,

even with user threads only, the number of permutations can

be huge to test thoroughly. In addition, the test suites used by

SKI may be too small to explore an OS for bugs.
Razzer [24] combines static analysis with fuzzing for

data race detection. In particular, Razzer first runs a points-

to analysis across the whole kernel code base to identity

potentially alias instruction pairs, i.e., memory accesses that

may point to the same memory location. After that, per each

alias pair identified, Razzer tries to generate syscalls that reach

the racy instructions at runtime. It does so with fuzzy syscall

generation [21, 27], and sequential syscall traces are generated

first. Once the alias relation is confirmed in the sequential

execution, the trace is then parallelized into multi-threaded

traces for actual data race detection.
Razzer presents an elegant pipeline for data race fuzzing, but

it can be further improved: 1) running points-to analysis [49]

on kernel file systems produces millions of may-alias pairs,

which is almost impossible to enumerate one by one; 2) even

1645

for one alias pair, how to generate syscalls that may reach the

racy instructions is less clear. KRACE aims to improve both

aspects with the novel notion of alias coverage. Instead of pre-

calculating the search space with points-to analysis, KRACE

relies on coverage-guided fuzzing to expand the search in the

concurrency dimension gradually. Analogically, this is similar

to not enumerating every path in the control-flow graph but

instead using an edge-coverage bitmap to capture the search

progress. Doing so also eliminates the concern on how to

generate syscalls that lead execution to specific locations.

Fuzzing in general. Fuzzing has proven to be a practical

approach to find bugs in today’s software stack, both in the

userspace [16, 20, 50–54] and in the kernel space [5, 6, 21,

22, 27, 55]. Unfortunately, existing works cannot be trivially

adopted for data race fuzzing. One reason is that the main

focus of fuzzing has been on finding memory corruptions or

triggering assertions. Although Hydra [6] extends the scope

beyond memory errors into semantic bugs in file systems, it

does not provide any insight into finding data races.

Moreover, since modern coverage-guided fuzzing originates

and prospers from testing single-threaded programs such as

binutils, encoder/decoders, and the CGC and LAVA-M fuzzing

benchmarks, recent fuzzing efforts have focused on optimizing

fuzzers’ performance on single-threaded executions too, such as

approximating sequential execution with neural networks [51].

Not surprisingly, when the fuzzing practice is carried down to

the OS level [21, 22, 27, 55–59], the same sequential view of

program execution is inherited.

Although generating structured inputs has been a challenge

for kernel fuzzing, many improvements have been proposed.

For example, MoonShine [25] captures dependencies between

syscalls and DIFUZE [26] generates interface-aware inputs.

However, lacking a coverage metric and a seed evolution

algorithm to handle state exploration in the concurrency

dimension, existing OS fuzzers miss the opportunities to find

the broad spectrum of concurrency bugs, including data races.

The motivation behind KRACE is to fill this gap and to bring

coverage-guided fuzzing to the concurrency dimension.

Static and symbolic analysis on kernels. Although KRACE

is a dynamic analysis system, we are also aware of works that

aim to find concurrency bugs with static analysis [40–44]. Most

of these approaches rely on static lockset analysis and, hence,

suffer from the high false-positive rate caused by missing the

happens-before relation in the execution as well as the inherent

limitations of the points-to analysis. For instance, RacerX [41]

suffers from 50% false positives on the Linux kernel.

Beyond concurrency bugs, static analysis has proven effective

in finding many security issues in kenrel drivers. For example,

SymDrive [60] uses symbolic execution to emulate devices

and verify the properties of kernel drivers; DrChecker [61] is

capable of finding eight types of security issues by relaxing the

completely sound analysis on unbounded loops with mostly

sound versions. However, a major challenge in applying these

works to data race detection in file systems is their lack of

statefulness, i.e., although extremely effective in finding bugs

Fig. 2: A data race found by KRACE when symlink, readlink, and
truncate on the same inode run in parallel (simplified for illustration).
The race is on the indexed accesses to a global array G and occurs only
when B==C. A is lock-protected. This is one example showing branch
coverage is not sufficient in approximating execution states of highly
concurrent programs. It is not difficult to cover all branches in this
case with existing fuzzers, but to trigger the data race, merely covering
branches e1-e3 is not enough. The thread interleavings between four
instructions i1-i4 are equally important. The valid interleavings that
may trigger the data race are shown in Figure 3.

Fig. 3: Possible thread interleavings among the four instructions
shown in Figure 2. Out of the 6 interleavings, only 3 interleavings
(1 / 4 , 2 / 3 , 5 / 6) are effective depending on A’s value when B and
C read it. Each effective interleaving results in different alias coverage.
Only 5 / 6 may trigger the data race.

within one syscall execution, they miss bugs that occur because

of the interaction between multiple syscalls, which happen to

be the majority of cases in file system operations.

III. A COVERAGE METRIC FOR CONCURRENT PROGRAMS

In this section, we show why branch coverage, the golden

metric for fuzzing, might be insufficient to represent the

exploration in the concurrency dimension, while at the same

time, why alias coverage, our new proposal, fits this purpose.

A. Branch coverage for the sequential dimension

Branch coverage originates from the program control-flow

graph (CFG), which is inherently a sequential view of program

1646

execution. As shown in Figure 2, in CFGs, execution flows

through basic blocks and user-controllable inputs, e.g., size in

SYS_truncate, determine the set of edges that join the basic

blocks. For a branch coverage-guided fuzzer: given an input

(e.g., a list of syscalls), it tracks the set of edges that are hit at

runtime and leverages this feedback to decide whether this input

is “useful” and should be kept for more mutations. Intuitively,

the fuzzer expects to probe more branches by mutating the

seed, and not surprisingly, once the branch coverage growth

stalls, the fuzzer will shift focus to other seeds.

In the case shown in Figure 2, exhausting all branches

sequentially will only yield the status of B==1, B==2, and

C==0. After that, these execution paths (represented by the

seeds covering them) will be de-prioritized and considered

non-interesting by the fuzzer. However, this is not the end of

the story. To trigger the data race when B==C==2, the execution

of four critical instructions (i1-i4) has to be interleaved in

a special way, as shown in Figure 3. Unfortunately, all six

interleavings yield the same branch coverage, and the fuzzer

is likely to give up the seed upon hitting a few of them.

Further note that this is an extremely simplified example

that involves only six possible interleavings among two threads.

In actual executions, the concurrency dimension can be huge,

as the instructions executed by each thread are usually in the

thousands or even millions, while there will be tens of threads

running at the same time. As a result, when fuzzing highly

concurrent programs, we need to pay attention to not only

code paths explored, but also meaningful thread interleavings

explored that yield to the same branch coverage. In other words,

if the fuzzer believes that there could be unexplored thread

interleavings in a seed, the seed should not be de-prioritized.

B. Alias coverage for the concurrency dimension

Intuition. At first thought, recording the exploration of thread

interleavings can be futile. A realistic kernel file system at

its peak time may use over 60 internal threads, where each

thread may execute over 100,000 instructions. The total possible

number of thread interleavings is 60100000, an enormous search

space that no bitmap can ever approximate.

However, it is worth noting that not all interleaved executions

are useful. In fact, only interleavings of memory-accessing

instructions to the same memory address matters. As shown

in Figure 2, interleaving instructions apart from i1-i4 has no

effect on the final results of B, C, as well as the manifestation

of the data race. This is true in the actual code, where hundreds

and thousands of instructions sit between i1, i3 and i2, i4.

In other words, based on the crucial observation that data

races, and even in the broader term, concurrency bugs, typically

involve unexpected interactions among a few instructions

executed by a small number of threads [7, 62, 63], if KRACE is

able to track how many interactions among these few memory-

accessing instructions have been explored, it is sufficient to

represent thread interleaving coverage and to find data races.

This is precisely what gets tracked by alias coverage.

A formal definition. First, suppose all memory-accessing

instructions in a program are uniquely labeled: i1, i2,, iN.

At runtime, each memory address M keeps track of its last

define operation, i.e., the last instruction that writes to it as

well as the context (thread) that issues the write, represented

by A ← <ix, tx>. Now, in the case in which a new access to

M is observed, carried by instruction iy from context ty: if iy

is a write instruction, update A ← <iy, ty> to reflect the fact

that A is redefined. Otherwise:

• if tx == ty, i.e., same context memory access, do nothing,

• or else, record directed pair ix→iy in the alias coverage.

Figure 3 is a working example of this alias coverage tracking

rule. In cases 1 and 4 , there is no inter-context define-then-

use of memory address A, and hence, the alias coverage map is

empty. On the other hand, in cases 2 and 3 , the calculation

of B in T1 relies on A defined in T2, hence the pair i3→i2.
The same rule applies to cases 5 and 6 .

Feedback mechanism. Essentially, alias coverage provides a

signal to the fuzzer on whether it should expect more useful

thread interleavings out of the current test case, i.e., a multi-

threaded syscall sequence. If the alias coverage keeps growing,

the fuzzer should come up with more delay schedules to inject

at the memory-accessing instructions (detailed in §IV-B) in the

hope of probing unseen interleavings. Otherwise, if the coverage

growth stalls, it is a sign that the concurrency dimension of the

current test case is toward saturation, and the most economical

choice is to switch to other seeds for further exploration.

Coverage sensitivity fine-tuning. Finding one-suits-all cover-

age criteria has been a never-ending quest in software engineer-

ing [64]. Even the branch coverage has several variations, such

as N-gram branch coverage, context-sensitive coverage [52],

etc., which are well-documented and compared in a recent

survey [65]. However, despite the fact that branch coverage

is always subsumed by program whole-path coverage, branch

coverage is still preferred over path coverage, as the latter is

overly sensitive to input changes and thus requires a much

larger bitmap to hold and compare. On the other hand, branch

coverage strikes a balance among effectiveness, execution speed,

and bitmap accounting overhead.

Similarly, alias coverage strives to find such a balance point

in the concurrency dimension. In our experiments with kernel

file system fuzzing, KRACE observed 63,590 unique pairs of

alias instructions (directed access). Based on the data, for

an empirical estimation, a bitmap of size 128KB should be

sufficient to avoid heavy collisions, which is close to AFL’s

branch coverage bitmap size (64KB). In addition, if more

sensitivity is needed for alias coverage, KRACE can be easily

adopted from 1st-order alias pair (alias coverage) to 2nd-order

alias pair, Nth-order alias pair, and up-to total interleaving

coverage. We leave this for future exploration.

IV. INPUT GENERATION FOR CONCURRENCY FUZZING

In this section, we present how to synthesize and merge

multi-threaded syscall sequences for file system fuzzing, as

well as how to exploit a hidden input domain—thread delay

schedule—to accelerate thread interleaving probing.

1647

Fig. 4: Illustration of four basic syscall sequence evolution strategies
supported in KRACE: mutation, addition, deletion, and shuffling. For
KRACE, each seed contains multi-threaded syscall sequences and each
thread trace is highlighted in different shades of grayscale.

A. Multi-threaded syscall sequences

Specification-based synthesization. The goal of syscall

generation and mutation is to generate diverse and complex file

operations that are otherwise difficult for human developers

to contemplate. Given that syscalls are highly structured data,

it is almost fruitless to mutate their arguments blindly. As

a result, we use a specification to guide the generation and

mutation of syscall arguments. A feature worth highlighting in

KRACE’s specification is the encoding of inter-dependencies

among syscalls, especially path components and file descriptors

(fd), which are most relevant to file system fuzzing. To illustrate,

as shown in Figure 5, the open syscall in seed 1 reuses the

same path component in the mkdir syscall, while the write

syscall in seed 2 relies on the return value of creat.

Seed format. The seed input for KRACE is a multi-threaded

syscall sequence. Internally, it is represented by a single list

of syscalls (a.k.a, the main list) and a configurable number

of sub-lists (3 in KRACE) in which each sub-list contains a

disjoint sequence of syscalls in the main list. Each sub-list

represents what will be executed by each thread at runtime. To

illustrate, as shown in Figure 5, seed 1 has three threads, where

each thread will be executing mkdir-close, mknod-open-close,

and dup2-symlink, respectively, marked in different grayscale.

Evolution strategies. KRACE uses four strategies to evolve a

seed for both branch and alias coverage, as shown in Figure 4.

• Mutation: a randomly picked argument in one syscall will

be modified according to specification. If a path compo-

nent is mutated, it is cascaded to all its dependencies.

• Addition: a new syscall can be added to any part of the

trace in any thread, but must be after its origins.

• Deletion: a random syscall is kicked out of the main list

and the sub-list. In case a file descriptor is deleted, its

dependencies are forced to re-select another valid file.

• Shuffling: syscalls in the main list are redistributed to

sub-lists, but their orders in the main list are preserved.

Merging multi-threaded seeds. The power of fuzzing lies

not only in evolving a single seed but also in joining two seeds

to produce more interesting test cases. To enable seed merging

Fig. 5: Semantic-preserving combination of two seeds. For KRACE,
each seed contains multi-threaded syscall sequences and each thread
trace is highlighted in different shades of grayscale.

in KRACE, a naive solution might be simply to concatenate

two traces. However, this is not the most economical use of

seeds, as it forgoes the opportunities to find new coverage by

further interleaving these high-quality executions.

KRACE adopts a more advanced merging scheme: upon

merging, the main lists of the two seeds are interweavingly

joined, i.e., the relative orders of syscalls are still preserved in

the resulting main list as well as in the sub-lists. As a result,

the syscall inter-dependencies are preserved too. As shown

in Figure 5, all the dependencies on path and fds are properly

preserved after merging (highlighted in corresponding colors).

Primitive collection. Successful syscalls are valuable assets

out of the file system fuzzing practice, not only because they

lead to significantly broader coverage than failed syscalls, but

also because they can be difficult, and sometimes even fortunate,

to generate due to the dependencies among them. This is true

especially for long traces of closely related syscalls. As a result,

upon discovering a new seed, KRACE first prunes it and retains

only successful syscalls and further splits these syscalls into

non-disjoint primitives where each primitive is self-contained,

i.e., for any syscall, all its path and fd dependencies (also

syscalls) are captured in the same primitive.

Over the course of fuzzing, KRACE has accumulated a

pool of around 10,000 primitives covering 68 file system

related syscalls for which KRACE has a specification. In each

primitive, file operations span across 3 threads, with each thread

containing 1-10 syscalls, and most importantly, all syscalls

succeed. We will open-source this collection in the hope that

these primitives may serve as quality seeds for future concurrent

file system fuzzing.

B. Thread scheduling control (weak form)

Thread scheduling is a hidden input domain for concur-

rency programs. Unfortunately, there is no way to control

kernel scheduling by merely mutating syscall traces. Hooking

the scheduling implementation (or using a hypervisor) and

systematically permuting the schedules might be possible

for small-scale programs [63] or for a few user threads in

the kernel [7, 24]. But these algorithms are far from being

1648

Fig. 6: The delay injection scheme in KRACE. In this example, white
and black circles represent the memory access points before and after
delay injection. Injecting delays uncovers new interleavings in this
case, as the read and write order to the memory address x is reversed.

scalable enough to cover all kernel threads. For a taste of

the scalability requirement, Figure 14 shows the level of

concurrency introduced by the btrfs module alone, not to

mention other background threads forked by the block layer,

loop device, timers, and RCU.

Runtime delay injection. KRACE resorts to delay injection

to achieve a weak (and indirect) control of kernel scheduling,

based on the observation that only shared memory accesses

matter in thread interleavings. KRACE’s delay injection scheme

is extremely simple, as shown in Figure 6. Before launching

the kernel, KRACE generates a ring buffer of random numbers

and maps it to the kernel address space. At every memory

access point, the instrumented code fetches a random number

from the ring buffer, say T, and delays for T memory accesses

observed by KRACE system-wise (i.e., in other threads).

A ring buffer is used to hold the random numbers, as KRACE

cannot pre-determine how many injection points are needed

for each execution, not to mention that such a number may

be extremely large. Injecting delays at memory access points

is at the finest granularity for delay injection. Although this

works well in file system fuzzing, it might nevertheless be too

fine-grained and introduces too much overhead. The injection

points can be at the granularity of basic blocks or functions or

even customized locations such as locking operations, etc.

V. A DATA RACE CHECKER FOR KERNEL COMPLEXITY

Although the definition of data races is simple, finding them

in a kernel execution trace can be difficult, primarily because of

the variety of synchronization primitives available in the kernel

code base as well as the ad-hoc mechanisms implemented

by each individual file system. In this section, we enumerate

the major categories of kernel synchronization primitives and

describe how they can be modeled in KRACE.

A. Data race detection procedure

Overview. We say a pair of memory operations, <ix, iy>, is

a data race candidate if, at runtime, we observed that

• they access the same memory location,

• they are issued from different contexts tx and ty,

• at least one of them is a write operation.

Such information is trivial to obtain dynamically by simply

hooking every memory access. The difficulty lies in confirming

whether a data race candidate is a true race. For this, we need

two more analysis steps to check that:

• no locks are commonly held by both contexts, tx and ty,

at the time when memory operations ix and iy are issued

from them, respectively. [lockset (§V-B)]

• no ordering between ix and iy can be inferred based on

the execution: i.e., there is no reason ix must happen-
before iy or the other way around, regardless of how tx

and ty are scheduled. [happens-before (§V-C)]

Conceptually, lockset analysis produces no false negatives,

i.e., if there is a data race in the execution trace, it is guaranteed

to be flagged by the lockset analysis. But lockset analysis is

prone to false positives, as it ignores the ordering information.

Happens-before analysis helps in filtering these false positives.

Kernel complexity. Although conceptually simple, lockset

analysis requires a complete model of all locking mechanisms

available in the kernel, and similarly, happens-before analysis

requires all thread ordering primitives to be annotated. Other-

wise, false positives will arise. However, after nearly 30 years

of development, the Linux kernel has accumulated a rich set

of synchronization mechanisms. KRACE takes a best-effort

approach in modeling all major synchronization primitives as

well as ad-hoc ones if we encounter them in our experiment.

Due to space constraints, we present some representative ad-hoc

schemes modeled by KRACE in appendix §C.

Besides the variety of synchronization events, the number

of ordering points in the kernel execution is enormous. To get

a taste of the complexity in real-world executions, Figure 18

shows a snippet of the ordering relation (e.g., task queuing,

waiting for conditions, etc.) across all user and kernel threads.

B. Lockset analysis

Most kernel locking primitives differentiate between reader

and writer roles. The major difference is that a reader-lock can

be acquired by multiple threads at the same time, as long as

its corresponding writer-lock is not held; while a writer-lock

can only be held by at most one thread. KRACE follows this

distinction and tracks the acquisitions and releases of both

reader- and writer-locks for each thread at runtime. Formally,

such information is stored in the form of a lockset: denoted by

LSR
<t,i> for the reader-side lockset for thread t at instruction

i as well as LSW
<t,i> for the writer-side lockset. Both locksets

are cached and attached to a memory cell whenever a memory

access on that thread is observed, as shown in Figure 7.

The lockset analysis is simple as the following: for each data

race candidate <tx, ix> and <ty, iy>, if any of the following

conditions holds, this candidate cannot be a true data race.

LSR
<tx,ix> ∩ LSW

<ty,iy> �= ∅ (1)

LSW
<tx,ix> ∩ LSR

<ty,iy> �= ∅ (2)

LSW
<tx,ix> ∩ LSW

<ty,iy> �= ∅ (3)

On the other hand, if none of the conditions hold for a

data race candidate, then the execution of tx and ty can be

interleaved without restrictions around those memory accesses,

as shown in the reading and writing of addresses 0x34 and

0x46 in Figure 7, hence, leading to data races.

1649

Fig. 7: Illustration of lockset analysis in KRACE. This example shows
almost all locking mechanisms commonly used in the kernel, including
1) spin lock and mutexes—[un]lock(RW, -),
2) reader/writer lock—[un]lock(R/W, *),
3) RCU lock—specially denoted with symbol Δ, and
4) sequence lock—begin/end/retry(R/W, *).
The left column shows the content in the reader lockset at the time of
memory operation or changes to the lockset caused by other operations
(/ denotes no change). The right column shows the writer counterpart.
The two data races are highlighted in red and blue squares.

Pessimistic locking. Most of the kernel locking primitives

are pessimistic locking, i.e., whoever tries to acquire the lock

will be blocked from further execution until the lock holder

releases it. As a result, their APIs are always in pairs of lock

and unlock to mark the start and end of a critical section.

Examples of such locks include spin lock, reader/writer spin

lock, mutex, reader/writer semaphore, and bit locks.

A slightly trickier primitive is the RCU lock, in

which only reader-side critical sections are marked with

rcu_read_[un]lock and the writer-side critical section is not

marked by any lock/unlock APIs, instead, it is guaranteed

by the RCU grace period waiting. More specifically, when

__rcu_reclaim schedules an RCU callback into execution,

it is guaranteed that there is no RCU reader-side critical

section running. Hence, in KRACE, we hook the RCU callback

dispatcher and mark RCU writer lock and unlock before and

after the callback execution.

Optimistic locking. The Linux kernel is gradually shifting

toward lock-free design and the most prominent evidence in

recent years is the wide adoption of sequence locks [66]. A

sequence lock is, in fact, more similar to a transaction than to

a conventional lock. The reader is allowed to run optimistically

into the critical section, hoping that the data it reads will not

be modified during the transaction (hence the optimism), and

aborts and retries if the data does get modified.

While boosting performance, a challenge brought by the

sequence lock is that there is no clear end of the reader-side

critical section. As shown in Figure 7, after a transaction

begins, the retry can be called multiple times, perhaps one for

mid-of-progress checking and the other one for before-commit

checking; in theory, each retry could be an unlock-equivalent

that marks the end of the critical section. If the lockset analysis

is performed online (i.e., during execution), the lockset states

should fork to capture that the retry may or may not be an

Fig. 8: Illustration of happens-before reasoning in KRACE. This
example shows a very typical execution pattern in kernel file systems
where the user thread schedules two asynchronous works on the
work queue and checks for their results later in the execution. In
particular, one of the asynchronous works is a delayed work that also
goes through the timer thread. Fork-style, join-style, and publisher-
subscriber relations are represented by dashed, dotted, and solid arrows,
respectively. The only data race is highlighted in the red square.

unlock. For KRACE, since it uses offline lockset analysis, it

may simply read the execution trace ahead to know whether

there are more retries and behave correspondingly.

C. Happens-before analysis

Intuitively, happens-before analysis tries to find the causal

relations between specific execution points in the threads. For

example, a kernel thread only gets into running if another

thread forks it; as a result, there is no way to schedule the

spawned thread before the parent thread creates it. This implies

that whatever happens before the thread creation points cannot

be data racing against anything in the spawned thread. In the

example shown in Figure 8, there is no way for i2 to be racing

against i6, as without queuing the work on the work queue

(c2→c8), i6 won’t even be executed in the first place. Similarly,

scheduling a thread that is waiting for a condition to be true

will not make it run bypassing the barrier. Therefore, it is not

possible for i4 to race against i8, as only when the wake_up

call is reached (c12→c5) can i4 be executed.

This intuition shows how a happens-before relation can be

formally checked: by hooking kernel synchronization APIs, e.g.,

when a callback function is queued and when it is executed, we

could find the synchronization points (nodes) between threads

as well as the causality events (represented by edges), as shown

in Figure 8. Since the nodes in one thread are already inherently

connected according to program order, the whole execution

becomes a directed acyclic graph. Consequently, determining

whether two points, <tx, ix> and <ty, iy>, may race is

translated into a graph reachability problem. If a path exists

from <tx, ix> to <ty, iy>, it means that point X happens-
before Y and thus cannot be racing. The same applies if we

1650

Fig. 9: An overview of KRACE’s architecture and major components.
Components in italic fonts are either new proposals from KRACE or
existing techniques customized to meet KRACE’s purpose.

can establish Y happens-before X. On the other hand, if no

such path can be found, a happens-before relation cannot be

established and the pair should be flagged, as in the case of

i3 and i8. All other accesses are reachable in the graph, and

hence, they cannot be racing even without lock protections.

The happens-before relation commonly found in kernel file

systems can be broadly categorized into three types:

Fork-style relations include RCU callbacks registered with

call_rcu, work queues and kthread-simulated work queues,

direct kthread forking, timers, software interrupts (softirq),

as well as inter-processor interrupts (IPI). Hooking their kernel

APIs is as easy as finding corresponding functions that register

the callback and dispatch the callback.

Join-style relations include the completion API and a wide

variety of wait_* primitives such as wait_event, wait_bit,

and wait_page. Hooking their kernel APIs requires locating

their corresponding wake_up calls besides the wait calls.

Publisher-subscriber model mainly refers to the RCU pointer

assignment and dereference procedure [35]. For example, if

one user thread retrieves a file descriptor (fd) from the fdtable

which is RCU-guarded, the new fd must have been published

first, hence the causality ordering. The object allocate-and-use

pattern also falls into this realm: the publisher thread allocates

memory spaces for an object, initializes its fields, and inserts

the pointer to a global or heap-based data structure (usually a

list or hashtable), while the subscriber thread later dereferences

the pointer and uses the object. As a result, KRACE also tracks

the memory allocation APIs and monitors when the allocated

pointer is first stored into a public memory slot and when it is

used again to establish the ordering automatically.

VI. PUTTING EVERYTHING TOGETHER

A. Architecture

Figure 9 shows the overall architecture of KRACE. The

primary purpose of having the compile-time preparation is to

embed a KRACE runtime into the kernel such that alias coverage

(as well as branch coverage) can be collected dynamically. The

runtime is also responsible for collecting information for data

race checking, leveraging the kernel API hooking. On the

other hand, the fuzzing loop is still conventional, covering seed

selection, mutation, and execution, with the exception that in

KRACE, a test case is considered “interesting” as long as new

progress is found in either of the coverage bitmaps. In addition,

all components are updated to handle the new seed format for

concurrency fuzzing: multi-threaded syscall sequences.

Code instrumentation. Since the focus of KRACE is file

systems, we only instrument memory access instructions in

the target file system module and its related components such

as the virtual file system layer (VFS) or the journaling module,

e.g., jbd2 for ext4. On the other hand, API annotations are

performed on the main kernel code base and have an effect even

when the execution goes out of the functions in our target file

system: the locks acquired and released, as well as the ordering

primitives (e.g., queuing a timer), will be faithfully recorded.

In this way, KRACE does not suffer from false positives in

cases like block layer calls into a callback in the file system

layer but we do not know the prior locking contexts.

Fuzzing loop. Figure 15 shows the fuzzing evolution algorithm

in KRACE. Fuzzing starts with producing a new program

by merging two existing seeds. The seed selection criterion

used in KRACE so far is simply frequency count, i.e., less

used seeds receive priority. We expect more advanced seed

selection algorithms to be developed later. After merging, each

program goes through several extension loops on which the

program structure is altered with syscalls added and deleted.

Each structurally changed program will further go through

several modification loops in which the syscall arguments

and distribution among the threads are mutated. Finally, each

modified program runs repeatedly for several times, each with

a different delay schedule, to probe for alias coverage.

Several implicit parameters can be used to fine-tune the

process, e.g., how many times to loop at each stage (see §B

for details). In general, we give preference to alias coverage

exploration over growing the multi-threaded syscall sequences,

as we prefer to explore the concurrency domain as much as

possible when the number of syscalls executed is small, making

it easier for kernel developers to debug a reported data race.

Offline checking. Data race checking is conducted offline, i.e.,

only when new coverage, either branch or alias, is found. The

reason is that data race checking is slow (several minutes) and

significantly hinders the fast fuzzing experience (which only

requires a few seconds to finish one execution). As a result, we

allow the fuzzers to quickly expand coverage and only dump

execution logs without checking them. A few background

threads check the execution logs for data races whenever they

have free capacity. The checking progress has difficulty keeping

up with seed generation in the beginning but will gradually

catch up, especially when the coverage is toward saturation.

B. Benign vs harmful data races

An unexpected problem we encountered when reporting the

data races found by KRACE is on differentiating benign and

1651

harmful data races. Despite the common belief that being data-

race free is one of the coding practices in the kernel, benign

data races are not totally uncommon. One major category is

statistics accounting, such as __part_stat_add in the block

layer. These statistics are meant for information and hints only

and do not provide any accuracy guarantees. Another example

is the reading and writing of different bits in the same 2-, 4-,

8-byte variable, especially bit-flags such as inode->i_flag or

flags in file system control structures like fs_info.

Based on our experience, checking whether a data race is

benign or harmful is often time consuming, as it requires careful

analysis of the code and documentation to infer developers’

intentions. In the worst cases, it may require consulting the file

system developers, who may not even agree among themselves.

One possibility to confirm a harmful data race is to keep the

system running until the data race causes any visible effects

such as violating assertions or memory errors. However, this is

not always feasible, as shown in the case in Figure 1. It might

need thousands of file operations running in parallel to trigger

an integer overflow. By then, debugging such an execution

trace will be another problem.

To avoid reporting benign data races to developers, KRACE

uses several simple heuristics to filter the reports. In particular,

a data race is mostly benign if:

• the race involves variables that have stat in their names

or occurs within functions for statistics accounting;

• the race involves reading and writing to different bits of

the same variable;

• the race involves kernel functions that can tolerate being

racy, e.g., list_empty_careful.

Unfortunately, these heuristics typically offer limited help for

the more complicated cases.

C. The aging OS problem

When fuzzing file systems, most generic OS fuzzers do

not reload a fresh copy of the kernel instance or file system

image [21–23] for a new fuzzing session. Instead, they directly

issue the syscall sequence on the old kernel state. The intention

is to remove the overhead of kernel booting, as a VM emulator

might take seconds to load and boot the kernel, as is evident

in our evaluations as well (§VII-B). However, this also means

that any bugs found in this approach might come from the

accumulated effects of hundreds or even thousands of prior

runs, making them extremely difficult to debug and confirm by

kernel developers, as is evident in the case when many bugs

found by Syzkaller cannot be confirmed [67].

The aging OS problem is already difficult for fuzzing in the

sequential domain, and bringing in the concurrency dimension

further complicates the story. Moreover, for KRACE, the aging

OS situation creates more problems, as the lengthy thread

interleaving traces are not only difficult to debug but also

renders analysis impossible. Slicing the execution traces does

not seem feasible either, as cutting the trace at the wrong

points means losing the locking and happens-before context,

ultimately leading to false alarms. As a result, KRACE is forced

to use a clean-slate execution for every fuzzing run, i.e., a fresh

kernel and a clean file system image.

The aging OS problem is also reported by Janus [5], which

uses a library OS—LKL [68]—to enable quick reloading. But

unfortunately, LKL does not support the symmetrical multi-

processing (SMP) architecture, which is the prerequisite for

multi-threading (e.g., without SMP, all spin_locks becomes

no-ops). As a result, LKL is mostly suitable for sequential

fuzzing, not for concurrency fuzzing.

D. Discussion and limitations

Deterministic replay. Being able to replay an execution

deterministically is extremely helpful for debugging and also

opens the door for advanced data race triaging techniques

such as controlled re-interleaving of thread executions. Un-

fortunately, we are sorry to report that even with a totally

linearized trace of basic block enter/exit, memory accesses,

lock acquisition/releases, and kernel synchronization API calls,

KRACE is unable to deterministically replay an execution end-

to-end. Part of the reason is the missing instrumentation in other

kernel components, including the kernel core (including the

task and IO scheduler), memory management, device drivers

(except the block device), and most of the library routines.

We expect that deterministic replay may be possible if we

instrument all kernel components but at the expense of huge

execution footprints (e.g., GB-level logs) as well as significant

performance drops. We are unaware of a system that permits

deterministic replay of over 60 kernel threads, but we are eager

to integrate if possible.

Debuggability. To partially compensate for not being able

to replay a found data race deterministically, KRACE tries to

generate a comprehensive report for each data race, including

1) the conflicting lines in source code, 2) the full call stack for

each thread, and 3) the callback graph. Since each instruction

is labeled with a compile-time random number, KRACE is able

to pinpoint the conflicting lines in the source code when a data

race occurs. Further coupled with the basic block branching

information, KRACE is able to recover the full call trace, up

to the syscall entry point or the thread creation point, for all

involving threads during the race condition. The report may

also involve the callback graph derived from the happens-

before analysis, to further assist the developers with the origin

of the threads. In fact, kernel developers have never asked

for a deterministic replay of the trace and are able to judge

whether the race is harmful or benign based on the information

provided.

Missing bugs. Offlining the data race checker means that

KRACE might miss data race bugs. As discussed in §III-B,

alias coverage is just an approximation of state exploration

progress in the concurrency dimension, and there might be new

program states explored at runtime but that do not show up as

new coverage, i.e., meaningful interleavings missed by alias

coverage. KRACE forgoes the opportunities to check data races

in those cases and is a trade-off made in favor of expanding

the coverage with efficiency.

1652

Fig. 10: Implementation of the QEMU VM-based fuzzing executor
in KRACE. The VM instance and the host have three communication
channels: 1) private memory mapping, which contains the test case
program to be executed by the VM and the seed quality report
generated by KRACE runtime; 2) globally shared memory mapping,
which contains the coverage bitmaps globally available to the host
and all VM instances; 3) file sharing under the 9p protocol for sharing
of large files, including the file system image and the execution log.

E. Implementation

KRACE’s code base is divided into two parts: 1) compile-

time preparation, including annotations to the kernel source

code (in the form of kernel patches), an LLVM instrumentation

pass, and the KRACE library compiled into the kernel that

provides coverage tracking and logging at runtime; and 2) a

VM-based fuzzing loop that evolves test cases, executes them

in QEMU VMs, and checks for data races. The complexity

of each component is described in Table III and an overview

of the runtime executor is shown in Figure 10. Due to space

constraints, more details can be found in §D.

VII. EVALUATION

In this section, we evaluate KRACE as a whole as well

as per each component. In particular, we show the overall

effectiveness of KRACE by listing previously unknown data

races found (§VII-A); provide a comprehensive view of

KRACE’s performance characteristics, e.g., speed, scalability,

etc., as a file system fuzzer (§VII-B); justify major design

decisions with controlled experiments (§VII-C); and compare

KRACE against recent OS and data race fuzzers (§VII-D).

Experiment setup. We evaluate KRACE on a two-socket, 24-

core machine running Fedora 29 with Intel Xeon E5-2687W

(3.0GHz) and 256GB memory. All performance evaluations

are done on Linux v5.4-rc5, although the main fuzzer runs

intermittently across versions from v5.3. We build the kernel

core with minimal components but enable as many features as

possible for the btrfs and ext4 file system modules. For all

evaluations, the fuzzing starts with an empty file system image

created from the mkfs.* utilities. We run 24 VM instances in

parallel for fuzzing and each VM runs a three-thread seed.

ID FS Racing access Status

1 btrfs heap struct: cur_trans->state pending
2 btrfs heap struct: cur_trans->aborted harmful
3 btrfs heap struct: delayed_rsv->full harmful
4 btrfs heap struct: sb->s_flags benign
5 btrfs global variable: buffers harmful
6 btrfs heap struct: inode->i_mode benign
7 btrfs heap struct: inode->i_atime harmful
8 btrfs heap struct: BTRFS_I(inode)->disk_i_size harmful
9 btrfs heap struct: root->last_log_commit harmful

10 btrfs heap struct: free_space_ctl->free_space benign
11 btrfs heap struct: cache->item.used harmful
12 ext4 heap struct: inode->i_mtime benign
13 ext4 heap struct: inode->i_state benign
14 ext4 heap struct: ext4_dir_entry_2->inode benign
15 ext4 heap array: ei->i_data[block] harmful
16 VFS heap string: name in link_path_walk pending
17 VFS heap struct: inode->i_state benign
18 VFS heap struct: inode->i_wb_list benign
19 VFS heap struct: inode->i_flag benign
20 VFS heap struct: inode->i_opflags benign
21 VFS heap struct: file->f_mode benign*
22 VFS heap struct: file->f_pos pending
23 VFS heap struct: file->f_ra.ra_pages harmful

TABLE I: List of data races found and reported by KRACE so far.
Status of benign* means that it is a benign race according to the
execution paths we submitted, but the kernel developers suspect that
there might be other paths leading to potentially harmful cases.

A. Data races in popular file systems

Across intermittent fuzzing runs on two popular kernel file

systems (btrfs and ext4) during two months, KRACE found

and reported 23 new data races, of which nine have been

confirmed to be harmful, 11 are benign, and the rest of them

are still under investigation, as listed in Table I. Note that

besides bugs in concrete file systems, KRACE also finds data

races in the virtual file system (VFS) layer, which might affect

all file systems in the kernel.

Consequence. Based on our preliminary investigation, only

one bug (#5) is likely to cause immediate effects (null-

pointer dereference) when triggered. Others are likely to cause

performance degradation or specification violations, but we do

not see a simple path toward memory errors. This also means

that relying on bug signals such as KASan reports or kernel

panics might not be sufficient to find data races.

B. Fuzzing characteristics

Coverage growth. The growth patterns for both branch and

alias coverage are plotted in Figure 11 (for btrfs) and Figure 12

(for ext4). There are several interesting observations:

Alias coverage size. Although branch coverage for the two

file systems grow into roughly the same level (25K vs 20K),

compared with ext4, btrfs has a significantly larger alias

coverage bitmap, (60K vs 9K). Given that the number of user

threads is the same (3 threads), the difference is caused by

the level of concurrency inherent in btrfs and ext4 design.

As shown in Figure 14, btrfs uses at least 22 background

threads and each thread may additionally fork more helper

threads, while the only background thread for ext4 is the

jbd2 journaling thread. In other words, btrfs is inherently

more concurrent than ext4, and dividing works among more

1653

Fig. 11: Evaluation of the coverage growth of KRACE when fuzzing
the btrfs file system for a week (168 hours) with various settings.

Fig. 12: Evaluation of the coverage growth of KRACE when fuzzing
the ext4 file system for a week (168 hours) with various settings.

threads naturally leads to more alias pairs. The similar logic

also applies to why alias coverage saturates much faster in

ext4, the less concurrent file system.

Growth synchronization. In general, the two coverage

metrics grow in synchronization. It is expected that progresses

in the branch coverage will yield new alias coverage too because

new code paths mean new memory accessing instructions and

hence, new alias pairs. However, it is the other direction that

matters more: branch coverage saturates but alias coverage

keeps growing, e.g., starting from hour 75 in the btrfs case

or hour 25 in the ext4 case. In other words, KRACE keeps

finding new execution states (thread interleavings) that would

otherwise be missed if only branch coverage is tracked.

Instrumentation overhead. The code instrumentation from

KRACE is heavy, and we expect it to cause significant overhead

in execution. To show this, we present the aggregated statistics

on the execution time for seeds bearing different numbers

of syscalls. For comparison, we also run these seeds on a

bare-metal kernel built without KRACE instrumentation. The

results are plotted in Figure 13. In summary, in the zero-syscall

case, i.e., by merely loading (file system module) → mounting

(image) → unmounting → unloading, KRACE already incurs

47.6% and 34.3% overhead, and the more syscalls KRACE

executes, the more overhead it accumulates.

Fig. 13: Evaluation of seed execution and analysis time in KRACE

with a varying number of syscalls in the seed

The overhead mainly comes from memory access instrumen-

tation, as every memory access is now turned into a function

call where atomic operations are performed and synchronized,

not only with respect to all other threads on the VM, but also

against all threads across all VMs, as the thread is updating the

global bitmap on the host directly (implicitly handled by the

QEMU ivshmem module). As a result, further optimizations are

possible. For example, a VM instance may accumulate coverage

locally and update the global bitmap in batches instead of on

every memory access.

It is, however, debatable whether the overhead is detrimental

to KRACE as a fuzzer since lower overhead simply means that

the coverage growth will converge and saturates faster. In our

opinion, we consider the overhead caused by tracking more

coverage (including alias coverage) as a trade-off between

execution speed and seed quality. A fuzzer with fast executions

may waste resources in non-interesting test cases, while a

fuzzer with slow executions but finer-grained tracking might

eventually have higher chances to explore more states.

Data race checking cost. Another limiting factor for KRACE

is the time needed to analyze the execution logs for data

race detection, which also depends on the length of the

execution trace. The trend is also plotted in Figure 13. In

summary, the analysis time ranges from 4-7 minutes (0-30

syscalls per seed) for btrfs and 2-6 minutes for ext4. Such a

time cost is obviously not feasible for online checking (even

after optimization) but can be tolerated for offline checking,

i.e., KRACE schedules a data race check only when a seed

is discovered. This strategy works especially when fuzzing

saturates, as the bottleneck for making further progress then

becomes finding new execution states instead of checking the

trace. Based on our experience, running four checker processes

alongside 24 fuzzing VM instances is more than sufficient to

catch up to the progress within 96 hours in both cases.

C. Component evaluations

Coverage effectiveness. Although the two coverage metrics

represent different aspects of program execution, we are also

curious whether tracking explorations in the concurrency

dimension may help in finding new code paths (represented by

1654

branch coverage). To check this, we disabled the alias coverage

feedback and let KRACE explore the states mimicking the

feedback loop of existing OS and file system fuzzers. The

results (Figure 11 and Figure 12) show that exploring the

concurrency domain also helps to find new code coverage.

Most notably, without alias coverage feedback, branch coverage

grows much faster at the beginning, because it does not

spend fuzzing effort on exploring the thread interleavings, but

saturates at a lower number (7.2% and 4.0% less). Moreover, if

just counting the new branches explored (besides the branches

in the initial seed), the coverage reduces by 20.4% and 10.7%,

respectively. The more concurrent the file system is, the more

branch coverage will be explored by enabling alias coverage

feedback. This is not surprising, as certain code paths exist to

handle contention in the system, such as the paths executed

when try_lock fails or when sequence lock retries. Exploring

in the concurrency dimension helps to reveal these paths and

boost the branch coverage.

Delay injection effectiveness. To test whether injecting

delays helps in exploration in the concurrency dimension, we

disabled delay injection in this fuzzing experiment, and the

alias coverage growth is shown in Figure 11 and Figure 12.

With delay injection disabled, KRACE found 28.7% and 12.3%

less alias coverage in btrfs and ext4, respectively. This shows

that delay injection is important in finding more alias coverage.

Especially, when the branch coverage saturates, delay injection

becomes the leading force in finding alias coverage, as shown

by the enlarging gap between the growth. The more concurrent

the file system is, the more important delay injection becomes.

Seed merging effectiveness. To test whether reusing the

seed helps in exploration in the concurrency dimension, we

disabled seed merging in this fuzzing experiment, i.e., KRACE

only adds, deletes, and mutates syscalls but never reuses the

found seeds. The alias coverage growth is shown in Figure 11

and Figure 12. With seed merging disabled, KRACE found

37.7% and 14.2% less alias coverage in btrfs and ext4,

respectively. This experiment shows that reusing the seed is

important in quickly expanding the coverage. More importantly,

preserving the semantics among the syscalls and interleaving

the seeds help find more alias coverage.

Components in the data race checker. To show that it is

important to have both happens-before and lockset analysis (and

their sub-components) in the data race checker, we sampled a

simple fuzzing run: load btrfs module, mount an empty image,

execute two syscalls × three threads, unmount the image, and

unload the btrfs module. The following shows the filtering

effects of each component in the data race checker:

• data race candidates: 35,658

+ after lockset analysis on pessimistic locks: 13,347

+ after lockset analysis on optimistic locks: 8,903

+ after tracking fork-style happen-before relation: 6,275

+ after tracking join-style happen-before relation: 3,509

+ after handling publisher-subscriber model: 103

+ after handling ad-hoc schemes: 7 (all benign races)

D. Comparison with related fuzzers

Execution speed vs coverage. In terms of efficiency, KRACE

is not comparable to other OS and file system fuzzers, as

one execution takes at least seven seconds in KRACE, while

the number can be as low as 10 milliseconds for libOS-

based fuzzers [5, 6] or never-refreshing VM-based fuzzers

like Syzkaller. However, the effectiveness of a fuzzer is not

solely decided by fuzzing speed. A more important metric

is the coverage size, especially when saturated. Intuitively, if

the saturated coverage is low, being fast in execution only

implies that the coverage will converge faster and mostly stall

afterward.

On the metric of saturated coverage, KRACE outperforms

Syzkaller for both btrfs and ext4 by 12.3% and 5.5%,

respectively, as shown in Figure 11 and Figure 12. Even

without the alias coverage feedback, the branch coverage from

KRACE still outperforms Syzkaller, showing the effectiveness

of KRACE’s seed evolution strategies, especially the merging

strategy for multi-threaded seeds, which is currently not

available in Syzkaller. In fact, KRACE is able to catch up

to the branch coverage progress with Syzkaller within 30 hours

and eight hours for btrfs and ext4, respectively.

Data race detection. Razzer [24] reports four data races in

file systems and we find the patches for two of them, both in

the VFS layer. To check that KRACE may detect these cases,

we manually revert the patches in the kernel and confirm that

both cases are found. We would like to do the same for SKI [7],

but the data races found by SKI are too old (in 3.13 kernels)

and locating and reverting the patches is not easy.

VIII. CONCLUSION AND FUTURE WORK

This paper presents KRACE, an end-to-end fuzzing frame-

work that brings the concurrency aspects into coverage-guided

file system fuzzing. KRACE achieves this with three new

constructs: 1) the alias coverage metric for tracking exploration

progress in the concurrency dimension, 2) the algorithm for

evolving and merging multi-threaded syscall sequences, and

3) a comprehensive lockset and happens-before modeling for

kernel synchronization primitives. KRACE has uncovered 23

new data races so far and will keep running for more reports.

Looking forward, we plan to extend KRACE in at least three

directions: 1) data race detection in other kernel components;

2) semantic checking for more types of concurrency bugs; and

3) fuzzing distributed file systems that involve not only thread

interleavings but also network event ordering, which requires

completely new coverage metrics to capture.

IX. ACKNOWLEDGMENT

We thank the anonymous reviewers and our shepherd, Yan

Shoshitaishvili, for their insightful feedback. This research was

supported, in part, by NSF under award CNS-1563848, CNS-

1704701, CRI-1629851, SFS-1565523, and CNS-1749711;

ONR under grant N00014-18-1-2662, N00014-15-1-2162, and

N00014-17-1-2895; DARPA TC (No. DARPA FA8650-15-

C-7556); ETRI IITP/KEIT[2014-3-00035]; and gifts from

Facebook, Mozilla, Intel, VMware, and Google.

1655

REFERENCES

[1] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Lu, “A study
of linux file system evolution,” Trans. Storage, vol. 10, no. 1, pp. 3:1–3:32,
Jan. 2014. [Online]. Available: http://doi.acm.org/10.1145/2560012

[2] J. Huang, M. K. Qureshi, and K. Schwan, “An Evolutionary Study of
Linux Memory Management for Fun and Profit,” in Proceedings of the
2016 USENIX Annual Technical Conference (ATC), Berkeley, CA, USA,
Jun. 2016, pp. 465–478.

[3] A. Aghayev, S. Weil, M. Kuchnik, M. Nelson, G. R. Ganger, and
G. Amvrosiadis, “File Systems Unfit As Distributed Storage Backends:
Lessons from 10 Years of Ceph Evolution,” in Proceedings of the 27th
ACM Symposium on Operating Systems Principles (SOSP). New York,
NY, USA: ACM, Oct. 2019, pp. 353–369.

[4] C. Min, S. Kashyap, S. Maass, W. Kang, and T. Kim, “Understanding
Manycore Scalability of File Systems,” in Proceedings of the 2016
USENIX Annual Technical Conference (ATC), Denver, CO, Jun. 2016.

[5] W. Xu, H. Moon, S. Kashyap, P.-N. Tseng, and T. Kim, “Fuzzing File
Systems via Two-Dimensional Input Space Exploration,” in Proceedings
of the 40th IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2019.

[6] S. Kim, M. Xu, S. Kashyap, J. Yoon, W. Xu, and T. Kim, “Finding
Semantic Bugs in File Systems with an Extensible Fuzzing Framework,”
in Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP), Ontario, Canada, Oct. 2019.

[7] P. Fonseca, R. Rodrigues, and B. B. Brandenburg, “SKI: Exposing
Kernel Concurrency Bugs Through Systematic Schedule Exploration,”
in Proceedings of the 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Broomfield, Colorado, Oct. 2014.

[8] MITRE Corporation, “CVE-2009-1235,” https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2009-1235, 2009.

[9] J. Corbet, “Unprivileged filesystem mounts, 2018 edition,” https://lwn.
net/Articles/755593, 2018.

[10] Kernel.org Bugzilla, “Btrfs bug entries,” https://bugzilla.kernel.org/buglist.
cgi?component=btrfs, 2018.

[11] MITRE Corporation, “F2FS CVE entries,” http://cve.mitre.org/cgi-bin/
cvekey.cgi?keyword=f2fs, 2018.

[12] Kernel.org Bugzilla, “ext4 bug entries,” https://bugzilla.kernel.org/buglist.
cgi?component=ext4, 2018.

[13] G. Li, S. Lu, M. Musuvathi, S. Nath, and R. Padhye, “Efficient Scalable
Thread-safety-violation Detection: Finding Thousands of Concurrency
Bugs During Testing,” in Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP). New York, NY, USA: ACM,
Oct. 2019, pp. 162–180.

[14] Silicon Graphics Inc. (SGI), “(x)fstests is a filesystem testing suite,”
https://github.com/kdave/xfstests, 2018.

[15] SGI, OSDL and Bull, “Linux Test Project,” https://github.com/linux-test-
project/ltp, 2018.

[16] M. Zalewski, “American Fuzzy Lop (2.52b),” http://lcamtuf.coredump.
cx/afl, 2019.

[17] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“VUzzer: Application-aware Evolutionary Fuzzing,” in Proceedings of
the 24th ACM Conference on Computer and Communications Security
(CCS), Dallas, TX, Oct.–Nov. 2017.

[18] Google Inc., “honggfuzz,” http://honggfuzz.com/, 2019.
[19] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed

Greybox Fuzzing,” in Proceedings of the 24th ACM Conference on
Computer and Communications Security (CCS), Dallas, TX, Oct.–Nov.
2017.

[20] Google, “OSS-Fuzz - Continuous Fuzzing for Open Source Software,”
https://github.com/google/oss-fuzz, 2018.

[21] Google Inc., “Syzkaller is an Unsupervised, Coverage-guided Kernel
Fuzzer,” https://github.com/google/syzkaller, 2019.

[22] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz, “kAFL:
Hardware-Assisted Feedback Fuzzing for OS Kernels,” in Proceedings
of the 26th USENIX Security Symposium (Security), Vancouver, Canada,
Aug. 2017.

[23] NCC Group, “AFL/QEMU Fuzzing with Full-system Emulation,” https:
//github.com/nccgroup/TriforceAFL, 2017.

[24] D. R. Jeong, K. Kim, B. A. Shivakumar, B. Lee, and I. Shin, “Razzer:
Finding Kernel Race Bugs through Fuzzing,” in Proceedings of the 40th
IEEE Symposium on Security and Privacy (Oakland), San Francisco,
CA, May 2019.

[25] S. Pailoor, A. Aday, and S. Jana, “MoonShine: Optimizing OS Fuzzer

Seed Selection with Trace Distillation,” in Proceedings of the 27th
USENIX Security Symposium (Security), Baltimore, MD, Aug. 2018.

[26] J. Corina, A. Machiry, C. Salls, Y. Shoshitaishvili, S. Hao, C. Kruegel,
and G. Vigna, “DIFUZE: Interface Aware Fuzzing for Kernel Drivers,”
in Proceedings of the 24th ACM Conference on Computer and Commu-
nications Security (CCS), Dallas, TX, Oct.–Nov. 2017.

[27] D. Jones, “Linux system call fuzzer,” https://github.com/kernelslacker/
trinity, 2018.

[28] R. N. Netzer and B. P. Miller, “Detecting Data Races in Parallel Program
Executions,” in In Advances in Languages and Compilers for Parallel
Computing, 1990 Workshop. MIT Press, 1989, pp. 109–129.

[29] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.
[Online]. Available: http://doi.acm.org/10.1145/359545.359563

[30] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A Dynamic Data Race Detector for Multithreaded Programs,”
ACM Trans. Comput. Syst., vol. 15, no. 4, pp. 391–411, Nov. 1997.

[31] M. D. Bond, K. E. Coons, and K. S. McKinley, “PACER: Proportional
Detection of Data Races,” in Proceedings of the 2010 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI). New York, NY, USA: ACM, Jun. 2010, pp. 255–268.

[32] Z. Anderson, D. Gay, R. Ennals, and E. Brewer, “SharC: Checking
Data Sharing Strategies for Multithreaded C,” in Proceedings of the
2008 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). New York, NY, USA: ACM, Jun. 2008,
pp. 149–158.

[33] E. Pozniansky and A. Schuster, “Efficient On-the-fly Data Race Detection
in Multithreaded C++ Programs,” in Proceedings of the 9th ACM
Symposium on Principles and Practice of Parallel Programming (PPOPP).
New York, NY, USA: ACM, Jun. 2003, pp. 179–190.

[34] D. Marino, M. Musuvathi, and S. Narayanasamy, “LiteRace: Effective
Sampling for Lightweight Data-race Detection,” in Proceedings of the
2009 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). New York, NY, USA: ACM, Jun. 2009,
pp. 134–143.

[35] P. McKenney, “The RCU API, 2019 edition,” https://lwn.net/Articles/
777036/, 2019.

[36] S. Park, S. Lu, and Y. Zhou, “CTrigger: Exposing Atomicity Violation
Bugs from Their Hiding Places,” in Proceedings of the 14th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). New York, NY, USA:
ACM, Mar. 2009, pp. 25–36.

[37] K. Sen, “Race Directed Random Testing of Concurrent Programs,” in
Proceedings of the 2008 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). New York, NY, USA:
ACM, Jun. 2008, pp. 11–21.

[38] Y. Cai, J. Zhang, L. Cao, and J. Liu, “A Deployable Sampling Strategy for
Data Race Detection,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE 2016. New York, NY, USA: ACM, 2016, pp. 810–821.

[39] K. Serebryany and T. Iskhodzhanov, “ThreadSanitizer: Data Race
Detection in Practice,” in Proceedings of the Workshop on Binary
Instrumentation and Applications, ser. WBIA ’09. New York, NY,
USA: ACM, 2009, pp. 62–71.

[40] P. Deligiannis, A. F. Donaldson, and Z. Rakamaric, “Fast and Precise
Symbolic Analysis of Concurrency Bugs in Device Drivers (T),” in
Proceedings of the 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE), ser. ASE ’15. Washington, DC,
USA: IEEE Computer Society, 2015, pp. 166–177.

[41] D. Engler and K. Ashcraft, “RacerX: Effective, Static Detection of Race
Conditions and Deadlocks,” in Proceedings of the 19th ACM Symposium
on Operating Systems Principles (SOSP), Bolton Landing, NY, Oct.
2003.

[42] S. Hong and M. Kim, “Effective Pattern-driven Concurrency Bug
Detection for Operating Systems,” J. Syst. Softw., vol. 86, no. 2, pp.
377–388, Feb. 2013.

[43] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and Y. Zhou,
“MUVI: Automatically Inferring Multi-variable Access Correlations and
Detecting Related Semantic and Concurrency Bugs,” in Proceedings
of the 21st ACM Symposium on Operating Systems Principles (SOSP).
Stevenson, WA: ACM, Oct. 2007, pp. 103–116.

[44] J. W. Voung, R. Jhala, and S. Lerner, “RELAY: Static Race Detection on
Millions of Lines of Code,” in Proceedings of the the 6th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT

1656

Symposium on The Foundations of Software Engineering, ser. ESEC-FSE
’07. New York, NY, USA: ACM, 2007, pp. 205–214.

[45] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk, “Effective
Data-race Detection for the Kernel,” in Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation (OSDI).
Berkeley, CA, USA: USENIX Association, Oct. 2010, pp. 151–162.

[46] M. Elver, “Add Kernel Concurrency Sanitizer (KCSAN),” https://lwn.
net/Articles/802402/, 2019.

[47] J. Alglave, W. Deacon, B. Feng, D. Howells, D. Lustig, L. Maranget, P. E.
McKenney, A. Parri, N. Piggin, A. Stern, A. Yokosawa, and P. Zijlstra,
“Who’s afraid of a big bad optimizing compiler?” https://lwn.net/Articles/
793253/, 2019.

[48] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte, “A
Randomized Scheduler with Probabilistic Guarantees of Finding Bugs,” in
Proceedings of the 15th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).
New York, NY, USA: ACM, Mar. 2010, pp. 167–178.

[49] Y. Sui and J. Xue, “SVF: Interprocedural Static Value-Flow Analysis
in LLVM,” in Proceedings of the 25th International Conference on
Compiler Construction (CC), Barcelona, Spain, Mar. 2016.

[50] LLVM Project, “libFuzzer - a library for coverage-guided fuzz testing,”
https://llvm.org/docs/LibFuzzer.html, 2018.

[51] P. Chen and H. Chen, “Angora: Efficient Fuzzing by Principled Search,”
in Proceedings of the 39th IEEE Symposium on Security and Privacy
(Oakland), San Francisco, CA, May 2018.

[52] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “CollAFL:
Path Sensitive Fuzzing,” in Proceedings of the 39th IEEE Symposium
on Security and Privacy (Oakland), San Francisco, CA, May 2018.

[53] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based greybox
fuzzing as markov chain,” in Proceedings of the 23rd ACM Conference
on Computer and Communications Security (CCS), Vienna, Austria, Oct.
2016.

[54] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in Proceedings of the 24th ACM Conference on
Computer and Communications Security (CCS), Dallas, TX, Oct.–Nov.
2017.

[55] NCC Group, “AFL/QEMU fuzzing with full-system emulation.” https:
//github.com/nccgroup/TriforceAFL, 2017.

[56] MWR Labs, “Cross Platform Kernel Fuzzer Framework,” https://github.
com/mwrlabs/KernelFuzzer, 2016.

[57] H. Han and S. K. Cha, “IMF: Inferred Model-based Fuzzer,” in Proceed-
ings of the 24th ACM Conference on Computer and Communications
Security (CCS), Dallas, TX, Oct.–Nov. 2017.

[58] NCC Group, “A linux system call fuzzer using TriforceAFL,” https:
//github.com/nccgroup/TriforceLinuxSyscallFuzzer, 2017.

[59] MWR Labs, “macOS Kernel Fuzzer,” https://github.com/mwrlabs/
OSXFuzz, 2017.

[60] M. J. Renzelmann, A. Kadav, and M. M. Swift, “SymDrive: Testing
Drivers without Devices,” in Proceedings of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), Hollywood,
CA, Oct. 2012.

[61] A. Machiry, C. Spensky, J. Corina, N. Stephens, C. Kruegel, and
G. Vigna, “DR. Checker: A Soundy Analysis for Linux Kernel Drivers,”
in Proceedings of the 26th USENIX Security Symposium (Security),
Vancouver, Canada, Aug. 2017.

[62] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from Mistakes - A Com-
prehensive Study on Real World Concurrency Bug Characteristics,” in
Proceedings of the 13th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
Seattle, WA, Mar. 2008.

[63] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte, “A
Randomized Scheduler with Probabilistic Guarantees of Finding Bugs,” in
Proceedings of the 15th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
Pittsburgh, PA, Mar. 2010.

[64] P. Ammann and J. Offutt, Introduction to Software Testing, 2nd ed. New
York, NY, USA: Cambridge University Press, 2016.

[65] J. Wang, Y. Duan, W. Song, H. Yin, and C. Song, “Be sensitive
and collaborative: Analyzing impact of coverage metrics in greybox
fuzzing,” in 22nd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2019). Chaoyang District, Beijing:
USENIX Association, Sep. 2019, pp. 1–15. [Online]. Available:
https://www.usenix.org/conference/raid2019/presentation/wang

[66] K. Owens and A. Arcangeli, “Seqlock implementation in linux,” https:

//github.com/torvalds/linux/blob/master/include/linux/seqlock.h, 2019.
[67] Google, “syzbot,” https://syzkaller.appspot.com, 2018.
[68] O. Purdila, L. A. Grijincu, and N. Tapus, “LKL: The Linux kernel

library,” in Proceedings of the 9th Roedunet International Conference
(RoEduNet). IEEE, 2010.

[69] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma, “Ad Hoc Synchroniza-
tion Considered Harmful,” in Proceedings of the 9th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), Vancouver,
Canada, Oct. 2010.

1657

APPENDIX

A. Level of concurrency in the btrfs file system

1 struct btrfs_fs_info {
2 /* work queues */
3 struct btrfs_workqueue *workers;
4 struct btrfs_workqueue *delalloc_workers;
5 struct btrfs_workqueue *flush_workers;
6 struct btrfs_workqueue *endio_workers;
7 struct btrfs_workqueue *endio_meta_workers;
8 struct btrfs_workqueue *endio_raid56_workers;
9 struct btrfs_workqueue *endio_repair_workers;

10 struct btrfs_workqueue *rmw_workers;
11 struct btrfs_workqueue *endio_meta_write_workers;
12 struct btrfs_workqueue *endio_write_workers;
13 struct btrfs_workqueue *endio_freespace_worker;
14 struct btrfs_workqueue *submit_workers;
15 struct btrfs_workqueue *caching_workers;
16 struct btrfs_workqueue *readahead_workers;
17 struct btrfs_workqueue *fixup_workers;
18 struct btrfs_workqueue *delayed_workers;
19 struct btrfs_workqueue *scrub_workers;
20 struct btrfs_workqueue *scrub_wr_completion_workers;
21 struct btrfs_workqueue *scrub_parity_workers;
22 struct btrfs_workqueue *qgroup_rescan_workers;
23 /* background threads */
24 struct task_struct *transaction_kthread;
25 struct task_struct *cleaner_kthread;
26 };

Fig. 14: 20 work queues and 2 background threads used by btrfs.
This does not cover all asynchronous activities observable at runtime.

B. Seed evolution in KRACE

1 def fuzzing_loop(ext_limit, mod_limit, rep_limit):
2 while True:
3 program = merge_seeds(select_seed_pair())
4

5 ext_stall = 0
6 while ext_stall < ext_limit:
7 ext_stall++
8 [50%] program.add_syscall()
9 [50%] program.del_syscall()

10

11 mod_stall = 0
12 while mod_stall < mod_limit:
13 mod_stall++
14 [80%] program.mutate()
15 [20%] program.shuffle()
16

17 rep_stall = 0
18 while rep_stall < rep_limit:
19 rep_stall++
20 delay = randomize_delay()
21 cov, log = run(program, delay)
22

23 if not cov.empty():
24 rep_stall = mod_stall = ext_stall = 0
25 schedule_data_race_check(log)
26 prune_and_save_seed(program)

Fig. 15: The seed evolution process (a.k.a the fuzzing loop) in KRACE

Three parameters tunes the behaviors of the seed evolution

loop: namely ext_limit, mod_limit, and rep_limit as shown

in Figure 15. In KRACE, they take the values of 10, 10, and 5

respectively. That is,

• if any new coverage, either branch or alias, is observed

in 5 consecutive runs, KRACE will continue to run the

same multi-threaded seed for 5 more times but with a

new delay schedule each time;

• if no new coverage is observed for 5 consecutive runs,

KRACE starts to mutate the syscall arguments in the multi-

threaded trace or shuffle the syscalls;

• if no new coverage is observed for 50 consecutive runs,

KRACE starts to alter the input structure by adding or

deleting the syscalls in the multi-threaded traces;

• if no new coverage is observed for 500 consecutive runs,

KRACE starts to merge two seeds for a new seed.

C. Ad-hoc synchronization schemes in kernel file systems

Although ad-hoc synchronization schemes are considered

harmful [69], they may still exist in kernel file systems

for performance or functionality enhancements. Whenever

we encounter an ad-hoc scheme (usually when analyzing

false positives), we annotate it in the same way as major

synchronization APIs so that subsequent runs will not report

the false data races caused by it. In this section, we present

two examples we encountered in btrfs.

Ad-hoc locking. An ad-hoc lock has two implications: 1)

there will be data races in the lock implementation and these

data races are all benign races; and 2) lock internals should

be abstracted in a way that the lockset analysis can easily

understand. A representative example is the btrfs tree lock, and

the purpose of having the tree lock is to be convertible between

blocking and non-blocking mode, as shown in Figure 16.

1 /* acquire a spinning write lock, wait for both
2 * blocking readers or writers */
3 void btrfs_tree_lock(struct extent_buffer *eb)
4 {
5 u64 start_ns = 0;
6 if (trace_btrfs_tree_lock_enabled())
7 start_ns = ktime_get_ns();
8

9 WARN_ON(eb->lock_owner == current->pid);
10 again:
11 wait_event(eb->read_lock_wq,
12 atomic_read(&eb->blocking_readers) == 0);
13 wait_event(eb->write_lock_wq, eb->blocking_writers == 0);
14 write_lock(&eb->lock);
15 if (atomic_read(&eb->blocking_readers)
16 || eb->blocking_writers) {
17 write_unlock(&eb->lock);
18 goto again;
19 }
20 btrfs_assert_spinning_writers_get(eb);
21 btrfs_assert_tree_write_locks_get(eb);
22 eb->lock_owner = current->pid;
23 }
24 /* drop a spinning or a blocking write lock. */
25 void btrfs_tree_unlock(struct extent_buffer *eb)
26 {
27 int blockers = eb->blocking_writers;
28 BUG_ON(blockers > 1);
29

30 btrfs_assert_tree_locked(eb);
31 eb->lock_owner = 0;
32 btrfs_assert_tree_write_locks_put(eb);
33

34 if (blockers) {
35 btrfs_assert_no_spinning_writers(eb);
36 eb->blocking_writers--;
37 cond_wake_up(&eb->write_lock_wq);
38 } else {
39 btrfs_assert_spinning_writers_put(eb);
40 write_unlock(&eb->lock);
41 }
42 }

Fig. 16: A snippet of the btrfs tree lock (writer side only).

1658

Tree lock API Lockset mapping

tree_lock writer-lock

tree_unlock writer-unlock

tree_read_lock reader-lock

tree_read_lock_atomic reader-lock

tree_read_unlock reader-unlock

tree_read_unlock_blocking reader-unlock

tree_set_lock_blocking_read no-op if read-locked

tree_set_lock_blocking_write no-op if write-locked

try_tree_read_lock reader-lock if succeed

try_tree_write_lock writer-lock if succeed

TABLE II: Semantic mapping between the tree lock and conventional
locks (in particular, the readers-writer lock).

In these functions, almost every memory access to the fields

in the extent buffer, eb, could be racing against other accesses.

e.g., eb->lock_owner at line 12 against eb->lock_owner = 0

at line 40. So the first annotation for KRACE is to assume all

data races within these functions are safe and benign races.
To further encode the locking semantics for lockset analysis,

we study the tree lock APIs and map their functionality into a

simple reader-writer lock format as shown in Table II. In other

words, calling the, e.g., tree_lock will be treated equally as

calling the writer-lock in the conventional locking mechanisms.

Although tree_lock performs much more computation (e.g.,

waiting for both blocking and non-blocking readers), from the

lockset perspective, it is equivalent to a writer-lock.

Ad-hoc ordering. Ad-hoc ordering implies undocumented

casual relations between thread executions and a good example

is the customization of the conventional kernel work queue in

btrfs, as shown in Figure 17.

1 static inline void __btrfs_queue_work(struct __btrfs_workqueue *wq,
2 struct btrfs_work *work)
3 {
4 unsigned long flags;
5 work->wq = wq;
6 if (work->ordered_func) {
7 spin_lock_irqsave(&wq->list_lock, flags);
8 list_add_tail(&work->ordered_list, &wq->ordered_list);
9 spin_unlock_irqrestore(&wq->list_lock, flags);

10 }
11 queue_work(wq->normal_wq, &work->normal_work);
12 }
13 static void normal_work_helper(struct btrfs_work *work) {
14 /* ... */
15 work->func(work);
16 if (need_order)
17 set_bit(WORK_DONE_BIT, &work->flags);
18 /* ... */
19 }
20 static void run_ordered_work(struct __btrfs_workqueue *wq) {
21 /* ... */
22 work = list_entry(list->next, struct btrfs_work, ordered_list);
23 if (test_bit(WORK_DONE_BIT, &work->flags))
24 work->ordered_func(work);
25 /* ... */
26 }

Fig. 17: A snippet of the btrfs work queue implementation.

In this example, the set_bit and test_bit (line 17 and

23), establish an additional causal relation beyond the normal

queue_work semantic: the ordered function only gets into

execution when the normal function finishes. Thus, although

the observed happens-before relation is line 8 → line 24 and

line 11 → line 15, the actual relation is line 8 → line 11 →
line 15 → line 24.

D. KRACE implementation details

Component LoC Languange

Compile-time preparation
Kernel annotations 5,653 C
LLVM instrumentation pass 1,977 C++
KRACE kernel runtime library 1,749 C

Fuzzing loop
Seed evolution (including syscall spec.) 9,394 Python
QEMU-based fuzzing executor 5,878 Python
Initramfs and the init program 2,527 Python
Data race checker 6,883 Python
Debugging tools and utilities 1,096 Python

TABLE III: Implementation complexity of KRACE in terms of LoC
measurement of the major components shown in Figure 9.

Runtime executor. The most challenging part of KRACE’s

implementation is to establish information-sharing channels

between the host and VM-based fuzzing instances for seed

injection, coverage tracking, and feedback collection. KRACE

uses private memory mapping (PCI memory bar), public

memory mapping (ivshmem), and the 9p file sharing protocols

for this purpose, as shown in Figure 10.

Kernel building. Building the Linux kernel with LLVM is

straightforward since kernel v5.3 and LLVM 9.0. In addition, to

get the smallest possible boot time, we opt for a minimal kernel

build with only necessary components enabled, including the

block layer, loopback device, and all other related drivers to

support and accelerate execution in QEMU and KVM. File

systems are built as modules, not built-in, and these modules

will be loaded by our fuzzing agent (i.e., the init program)

such that we could track the modules in full, including the

thread they fork on loading and their synchronization orders.

Initramfs. Again, to shorten the execution time, KRACE does

not rely on full-blown OSes, not even tools like busybox, as

they may interfere with the file system under testing. Instead,

the init program in KRACE is the fuzzing agent that takes the

multi-threaded seed and interprets it. In particular, the init 1)

starts tracing, 2) loads file system modules, 3) mounts the file

system image, 4) interprets the program, 5) unmounts the file

system image, 6) unloads the modules, and 7) stops tracing.

Coverage tracking. Coverage tracking is handled by the

instrumented code which are essentially stub calls, e.g.,

on_basic_block_enter, on_memory_read, etc., into the KRACE

runtime library. KRACE directly updates the coverage bitmaps

maintained in the host memory regions that are globally visible

to all VM instances (and their threads). Effectively, each update

is a test_and_set_bit operation while the QEMU ivshmem

protocol ensures atomicity.

Execution log. An execution log is simply an array of

[<event-type>, <thread-id>, <arg1>, <arg2>, ...] filled

by the KRACE runtime library and consumed by the data race

checker for data race detection as well as reporting purposes

such as call trace reconstruction.

E. A taste of the happens-before complexity in actual execution

1659

46-46-7979

46-46-8194

46-43-722815

46-43-734844
16973824-35-0

46-43-762794

46-43-762795

65589-2-0

46-47-925

46-46-8416

46-46-1102

46-46-7826

46-43-789858

46-46-7978

65588-69-0

46-43-762980

46-46-1101

16973824-87-0

46-43-735708

46-43-74700965580-0-0

46-47-0

46-47-494

46-46-8405

46-43-764754 65587-0-0

46-43-785215

46-43-78670965541-1-0

46-43-775053

46-43-775054

65601-2-0

46-43-788184

46-43-788185

65595-1-0

46-43-638170

46-43-638171

16973824-31-0

46-43-766398

46-43-766399

65600-2-0

46-46-8338

46-43-775239

46-43-788370

46-43-704772

46-43-766584

65558-0-0

46-43-78341765580-1-0

46-43-734845

65596-2-0

65580-2-0

46-43-70841616973824-32-0

46-43-786895

65563-0-0

46-43-747195

46-43-76072065576-1-0

46-46-498

16973824-86-0

65588-68-0

65616-0-0

46-47-495

33619968-273-0

46-43-786710

65604-2-0

46-46-8195

65548-3-0

46-47-907

16973824-88-0

46-43-747010

65592-2-0

46-43-719854

16973824-34-0

65541-0-0

65588-70-0 16973824-33-0

65541-1-58663

16777216-21-0

65541-1-78

65541-1-5850916777216-16-0

65541-0-41468

16777216-15-0

65541-0-78

65541-0-41314 16777216-9-0

65541-1-58552

16777216-19-0

65541-0-41358

65541-0-41357

16777216-10-0

65541-1-58553

16777216-20-0

16777216-11-0

65548-3-1936

65548-3-43226 16777216-6-0

65548-3-43270

65548-3-43396

65548-3-1905

16777216-5-0

16777216-18-0

65548-3-43269

16777216-7-0

16777216-8-0

65558-0-78

65558-0-41319

65558-0-41362

16908288-69-0

16908288-68-0

65558-0-41363

65558-0-41473

16908288-73-0

16908288-70-0

65563-0-41370

65563-0-78

65563-0-41327 16973824-45-0

16973824-47-0

65576-1-41689

65576-1-41799

16908288-71-0

65576-1-41645

65576-1-41688

16908288-63-0

65576-1-78

16908288-62-0

16908288-64-0

65580-1-78

65580-1-4130316973824-42-0

65580-0-194

65580-0-41372 16973824-36-0

65580-1-41346

65580-1-41347

16973824-44-0

65580-0-41399

65580-0-41524

16973824-38-0

65580-1-41457

65580-0-41525

65580-0-41703

16973824-39-0

16973824-49-0

16973824-41-0

16973824-43-0

16973824-37-0

65587-0-60434

65587-0-60544

16908288-72-0

65587-0-78

65587-0-6039016908288-65-0

65587-0-60433

16908288-66-0

16908288-67-0

65588-68-31

65588-68-32

65588-69-83

65588-0-5564

65588-0-5575

65588-68-52

65588-0-5486

65588-67-756

65588-67-757

33619968-269-0

65588-67-1272

65588-67-1300 33751040-16-0

65615-13-0

65616-0-78

65616-0-41380

65616-0-41563

65616-0-41336

65616-0-41379

16777216-13-0

16777216-14-0

16777216-12-0

16777216-17-0

16777216-11-130

16777216-10-36

16777216-14-122

16777216-10-35

16777216-19-35

16777216-19-36

16777216-13-36

16777216-8-115

16777216-7-36

16777216-7-35

16777216-20-112

16777216-13-35

16908288-67-115

16908288-64-107

16908288-63-36

16908288-69-36

16908288-70-105

16908288-66-36

16908288-63-35

16908288-69-35

16908288-66-35

16973824-61-17

16973824-67-0

16973824-37-32047

16973824-30-337

16973824-47-35

16973824-44-107

16973824-86-98

16973824-43-36

16973824-53-0

16973824-53-11397

16973824-38-35

16973824-38-36

16973824-86-99 16973824-30-0

16973824-30-336

16973824-61-0

16973824-87-146

16973824-40-0

16973824-39-116

16973824-46-8525

16973824-31-135

16973824-46-0

16973824-43-35

16973824-40-12837

33751040-16-32

Fig. 18: A taste of the happens-before relation tracking in btrfs file system. This snippet is only around 10% of the actual
happens-before graph tracked in this execution. Each node in the graph is a synchronization point represented by a three-tuple
<thread id, context id, instruction id> and the directed edge between two nodes A and B means A happens-before B.

1660

