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Abstract—We present VERISMART, a highly precise verifier
for ensuring arithmetic safety of Ethereum smart contracts.
Writing safe smart contracts without unintended behavior is
critically important because smart contracts are immutable and
even a single flaw can cause huge financial damage. In particular,
ensuring that arithmetic operations are safe is one of the most
important and common security concerns of Ethereum smart
contracts nowadays. In response, several safety analyzers have
been proposed over the past few years, but state-of-the-art
is still unsatisfactory; no existing tools achieve high precision
and recall at the same time, inherently limited to producing
annoying false alarms or missing critical bugs. By contrast,
VERISMART aims for an uncompromising analyzer that performs
exhaustive verification without compromising precision or scala-
bility, thereby greatly reducing the burden of manually checking
undiscovered or incorrectly-reported issues. To achieve this goal,
we present a new domain-specific algorithm for verifying smart
contracts, which is able to automatically discover and leverage
transaction invariants that are essential for precisely analyzing
smart contracts. Evaluation with real-world smart contracts
shows that VERISMART can detect all arithmetic bugs with a
negligible number of false alarms, far outperforming existing
analyzers.

I. INTRODUCTION

Safe smart contracts are indispensable for trustworthy

blockchain ecosystems. Blockchain is widely recognized as

one of the most disruptive technologies and smart contracts lie

at the heart of this revolution (e.g., [1], [2]). Smart contracts

are computer programs that run on blockchains in order

to automatically fulfill agreed obligations between untrusted

parties without intermediaries. Unfortunately, despite their

potential, smart contracts are more likely to be vulnerable than

traditional programs because of their unique characteristics

such as openness and immutability [3]. As a result, unsafe

smart contracts are prevalent and are increasingly becoming a

serious threat to the success of the blockchain technology. For

example, recent infamous attacks on the Ethereum blockchain

such as the DAO [4] and the Parity Wallet [5] attacks were

caused by unsafe smart contracts.

In this paper, we present VERISMART, a fully automated

safety analyzer for verifying Ethereum smart contracts with a

particular focus on arithmetic safety. We focus on detecting

arithmetic bugs such as integer over/underflows and division-

by-zeros because smart contracts typically involve lots of

arithmetic operations and they are major sources of security
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TABLE I
STATISTICS ON CVE-REPORTED SECURITY VULNERABILITIES OF

ETHEREUM SMART CONTRACTS (AS OF MAY. 31, 2019)

Arithmetic Bad Access Unsafe Input
Others TotalOver/underflow Randomness Control Dependency

487 (95.7 %) 10 (1.9 %) 4 (0.8 %) 4 (0.8 %) 4 (0.8%) 509

vulnerabilities nowadays. For example, arithmetic over/un-

derflows account for 95.7% (487/509) of CVEs assigned to

Ethereum smart contracts, as shown in Table I. Even worse,

arithmetic bugs, once exploited, are likely to cause significant

but unexpected financial damage (e.g., the integer overflow

in the SmartMesh contract [6] explained in Section II). Our

goal is to detect all arithmetic bugs before deploying smart

contracts on the blockchain.

Unlike existing techniques, VERISMART aims to be a truly

practical tool by performing automatic, scalable, exhaustive,

yet highly precise verification of smart contracts. Recent years

have seen an increased interest in automated tools for ana-

lyzing arithmetic safety of smart contracts [7], [8], [9], [10],

[11], [12]. However, existing tools are still unsatisfactory. A

major weakness of bug-finding approaches (e.g., [7], [9], [8],

[10]) is that they are likely to miss fatal bugs (i.e., resulting in

false negatives), because they do not consider all the possible

behaviors of the program. On the other hand, verification

approaches (e.g., [11], [12]) are exhaustive and therefore miss

no vulnerabilities, but they typically do so at the expense of

precision (i.e., resulting in false positives). In practice, both

false negatives and positives burden developers with error-

prone and time-consuming process for manually verifying a

number of undiscovered issues or incorrectly reported alarms.

VERISMART aims to overcome these shortcomings of existing

approaches by being exhaustive yet precise.

To achieve this goal, we present a new verification algorithm

for smart contracts. The key feature of the algorithm, which

departs significantly from the existing analyzers for smart

contracts [7], [8], [9], [10], [11], [12], is to automatically

discover domain-specific invariants of smart contracts during

the verification process. In particular, our algorithm automates

the discovery of transaction invariants, which are distinctive

properties of smart contracts that hold under arbitrary inter-

leaving of transactions and enable to analyze smart contracts

exhaustively without exploring all program paths separately. A

technical challenge is to efficiently discover precise invariants
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from the huge search space. We propose an effective algorithm

tailored for typical smart contracts, which iteratively generates

and validates candidate invariants in a feedback loop akin

to the CEGIS (counter example-guided inductive synthesis)

framework [13], [14], [15]. Our algorithm is general and can

be used for analyzing a wide range of safety properties of

smart contracts besides arithmetic safety.

Experimental results show that our algorithm is much more

effective than existing techniques for analyzing Ethereum

smart contracts. We first evaluated the effectiveness of

VERISMART by comparing it with four state-of-the-art bug-

finders: OSIRIS [7], OYENTE [9], MYTHRIL [8], and MAN-

TICORE [10]. An in-depth study on 60 contracts that have

CVE vulnerabilities shows that VERISMART detects all known

vulnerabilities with a negligible false positive rate (0.41%). By

contrast, existing bug-finders failed to detect a large amount

(> 29.3%) of known vulnerabilities with higher false positive

rates (> 5.4%). We also compared VERISMART with two

state-of-the-art verifiers, ZEUS [11] and SMTCHECKER [12].

The results show that VERISMART is significantly more

precise than them thanks to its ability to discover transaction

invariants of smart contracts automatically.

Contributions: Our contributions are as follows:

• We present a new verification algorithm for smart con-

tracts (Section III). This is the first CEGIS-style algorithm

that leverages transaction invariants automatically during

the verification process.

• We provide VERISMART, a practical implementation of

our algorithm that supports the full Solidity language,

the de facto standard programming language for writing

Ethereum smart contracts.

• We provide in-depth evaluation of VERISMART in com-

parison with six analyzers [7], [9], [8], [10], [11], [12].

All experimental results are reproducible as we make our

tool and data publicly available.1

II. MOTIVATING EXAMPLES

In this section, we illustrate central features of VERIS-

MART with examples. We use three real-world smart contracts

to highlight key aspects of VERISMART that differ from

existing analyzers.

Example 1: Figure 1 shows a simplified function from

the SmartMesh token contract (CVE-2018-10376). In April

2018, an attacker exploited a vulnerability in the function and

succeeded to create an extremely large amount of unauthorized

tokens (≈ 5·1057 USD). This vulnerability, named proxyOver-

flow, was due to unexpected integer overflow.

The transferProxy function is responsible for trans-

ferring a designated amount of tokens (value) from

a source address (from) to a destination address (to)

while paying transaction fees (fee) to the message sender

(msg.sender). The core functionality is implemented at

lines 8–10, where the recipients’ balances (balance[to]
and balance[msg.sender]) are increased (lines 8 and

1http://prl.korea.ac.kr/verismart

1 function transferProxy (address from, address to, uint
value, uint fee) {

2 if (balance[from] < fee + value) revert();
3
4 if (balance[to] + value < balance[to] ||
5 balance[msg.sender] + fee < balance[msg.sender])
6 revert();
7
8 balance[to] += value;
9 balance[msg.sender] += fee;

10 balance[from] -= value + fee;
11 }

Fig. 1. A vulnerable function from SmartMesh (CVE-2018-10376).

9) and the sender’s balance (balance[from]) is decreased

by the same amount of the sent tokens at line 10.

Note that the developer is aware of the risks of integer

over/underflows and has made effort to avoid them. The condi-

tional statement at line 2 checks whether the sender’s balance

(balance[from]) is greater than or equal to the tokens to

be sent (fee+value), aiming to prevent integer underflow at

line 10. The guard statements at lines 4 and 5 check that the

recipients’ balances are valid after the transaction, intending

to prevent integer overflows at lines 8 and 9, respectively.

However, the contract still has a loophole at line 2. The

expression fee+value inside the conditional statement may

cause integer overflow, which enables the token sender to send

more money than (s)he has. Suppose all accounts initially have

no balances, i.e., balance[from]=0, balance[to]=0,

and balance[msg.sender]=0, and the function is

invoked with the arguments value=0x8ff...ff and

fee=0x700...01, where 256-bit unsigned integer variables

(value and fee) are represented in hexadecimal numbers

comprised of 64 digits (e.g., value has 63 fs and one

8). Suppose further the two unspecified address values are

given as the same but different from the sender’s (i.e.,

from = to �= msg.sender). These crafted inputs then

make the sanity checks at lines 2–6 powerless (i.e., the

three conditions at lines 2, 4, and 5 are all false because

fee+value = 0x8ff...ff + 0x700...01 = 0 and

balance[to] = balance[msg.sender] = 0). There-

fore, lines 8–10 for token transfer are executed unexpect-

edly, creating a huge amount of tokens from nothing (i.e.,

balance[to] = balance[from] = 0x8ff...ff and

balance[msg.sender] = 0x700...01.

This accident could have been prevented by VERISMART, as

it pinpoints the vulnerability at line 2. Indeed, VERISMART is

an exhaustive verifier, aiming to detect all arithmetic issues

in smart contracts. By contrast, inexhaustive bug-finders are

likely to miss critical vulnerabilities. For example, among the

existing bug-finders [7], [9], [8], [10], only OSIRIS [7] is able

to find the vulnerability. MYTHRIL [8] and OYENTE [9] fail

to detect the well-known proxyOverflow vulnerability.

Example 2: Figure 2 shows the multipleTransfer
function adapted from the Neo Genesis Token contract (CVE-

2018-14006). The function has a similar vulnerability to that

of the first example. At line 3 in Figure 2, it prevents the

underflow possibility of the token sender’s account but does
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1 function multipleTransfer(address[] to, uint value) {
2 require(value * to.length > 0);
3 require(balances[msg.sender] >= value * to.length);
4 balances[msg.sender] -= value * to.length;
5 for (uint i = 0; i < to.length; ++i) {
6 balances[to[i]] += value;
7 }
8 }

Fig. 2. A vulnerable function from Neo Genesis Token (CVE-2018-14006).

not protect the overflow of the tokens to be sent (value *
to.length), which is analogous to the situation at line 2

of Figure 1. That is, in a similar way, an attacker can send

huge amounts of tokens to any users by spending only few

tokens [16].

Despite the similarity between vulnerabilities in Example 1

and 2, bug-finders have no guarantees of consistently finding

them. For example, OSIRIS, which succeeded to detect the

vulnerability in Example 1, now fails to report the similar

bug in Example 2. The other bug-finders are ineffective

too; MYTHRIL does not report any issues and OYENTE ob-

scurely reports that the entire function body is vulnerable

without specifying certain operations. On the other hand,

VERISMART reliably reports that the expression value *
to.length at lines 2–4 would overflow.

One of the main reasons for the unstable results of bug-

finders is that they rely heavily on a range of heuristics to

avoid false positives (e.g., see [7]). Though heuristics are good

at reducing false positives, the resulting analyzer is often very

brittle; even small changes in programs may end up with

missing fatal vulnerabilities as shown in Example 1 and 2,

which is particularly undesirable for safety-critical software

like smart contracts.

Example 3: Figure 3 shows a simplified version of the

contract, called BTX. The program has two global state

variables: balance stores balances of each account address

(line 2), and totalSupply is the total amount of the

supplied tokens (line 3). The constructor function initializes

totalSupply with 10000 tokens (line 6), and gives the

same amount of tokens to the creator of the contract (line

7). The transfer function sends value tokens from the

transaction message sender’s account to the recipient’s account

(lines 12–13), if it does not incur the underflow in the message

sender’s balance (line 11). The transferFrom function

is similar to transfer with an exception to the order of

performing addition and subtraction.

The contract has four arithmetic operations at lines 12, 13,

18, and 19, all of which are free of integer over/underflows.

However, it is nontrivial to see why they are all safe. In

particular, the safety of the two addition operations at lines 13

and 18 is tricky, because there are no direct safety-checking

statements in each function. To see why they do not overflow,

we need to discover the following two transaction invariants
that always hold no matter how the transactions (transfer
and transferFrom) are interleaved:

1 contract BTX {
2 mapping (address => uint) public balance;
3 uint public totalSupply;
4
5 constructor () {
6 totalSupply = 10000;
7 balance[msg.sender] = 10000;
8 }
9

10 function transfer (address to, uint value) {
11 require (balance[msg.sender] >= value);
12 balance[msg.sender] -= value;
13 balance[to] += value; // Safe
14 }
15
16 function transferFrom (address from, address to, uint

value) {
17 require (balance[from] >= value);
18 balance[to] += value; // Safe
19 balance[from] -= value;
20 }
21 }

Fig. 3. Example contract simplified from CVE-2018-13326.

• the sum of all account values is 10000, i.e.,∑
i

balance[i] = 10000, (1)

• and computing
∑

i balance[i] does not cause over-

flow.

By combining these two conditions and the preconditions

expressed in the require statements at lines 11 and 17, we

can conclude that, at lines 13 and 18, the maximum values

of both balance[to] and value are 10000, and thus the

expression balance[to]+value does not overflow in 256-

bit unsigned integer operations.

Since reasoning about the safety in this case is tricky, it

is likely for human auditors to make a wrong conclusion

that the contract is unsafe. This is in fact what happened in

the recent CVE report (CVE-2018-13326)2; the CVE report

incorrectly states that the two addition operations at lines 13

and 18 are vulnerable and thus the operations may overflow.

Unfortunately, existing safety analyzers do not help here. In

particular, verifiers, ZEUS [11] and SMTCHECKER [12], are

not precise enough to keep track of the implicit invariants such

as (1) and therefore cannot prove the safety at lines 13 and 18.

Bug-finders OSIRIS and OYENTE also produce false alarms.

MYTHRIL does not report any issues, but this does not mean

that it proved the absence of vulnerabilities.

By contrast, VERISMART is able to prove that the contract is

safe without any false alarms. Notably, VERISMART does so

by automatically inferring hidden invariants described above.

To our knowledge, VERISMART is the first of its kind, which

discovers global invariants of smart contracts and leverages

them during the verification process in a fully automated way.

III. VERISMART ALGORITHM

This section describes the verification algorithm of VERIS-

MART. We formally present the algorithm in a general setting,

so it can be used for analyzing other safety properties as well

beyond our application to arithmetic safety.

2https://nvd.nist.gov/vuln/detail/CVE-2018-13326
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Language: For brevity, we focus on a core subset of

Solidity [17]. However, VERISMART supports the full Solidity

language as the extension is discussed in Section IV. Consider

the following subset of Solidity:

c ∈ C ::= G∗ F ∗, f ∈ F ::= x(y){S}
a ∈ A ::= x := E | x[y] := E | assume(B) | assert(B)

s ∈ S ::= A | if B S1 S2 | whilel E S | S1;S2

We assume a single contract c is given, which consists of

a sequence of global state variable declarations (G∗) and a

sequence of function definitions (F ∗), where G and F denote

the sets of global variables and functions in the contract,

respectively. We assume a constructor function f0 ∈ F exists

in c. Each function f is defined by a function name (x),

argument (y), and a body statement (S). A statement S is

an atomic statement (A), a conditional statement, or a while

loop. An atomic statement a ∈ A is an assignment to a variable

(x := E), an assignment to an array element (x[y] := E), an

assume statement, or an assert statement. In our language, we

model mapping variables in Solidity as arrays. In our language,

assume differs from assert ; while the former models the

require statements in Solidity and stops execution if the

condition evaluates to false, the latter does not affect program

semantics. E and B stand for conventional arithmetic and

boolean expressions, respectively, where we assume arith-

metic expressions produce 256-bit unsigned integers. In our

language, loops are annotated with labels (l), and the entry

and the exit of each function f are annotated with special

labels entryf and exitf , respectively. Let Label be the set

of all labels in the program. We assume each function f has

public (or external) visibility, meaning that all functions

in the contract can be called from the outside.

Goal: Our goal is to develop an algorithm that

proves or disproves every assertion (which we also call

query) in the contract. We assume that safety proper-

ties to verify are expressed as the assert statements in

the program. In our application to arithmetic safety, as-

sertions can be automatically generated; for example, for

each addition a+b and multiplication a*b, we gener-

ate assert(a+b>=a) and assert(a==0||(a!=0 &&
(a*b)/a==b)), respectively.

Notation: We use the lambda notation for functions. For

example, λx.x + 1 is the function that takes x and returns

x+1. We write FOL for the set of first-order formulas in the

combined theory of fixed-sized bitvectors, arrays with exten-

sionality, and equality with uninterpreted functions. When e
is an expression or a formula, we write e[y/x] for the new

expression where x gets replaced by y. We write FV(e) for

the set of free variables in e.

A. Algorithm Overview

VERISMART departs significantly from existing analyzers

for smart contracts [7], [8], [9], [10], [11], [12], [18], [19],

[20], [21] in that VERISMART applies a CEGIS-style verifi-

cation algorithm that iteratively searches for hidden invariants

that are required for verifying safety properties.

1 contract RunningExample {
2 uint public n;
3 constructor () { n = 1;}
4 function f () public {
5 assert (n + 1 >= n);
6 n = n + 1;
7 if (n >= 100) { n = 1; }
8 }
9 }

Fig. 4. Example contract.

Generator

unproven queries

candidate invariants

Solidity 
Program

Verification 
Result

Validator

Solver

Fig. 5. Algorithm overview.

Invariants of Smart Contracts: We consider two kinds of

invariants for smart contracts: transaction and loop invariants.

We say a formula is a transaction invariant if it is valid at

the end of the constructor and the validity is preserved by

the execution of public functions that can be invoked by

transactions. Loop invariants are more standard; a formula

is an invariant of a loop if the formula is valid at the entry

of the loop and is preserved by the loop body. Transaction

invariant is global and thus it is a single formula, whereas

loop invariants are local and must be separately given for each

loop in the program. Thus, our algorithm aims to discover a

pair (ψ, μ), where ψ ∈ FOL is a transaction invariant and

μ ∈ Label → FOL is a mapping from loop labels to formulas.

We write
∧

for pointwise conjoining operation between two

mappings μ1 and μ2, i.e., μ1

∧
μ2 = λl ∈ Label.μ1(l)∧μ2(l).

Example 1: Consider the contract in Figure 4. The program

has one global variable n, which is initialized to 1 in the

constructor. The function f can be invoked from the outside

of the contract; it increases the value of n by 1 every time

it is called, but resets it to 1 whenever n is 100. Note that

n ≤ 100 is a transaction invariant: 1) it holds at the end of

the constructor, and 2) supposing that n ≤ 100 holds before

entering f, we can prove that it also holds when exiting the

function. Our algorithm automatically discovers the invariant

n ≤ 100 and succeeds to prove that the assertion at line 5 is

safe; upon entering f, n ≤ 100 holds and n ≤ 100 → n+1 ≥
n is valid in the theory of unsigned 256 bitvector arithmetic.

Algorithm Structure: Figure 5 describes the overall struc-

ture of our algorithm. The input is a smart contract written in

Solidity, and the output is a verification result that indicates

whether each query (i.e., assertion) in the program is proven

safe or not. The algorithm consists of two components, a

validator and a generator, where the validator has a solver

as a subcomponent.

The algorithm aims to find contract-specific invariants that

are inductive and strong enough to prove all provable queries

in the given contract. The role of the generator is to produce
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candidate invariants that help the validator to prove as many

queries as possible. Given a candidate invariant, the validator

checks whether the invariant is useful for proving the queries.

If it fails to prove the queries, it provides the set of unproven

queries as feedback to the generator. The generator uses this

feedback to refine the current invariant and generate new ones.

This way, the validator and generator form an iterative loop

that continuously refines the analysis results until the program

is proven to be safe or the given time budget is exhausted.

Upon termination, all unproven queries are reported to users

as potential safety violations.

Algorithm 1 shows our verification algorithm. It uses a

workset (W ) to maintain candidate invariants, which initially

contains the trivial invariant (true, λl.true) (line 1): the trans-

action invariant ψ is true and the loop invariant mapping μ
maps every label (l) to true. The repeat-until loop at lines

2–11 correspond to the feedback loop in Figure 5. At lines 3

and 4, the algorithm chooses and removes a candidate invariant

(ψ, μ) from the workset. We choose a candidate invariant that

is the smallest in size. At line 5, we run the validator to check

whether the current candidate is inductive and strong enough

to prove queries, which returns a pair of the boolean variable

inductive , indicating whether the current candidate invariant

is inductive or not, and the set U of unproven queries. If U
is empty (line 6), the algorithm terminates and the contract is

completely proven to be safe. Otherwise (line 8), we generate

a new set of candidate invariants and add them to the workset.

Finally, when the current candidate fails to prove some queries

but is known to be at least inductive (line 9), we strengthen the

remaining candidate invariants using it (line 10), because we

can potentially prove more queries with stronger invariants. By

doing so, we can find useful invariants more efficiently. The

algorithm iterates until it times out or the workset becomes

empty. We assume that the algorithm implicitly maintains

previously generated invariants to avoid redundant trials.

Technical Contributions: Although the overall algorithm

follows the general framework of CEGIS [13], [14], [15],

we provide an effective, domain-specific instantiation of the

framework in the context of smart contract analysis. Now

we describe the details of this instantiation: validator (III-B),

generator (III-C), and solver (III-D).

B. Validator

The goal of the validator is to check whether the current

candidate invariant (ψ, μ) is inductive and strong enough to

prove safety of the queries. The input to the validator is an

annotated program (c, ψ, μ), i.e., smart contract c annotated

with transaction (ψ) and loop (μ) invariants. The validator

proceeds in three steps.

Basic Path Construction: Given an annotated program

(c, ψ, μ), we first break down the program into a finite set

of basic paths [22]. A basic path is a sequence of atomic

statements that begins at the entry of a function or a loop, and

ends at the exit of a function or the entry of a loop, without

passing through other loop entries. We represent a basic path p
by the five components: ((l1, φ1), a1; . . . ; an, (l2, φ2)), where

Algorithm 1 Our Verification Algorithm

Input: A smart contract c to verify

Output: Verification success or potential safety violations

1: W ← {(true, λl.true)}
2: repeat
3: Choose a candidate invariant (ψ, μ) from W
4: W ←W \ {(ψ, μ)}
5: (inductive, U) ← VALIDATOR(c, ψ, μ)
6: if U = ∅ then verification succeeds

7: else
8: W ←W ∪ GENERATOR(U,ψ, μ)
9: if inductive then

10: W ← {(ψ′ ∧ ψ, μ′ ∧μ) | (ψ′, μ′) ∈W}
11: until W = ∅ or timeout

12: return potential safety violations

l1 is the label of the starting point (i.e., function or loop

entry) of the path, φ1 ∈ FOL is the invariant annotated at

l1, a1, . . . , an are atomic statements, l2 is the label of the

end point (i.e., function exit or loop entry) of the path, and

φ2 ∈ FOL is the invariant annotated at l2. The basic path

satisfies the following properties:

1) If l1 is a function entry, φ1 = ψ (i.e., transaction

invariant). An exception: φ1 = true if l1 is entry of

constructor. If l2 is a function exit, φ2 = ψ.

2) Otherwise, i.e., when l1 and l2 are labels of loops, φ1 =
μ(l1) and φ2 = μ(l2) (i.e., considering loop invariants).

Note that our construction of basic paths is exhaustive as we

consider all paths of the program by summarizing the effects

of transactions and loops with their invariants. The basic paths

can be computed by traversing control flows of the program.

Example 2: Consider the contract in Figure 4 annotated with

the transaction invariant ψ = n ≤ 100. We do not consider

loop invariants as the contract does not have any loops. The

annotated program is converted into three basic paths:

p1 : ((entry0, true), n := 1, (exit0, n ≤ 100))
p2 : ((entryf , n ≤ 100), a1, (exitf , n ≤ 100))
p3 : ((entryf , n ≤ 100), a2, (exitf , n ≤ 100))

where a1 = assert(n + 1 ≥ n);n := n + 1; assume(n ≥
100);n := 1 and a2 = assert(n + 1 ≥ n);n := n +
1; assume(n < 100). p1 represents the basic path of the

constructor (whose entry and exit labels are entry0 and

exit0, respectively). p2 and p3 represent the basic paths of

the function f that follow the true and false branches of

the conditional statement at line 7, respectively. Note that

conditional statements and loops do not appear as they are

broken into basic paths with original conditions given as

assume statements.

Generation of Verification Conditions: Let P be the set of

basic paths constructed from the annotated program. We next

generate verification conditions (VCs) for each basic path.

To derive the VCs, we should be able to express effects of

program statements in FOL. To do so, we define a strongest
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postcondition predicate transformer sp : stmt → FOL ×
FOL → FOL × FOL, which is defined in a standard way

for each atomic statement as follows:

sp(x := e)(φ1, φ2) = (x = e[x′/x] ∧ φ1[x
′/x], φ2)

sp(x[y] := e)(φ1, φ2) = (x = x′〈y � e[x′/x]〉 ∧ φ1[x
′/x], φ2)

sp(assume(e))(φ1, φ2) = (φ1 ∧ e, φ2)
sp(assert(e))(φ1, φ2) = (φ1, φ2 ∧ (φ1 → e))

where unprimed variables (e.g., x) and primed variables (e.g.,

x′) represent the current and previous program states, respec-

tively. In each rule, φ1 is a precondition and sp transforms it

into a postcondition while accumulating the safety conditions

of assertions in φ2. We write x′〈y � e〉 for the modified array

x′ that stores the value of e at position y. With sp, we define

the procedure GENVC that generates the VC of a basic path:

GENVC(((l1, φ1), a1; . . . ; an, (l2, φ2))) = (φ′1 → φ2, φ
′
2)

where (φ′1, φ
′
2) = (sp(an)◦· · ·◦sp(a2)◦sp(a1))(φ1, true). The

generated VC consists of two parts: φ′1 → φ2 is a formula for

checking that the annotated invariants are inductive, and φ′2 is

a formula for checking the safety properties in assertions.
Example 3: Consider the basic path p3 in Example 2. The

corresponding VC is a pair of (n′ ≤ 100 ∧ n = n′ + 1 ∧ n <
100 → n ≤ 100, n ≤ 100 → n + 1 ≥ n), both of which are

valid in the bitvector theory.
Collecting Unproven Paths: Finally, we return a pair of

the boolean variable inductive and the subset U ⊆ P of basic

paths whose VCs are invalid:

(inductive, U) =⎧⎨
⎩

if ∃p ∈ P.GENVC(p).1 is invalid then
(false, {p ∈ P | GENVC(p).1 is invalid})

else (true, {p ∈ P | ∃F ∈ GENVC(p).2 is invalid})
GENVC(p).1 and GENVC(p).2 denote the first (i.e., the VC

on inductiveness) and the second (i.e., the VC on safety)

component of GENVC(p), respectively. We also write F ∈
GENVC(p).2 for a clause of GENVC(p).2, where F corre-

sponds to the safety condition of a single query. In the above

procedure, we first check whether some VCs regarding induc-

tiveness are invalid. If it does so (if-case), we set inductive
to false and U becomes the basic paths where inductiveness

checking failed. Note that, in this case, we accelerate our

verification procedure by excluding from U the paths where

safety checking may fail. That is, we first focus on refining

invariants to be inductive and then strengthen them further to

prove safety rather than trying to achieve both at the same

time. When the current candidate invariant is inductive (else-

case), we set inductive to true and collect the basic paths

where some queries are not proven to be safe. To check the

validity of the VCs, we use a domain-specific solver, which

will be explained in Section III-D.

C. Generator
The generator takes the set U as feedback and produces

new candidate invariants by refining the current one (ψ, μ).
GENERATOR(U,ψ, μ) returns the following set:

{(ψ, μ′) | μ′ ∈ LOOP(μ,U)} ∪ {(ψ′, μ) | ψ′ ∈ TRAN(ψ,U)}

where LOOP and TRAN generate new loop and transaction

invariants, respectively, based on the current ones. We define

LOOP(μ,U) so as to return the following set of refined loop

invariants:⋃
((l1, ),a,(l2, ))∈U

{μ[li �→ φi] | i ∈ [1, 2], φi ∈ REFINEL(μ(li), a)}

where we assume l1 and l2 are loop labels, and a is the

sequence of atomic statements in the basic path. The definition

of TRAN(ψ,U):

{ψ′ | ((l1, ), a, (l2, )) ∈ U,ψ′ ∈ REFINET(ψ, a)}
where we assume l1 is the label of a function entry or l2
is the label of a function exit. In the definitions above, the

procedures REFINEL and REFINET are actually responsible

for refining loop and transaction invariants, which ultimately

determine the effectiveness of the generator and the overall

verification algorithm.

Domain-Specific Refinement: We define REFINEL and

REFINET in terms of refinement relation. A refinement relation

(�X,C) ⊆ FOL × FOL is a binary relation on logical

formulas, parameterized by variable set X and constant set

C, which describes how a candidate invariant is refined in one

step: i.e., φ can be refined to any of {φ′ | φ�X,C φ′}. In our

approach, choosing a right refinement relation holds the key

to cost-effective verification since it defines the search space

of candidate invariants. For example, simply choosing a very

general or specific refinement relation would not be practical

because of the huge or too limited search space. Instead, we

have to carefully design a refinement relation tailored for real-

world smart contracts to make our algorithm cost-effective.

Fortunately, we observed that smart contracts in practice

share common properties and accordingly considered the

following points when we design the refinement relation.

First, smart contracts often use loops in simple and restricted

forms, e.g., for(i = 0; i < x ; i++), and therefore

it is sufficient to consider simple numerical invariants. In

particular, we decided to focus on invariants of the forms

x = y, x ≥ y, x = n, x ≥ n, and x ≤ n, where x, y are

variables and n denotes integer constants. That is, we do not

consider non-linear or compound invariants such as x = y2

and x = y+ z. Second, because smart contracts use the map-

ping datatype extensively (e.g., balance in token contracts),

it is particularly important to capture their common properties

(e.g., the sum of balance is equal to totalSupply).

Currently, we support the function symbol sum for variables

of mapping type: for example, sum(balance) means the

sum of all balances. Third, we consider invariants that are

quantifier-free conjunctive formulas. That is, we do not allow

disjunctions or quantifiers to be used in candidate invariants.

Based on the observations, we define the refinement relation:

φ1 �X,C φ2 ⇐⇒ φ2 = φ1 ∧ ϕ and ϕ ∈ A

where A is the set of atomic predicates of the forms x =
y, x ≥ y, x = n, x ≥ n, x ≤ n, sum(x) = e, where x, y ∈ X ,

n ∈ C, and e ∈ C ∪ X . That is, the current invariant
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φ1 is strengthened with a linear and quantifier-free atomic

predicate (ϕ). Note that we only use the symbol sum in the

equality predicate as we found invariants of other forms such

as sum(x) > e are rarely used in practice. Finally, we define

REFINET and REFINEL using �X,C as follows:

REFINEL(ψ, a) = {ψ′ | ψ �vars(a),const(a) ψ
′}

REFINET(φ, a) = {φ′ | φ�globals,cnstr∪const(a) φ
′}

where vars(a) and const(a) are the variables and constants

appearing in the atomic statements a, respectively. globals and

cnstr represent the set of global variables and constants in the

constructor function, respectively. We instantiate the sets X
and C differently because transaction invariants often involve

global state variables and constants of the entire contract while

loop invariants involve local and global variables and constants

that appear in the enclosing function. In both cases, we reduce

the search space by focusing on local variables and constants

to those of the current basic path (a).

D. Solver

The last component is the solver that is used by the val-

idator to discharge the verification conditions. The solver

ultimately uses an off-the-shelf SMT solver (we use Z3 [23])

but performs domain-specific preprocessing and optimization

steps before using it, which we found important to make

our approach practical for real-world contracts. For a basic

path p, we assume its verification condition F (either the

inductiveness condition, i.e., F = GENVC(p).1, or the safety

condition of a query, i.e., F ∈ GENVC(p).2) is given.

Preprocessing: Since F may contain symbols (i.e., sum)

that conventional SMT solvers cannot understand, we must

preprocess F so that all such uninterpretable symbols get

replaced by equi-satisfiable formulas in conventional theories.

For example, let F contains sum as follows:

F = · · · ∧ sum(x) = n ∧ x[i] = v1 ∧ x[j] = v2 ∧ · · ·
where we elide portions of F that are irrelevant to the mapping

variable x (i.e., x is only accessed with i and j in the given

basic path p). Our idea to translate F into a formula without

sum is to instantiate the symbol with respect to the context

where F is evaluated. In this example, we can translate the

formula F into the following:

· · · ∧ F1 ∧ F2 ∧ x[i] = v1 ∧ x[j] = v2 ∧ · · ·
where F1 = (i �= j → x[i]+x[j]+Rx = n)∧(i = j → x[i]+
Rx = n) asserts that the sum of distinct elements of x equals

n. Because x is used in the given basic path with two index

variables i and j, we consider two cases: i = j and i �= j.
When i �= j, we replace sum(x) = n by x[i]+x[j]+Rx = n,

where Rx is a fresh variable denoting the sum of x[k] for all

k ∈ domain(x) \ {i, j}, where domain(x) is the domain of

the mapping. The other case (i = j) is handled similarly. F2

is the additional assertion that guarantees the validity of F1:

F2 = (i �= j → x[i] + x[j] ≥ x[j] ∧ x[i] + x[j] + Rx ≥
Rx) ∧ (i = j → x[i] + Rx ≥ Rx) ∧ Bx, where Bx is a

fresh propositional variable, meaning that the summations in

Rx do not overflow. The general method for our preprocessing

is given in Appendix A.

Note that the verification condition after preprocessing can

be checked by a conventional SMT solver. However, we found

that the resulting formulas are often too complex for modern

SMT solvers to handle efficiently, so we apply the following

optimization techniques.

Efficient Invalidity Checking: Most importantly, we

quickly decide invalidity of formulas without invoking SMT

solvers. We observed that even state-of-the-art SMT solvers

can be extremely inefficient when our verification conditions

are invalid. For example, consider the following formula:

true → (a−b = 0)∨(a−b �= 0∧((a−b)∗255)/(a−b) = 255).

It is easy to see that the formula is invalid in the theory of

256-bit arithmetic (e.g., it does not hold when a = 2255 and

b = 0). Unfortunately, however, the latest version of Z3 [23]

(ver 4.8.4) and CVC4 [24] (ver 1.7) takes more than 3 minutes

to conclude the formula is invalid.

To mitigate this problem, we designed a simple decision

procedure based on the free variables of formulas; given a

VC of the form p → q, we conclude that it is invalid if

FV(p) �⊇ FV(q). The intuition is that p must include more vari-

ables than q, as a necessary condition to be stronger than q. In

the above example, we conclude the formula is invalid because

FV(true) �⊇ FV(a = 0 ∨ (a �= 0 ∧ (a ∗ b)/a = b)) = {a, b}.

In practice, we found that this simple technique improves

the scalability of the verification algorithm significantly as it

avoids expensive calls to SMT solvers.

Let us explain why our technique is correct. We first review

the notion of interpretation in first-order logic [22]. An in-

terpretation I : (DI , αI) is a pair of a domain (DI ) and an

assignment (αI ). The domain DI is a nonempty set of values

(or objects). The assignment αI maps variables, constants,

functions, and predicate symbols to elements, functions, and

predicates over DI . Let J : I � {x �→ v} denote an x-variant

of I such that J accords with I on everything except for x.

That is, DI = DJ and αI [y] = αJ [y] if y �= x, but αI [x] and

αJ [x] may be different. Then, we have the following result

(see Appendix B for proof).

Proposition 1: Let p and q be first-order formulas. Then,

p→ q is invalid if the following three conditions hold:

(i) FV(p) �⊇ FV(q),
(ii) p is satisfiable: ∃I. I |= p, and

(iii) q has a nontrivial variable: there exists x ∈ FV(q)\FV(p)
such that for any interpretation I , if I |= q then I �
{x �→ v} |= ¬q for some v ∈ DI \ {αI [x]}.

Our technique is based on this result but checks the first

condition (i) only, which can be done syntactically and ef-

ficiently. We do not check the last two conditions (ii) and (iii)

as they require invoking SMT solvers in general. Therefore,

our technique may decide valid VCs as invalid (i.e., producing

false positives) although no invalid VCs are determined to be

valid (i.e., no false negatives). Because the technique causes

no false negatives, it can be used by sound verifiers.
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Although approximated, our technique rarely produces false

positives in practice. For example, consider the valid formula

true → a ≥ a. Our technique may incorrectly conclude

that the formula is invalid, since FV(true) �⊇ FV(a ≥ a)
but we do not check the condition (iii) that the formula

violates. Note that, however, such a trivial formula is unlikely

to appear during the verification of real-world smart contracts;

the verification condition true → a ≥ a would be generated

from the trivial expression a−a that does not appear frequently

in programs. Even when they appear, we can easily remove the

triviality. For example, it is easy to simplify true → a ≥ a
into true → true that is not determined as invalid by our

technique since FV(true) ⊇ FV(true). In fact, no false

positives were caused by our technique in our experiments

in Section V.

Efficient Validity Checking: We also quickly identify

some valid formulas by using a number of domain-specific

templates. This is because our verification conditions are likely

to involve arrays and non-linear expressions extensively but

modern SMT solvers are particularly inefficient for handling

them. For example, a simple yet important validity template

is as follows:

F ′ → x ≥ (x ∗ n1)/n2 n1 ≤ n2

where F ′ denotes an arbitrary formula, x a 256-bit unsigned

integer variable, and n1 and n2 some integer constants.

This template asserts that, regardless of the precondition F ′,
x ≥ (x ∗ n1)/n2 holds if n1 ≤ n2. Using the template, we

can conclude that a formula · · · → y ≥ (y ∗ 99)/100 is valid

(i.e., the subtraction y− (y ∗ 99)/100 is safe from underflow)

without calling an external SMT solver. These templates are

used before the preprocessing step; several templates were

designed to determine the validity of formulas containing

domain-specific symbols at a high level without preprocessing.

We provide more examples in Appendix C.

IV. IMPLEMENTATION

In this section, we explain implementation details of VERIS-

MART, which consists of about 7,000 lines of OCaml code.

Although Section III describes our algorithm for a small subset

of Solidity, our implementation supports the full language

(except for inline assembly). Most Solidity features (e.g.,

function modifers) can be desugared into our core language

in a straightforward way. We discuss nontrivial issues below.

Function Calls: Basically, we handle function calls by

inlining them into their call-sites up to a predefined inlining

depth k (currently, less than or equal to 2). Exceptions include

relatively large functions (with more than 20 statements) that

might cause scalability issues and inter-contract function calls

(i.e., calling functions in other contracts via contract objects).

To perform exhaustive verification, we handle those remaining

function calls conservatively as follows.

First, we conservatively reflect side-effects of function calls

on the caller side. To do so, we first run a side-effect

analysis [25] to find variables whose values may be changed

by the called functions. Next, we weaken the formulas at

call-sites by replacing each of atomic predicates that involve

those variables by true. For example, consider a call statement

x:=foo() and assume foo may change the value of variable

a in its body. Suppose further the precondition of the call-site

is a ≥ 1∧b ≥ 1∧c ≥ 1∧x ≥ y. Then, we obtain the following

postcondition of the call-site: true ∧ b ≥ 1 ∧ c ≥ 1 ∧ true
where a ≥ 1 and x ≥ y get replaced by true. Regarding

inter-contract function calls, it is enough to invalidate the

value of return variables only, as inter-contract calls in Solidity

cannot directly modify other contracts’ states. For example,

consider the precondition above and an inter-contract call x
: = o.foo (). We produce the postcondition a ≥ 1∧ b ≥
1 ∧ c ≥ 1 ∧ true, where only x ≥ y is replaced by true.

Second, we separately analyze function bodies not inlined.

This step is needed to detect potential bugs in the functions

skipped during the step described in the preceding paragraph.

To perform exhaustive verification, we analyze these functions

by over-approximating their input states. Specifically, when

the function in a main contract has public or external
visibility, we run the algorithm in Section III which annotates

entry and exit with transaction invariant. On the other hand,

when the function in a main contract has internal or

private visibility (i.e., the functions which cannot be called

from the outside and can only be accessed via function call

statements) or the function is defined in other contracts, we

generate the VCs after we annotate entries and exits of them

with true, i.e., incoming state at the entry is over-approximated

as true and inductiveness condition can be trivially checked at

the exit.

In summary, VERISMART performs exhaustive safety ver-

ification without missing any possible behaviors. In theory,

we may lose precision due to the conservative function-call

analysis. However, as our experimental results in Section V

demonstrate, our approach is precise enough in practice.

Inheritance: In Section III, we assumed a single contract

is given. To support contract inheritance, we copy functions

and global variables of parent contracts to a main contract

using the inheritance graph provided by the Solidity compiler.

During this conversion, we consider function overriding and

variable hiding, and do not copy functions with the same

signatures and the same variables.

Structures: We encode structures in Solidity with arrays.

To do so, we introduce a special mapping variable for each

member of a structure type, which maps structures to the

member values. For example, given a precondition φ, the

strongest postcondition of command x.y := z is my =
m′

y〈x � z〉 ∧ φ[m′
y/my], where my is a map (or an array)

from structures to the corresponding values of member y and

x is an uninterpreted symbol for the structure variable x.

Note that we are able to handle aliasing among structures

using this encoding. For example, if two structures p and q
are aliased and they both have y as a member, then we can

access the same member y using either of the structures, i.e.,

my[p] = my[q].
Inline Assembly: One potential source of false negatives

of source code analyzer (e.g., ZEUS [11]) is inline assembly.
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VERISMART also has this limitation and may miss bugs

hidden in embedded bytecode. However, VERISMART con-

servatively analyzes the remaining parts of the source code

by considering the side-effects of the assembly blocks in a

similar way that we handle function call statements, i.e., we

replace each atomic predicate by true if it involves variables

used in assembly code (using the information provided by the

Solidity compiler). Note that this limitation does not impair the

practicality of VERISMART significantly, as inline assembly is

not very common in practice. For example, in our benchmarks

in Section V, only four contracts (#4, #16, #52 in Table II,

#24 in Table IV) contain assembly blocks but none of these

assembly blocks include arithmetic operations.

V. EVALUATION

We evaluate the effectiveness of VERISMART by comparing

it with existing tools. Research questions are as follows:

(1) How precisely can VERISMART detect arithmetic bugs

compared to the existing bug-finders, i.e., OSIRIS [7],

OYENTE [9], MYTHRIL [8], MANTICORE [10]?

(2) How does VERISMART compare to the existing verifiers,

i.e., ZEUS [11] and SMTCHECKER [12]?

In addition, we conduct a case study to show VERISMART can

be easily extended to support other types of vulnerabilities

(Section V-C). We used the latest versions of the existing tools

(as of May 1st, 2019). All experiments were conducted on a

machine with Intel Core i7-9700K and 64GB RAM.

A. Comparison with Bug-finders

We evaluate the bug-finding capability of VERISMART by

comparing it with four bug-finding analyzers for Ethereum

smart contracts: OSIRIS [7], OYENTE [26], MYTHRIL [8], and

MANTICORE [10]. They are well-known open-sourced tools

that support detection of integer overflows (OSIRIS, OYENTE,

MYTHRIL, MANTICORE) and division-by-zeros (MYTHRIL).

In particular, OSIRIS is arguably the state-of-the-art tailored

for finding integer overflow bugs [7].

Setup: We used 60 smart contracts that have vulnerabilities

with assigned CVE IDs. We have chosen these contracts to

enable in-depth manual study on the analysis results with

known vulnerabilities confirmed by CVE reports. The 60

benchmark contracts were selected randomly from the 487

CVE reports that are related to arithmetic overflows (Table I),

excluding duplicated contracts with minor syntactic differ-

ences (e.g., differences in contract names or logging events).

During evaluation, we found four incorrect CVE reports (#13,

#20, #31, #32 in Table II), which will be discussed in more

detail at the end of the section.

To run OSIRIS, OYENTE, MYTHRIL, and MANTICORE, we

used public docker images provided together with these tools.

Following prior work [7], we set the timeout to 30 minutes per

contract. For fair comparison, we activated only the analysis

modules for arithmetic bug detection when such option is

available (MYTHRIL, MANTICORE). We left other options

as default. For VERISMART, we set the timeout to 1 minute

for the last entrance of the loop in Algorithm 1, and set the

timeout to 10 seconds for Z3 request, because these numbers

worked effectively in our experience; if we set each timeout

to a lower value, the precision may decrease (Section V-D). In

analysis reports of each tool, we only counted alarms related

to arithmetic bugs (integer over/underflows and division-by-

zeros) for a main contract whose name is available at the

Etherscan website [27].

Results: Table II shows the evaluation results on the CVE

dataset. For each benchmark contract and tool, the table shows

the number of alarms (#Alarm) and the number of false

positives (#FP) reported by the tool; regarding these two

numbers, we did not count cases where the tools (OYENTE and

MYTHRIL) ambiguously report that the entire body of a

function or the entire contract is vulnerable. The CVE columns

indicate whether the tool detected the vulnerabilities in CVE

reports or not (�: a tool successfully pinpoints all vulnerable

locations in each CVE report, �: a tool does not detect any

of them, �: a tool detects only a part of vulnerable points in

each CVE report or, obscurely reports the body of an entire

function containing CVE vulnerabilities is vulnerable without

pinpointing specific locations. N/A: all vulnerabilities in CVE

reports are actually safe; see Table III).

The results show that VERISMART far outperforms the

existing bug-finders in both precision and recall. In to-

tal, VERISMART reported 492 arithmetic over/underflow and

division-by-zero alarms. We carefully inspected these alarms

and confirmed that 490 out of 492 were true positives (i.e.,

safety can be violated for some feasible inputs), resulting

in a false positive rate ( #FP
#Alarm ) of 0.41% (2/492). We also

inspected 484 (=976-492) unreported queries to confirm that

all of them are true negatives (i.e., no feasible inputs exist

to violate safety), resulting in a recall of 100%. Of course,

VERISMART detected all CVE vulnerabilities. In contrast,

existing bug-finders missed many vulnerabilities. For example,

OSIRIS managed to detect 41 CVE vulnerabilities with 17

undetected known vulnerabilities. OYENTE pinpointed 20

exact vulnerable locations in CVE, partly detected vulner-

abilities in 4 CVE reports, vaguely raised alarms on 11

functions containing vulnerable locations, and missed 23 CVE

vulnerabilities. MYTHRIL detected vulnerabilities in 10 CVE

reports, obscurely warned that 1 function is vulnerable, and

missed 46 known issues. MANTICORE was successful in

only two CVE reports, failing on 42 CVE reports. The false

positive rates of OSIRIS, OYENTE, and MYTHRIL were 5.42%

(13/240), 8.19% (14/171), and 10.64% (10/94), respectively.

Efficiency: VERISMART was also competitive in terms of

efficiency. To obtain the results in Table II on the 60 bench-

mark programs, VERISMART, OSIRIS, OYENTE, MYTHRIL,

and MANTICORE took 1.1 hour (3,807 seconds), 4.2 hours

(14,942 seconds), 14 minutes, 13.8 hours (49,680 seconds),

and 31.4 hours (112,920 seconds) respectively, excluding the

cases of timeout (though we set the timeout to 30 minutes,

MANTICORE sometimes did not terminate within 3 days)

and internal errors (e.g., unsupported operations encountered,

abnormal termination) of MYTHRIL and MANTICORE.
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TABLE II
EVALUATION OF EXISTING TOOLS ON CVE REPORTS. LOC: LINES OF CODE. #Q: THE TOTAL NUMBER OF QUERIES FOR EACH CONTRACT AFTER

REMOVING UNREACHABLE FUNCTIONS. #ALARM: THE NUMBER OF ENTIRE ALARMS PRODUCED BY EACH TOOL. #FP: THE NUMBER OF FALSE ALARMS.
CVE: A MARKER THAT INDICATES WHETHER EACH TOOL SUCCESSFULLY DETECTS VULNERABILITIES IN CVE. �: A TOOL SUCCESSFULLY PINPOINTS

ALL VULNERABLE LOCATIONS IN CVE. �: A TOOL DETECTS ONLY A PART OF VULNERABILITIES IN CVE, OR OBSCURELY REPORTS THAT AN ENTIRE

FUNCTION BODY IS VULNERABLE WITHOUT PINPOINTING SPECIFIC LOCATIONS. �: A TOOL TOTALLY FAILED TO DETECT VULNERABILITIES IN CVE.
N/A: ALL VULNERABILITIES REPORTED IN CVE ARE ACTUALLY SAFE (#13, #31). FOR PARTLY CORRECT CVE REPORTS (#20, #32), THE

CVE INFORMATION IS VALID W.R.T. THEM.

No. CVE ID Name LOC #Q VERISMART OSIRIS [7] OYENTE [9], [26] MYTHRIL [8] MANTICORE [10]
#Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE #Alarm #FP CVE

#1 2018-10299 BEC 299 6 2 0 � 0 0 � 1 0 � 2 0 � 0 0 �
#2 2018-10376 SMT 294 22 13 0 � 1 0 � 2 0 � 1 0 � timeout (> 3 days)
#3 2018-10468 UET 146 27 14 0 � 9 0 � 8 0 � 5 0 � 0 0 �
#4 2018-10706 SCA 404 48 33 0 � 9 0 � 4 0 � 2 0 � internal error
#5 2018-11239 HXG 102 11 7 0 � 6 0 � 2 0 � 3 0 � 2 0 �
#6 2018-11411 DimonCoin 126 15 7 0 � 5 0 � 5 0 � 5 0 � 3 0 �
#7 2018-11429 ATL 165 9 4 0 � 3 0 � 2 0 � 0 0 � 0 0 �
#8 2018-11446 GRX 434 39 24 2 � 8 2 � 12 4 � 4 2 � internal error
#9 2018-11561 EETHER 146 10 5 0 � 4 0 � 2 0 � 2 0 � 0 0 �
#10 2018-11687 BTCR 99 20 4 0 � 2 0 � 2 0 � 3 2 � 0 0 �
#11 2018-12070 SEC 269 40 8 0 � 6 0 � 4 0 � 3 1 � 0 0 �
#12 2018-12230 RMC 161 9 5 0 � 3 0 � 5 0 � 0 0 � 0 0 �
#13 2018-13113 ETT 142 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#14 2018-13126 MoxyOnePresale 301 5 3 0 � 0 0 � 0 0 � 0 0 � 0 0 �
#15 2018-13127 DSPX 238 6 4 0 � 3 0 � 3 0 � 1 0 � 0 0 �
#16 2018-13128 ETY 193 10 4 0 � 3 0 � 3 0 � 0 0 � 0 0 �
#17 2018-13129 SPX 276 9 6 0 � 5 0 � 3 0 � 1 0 � internal error
#18 2018-13131 SpadePreSale 312 4 3 0 � 0 0 � 0 0 � 0 0 � internal error
#19 2018-13132 SpadeIco 403 9 6 0 � 0 0 � 0 0 � 0 0 � internal error
#20 2018-13144 PDX 103 5 2 0 � 2 1 � 2 1 � internal error 0 0 �
#21 2018-13189 UNLB 335 4 3 0 � 2 0 � 3 0 � 1 0 � 0 0 �
#22 2018-13202 MyBO 183 17 11 0 � 5 0 � 3 0 � 1 0 � internal error
#23 2018-13208 MoneyTree 171 17 10 0 � 4 0 � 2 0 � 2 0 � 0 0 �
#24 2018-13220 MAVCash 171 15 10 0 � 4 0 � 2 0 � 1 0 � 0 0 �
#25 2018-13221 XT 186 15 10 0 � 4 0 � 2 0 � 2 0 � 0 0 �
#26 2018-13225 MyYLCToken 181 17 11 0 � 5 0 � 6 0 � 0 0 � 0 0 �
#27 2018-13227 MCN 172 17 10 0 � 4 0 � 2 0 � 2 0 � 0 0 �
#28 2018-13228 CNX 171 17 10 0 � 4 0 � 2 0 � 2 0 � 0 0 �
#29 2018-13230 DSN 171 17 10 0 � 4 0 � 2 0 � 2 0 � 0 0 �
#30 2018-13325 GROW 176 12 2 0 � 4 2 � 1 1 � 0 0 � 0 0 �
#31 2018-13326 BTX 135 9 2 0 N/A 4 2 N/A 2 2 N/A 0 0 N/A 0 0 N/A
#32 2018-13327 CCLAG 92 5 2 0 � 2 1 � 2 1 � 0 0 � 0 0 �
#33 2018-13493 DaddyToken 344 40 22 0 � 8 0 � 2 0 � 3 0 � internal error
#34 2018-13533 ALUXToken 191 23 13 0 � 8 0 � 2 0 � 1 0 � 1 0 �
#35 2018-13625 Krown 271 22 9 0 � 1 0 � 3 0 � 0 0 � internal error
#36 2018-13670 GFCB 103 14 11 0 � 6 1 � 3 1 � 1 0 � 0 0 �
#37 2018-13695 CTest7 301 17 8 0 � 0 0 � 0 0 � 0 0 � 0 0 �
#38 2018-13698 Play2LivePromo 131 8 7 0 � 7 0 � 7 0 � 5 0 � 5 0 �
#39 2018-13703 CERB Coin 262 17 8 0 � 5 0 � 2 0 � 2 1 � 0 0 �
#40 2018-13722 HYIPToken 410 8 3 0 � 2 0 � 2 0 � 0 0 � internal error
#41 2018-13777 RRToken 166 8 3 0 � 2 0 � 2 0 � 0 0 � 0 0 �
#42 2018-13778 CGCToken 224 13 6 0 � 4 0 � 4 0 � 1 0 � 1 0 �
#43 2018-13779 YLCToken 180 17 11 0 � 5 0 � 6 0 � 0 0 � 0 0 �
#44 2018-13782 ENTR 171 17 10 0 � 4 0 � 2 0 � 2 0 � 0 0 �
#45 2018-13783 JiucaiToken 271 19 11 0 � 6 0 � 4 0 � 0 0 � internal error
#46 2018-13836 XRC 119 22 7 0 � 5 0 � 3 0 � 3 1 � timeout (> 3 days)
#47 2018-14001 SKT 152 19 10 0 � 4 0 � 3 0 � 3 0 � 0 0 �
#48 2018-14002 MP3 83 12 4 0 � 2 0 � 2 0 � 2 1 � timeout (> 3 days)
#49 2018-14003 WMC 200 15 6 0 � 3 0 � 2 0 � 3 0 � 1 0 �
#50 2018-14004 GLB 299 40 8 0 � 5 0 � 1 0 � 0 0 � 0 0 �
#51 2018-14005 Xmc 255 29 11 0 � 8 0 � 1 0 � 3 0 � 0 0 �
#52 2018-14006 NGT 249 27 13 0 � 1 0 � 5 0 � 0 0 � timeout (> 3 days)
#53 2018-14063 TRCT 178 9 1 0 � 1 0 � 1 0 � 4 2 � 0 0 �
#54 2018-14084 MKCB 273 17 10 0 � 5 0 � 4 0 � 2 0 � 1 0 �
#55 2018-14086 SCO 107 16 14 0 � 7 2 � 5 2 � 0 0 � 0 0 �
#56 2018-14087 EUC 174 15 7 0 � 4 0 � 4 0 � 0 0 � 0 0 �
#57 2018-14089 Virgo ZodiacToken 208 30 20 0 � 12 0 � 5 0 � 14 0 � 0 0 �
#58 2018-14576 SunContract 194 12 4 0 � 1 0 � 0 0 � 0 0 � 0 0 �
#59 2018-17050 AI 141 8 3 0 � 1 0 � 1 0 � 0 0 � 0 0 �
#60 2018-18665 NXX 79 7 5 0 � 4 0 � 4 0 � 0 0 � 0 0 �

Total
�:58 �:41 �:20 �:10 �: 2

12493 976 492 2 �: 0 240 13 �: 0 171 14 �:15 94 10 �: 1 14 0 �: 0
� : 0 � :17 � :23 � :46 � :42

False Alarms of Bug-finders: To see why VERIS-

MART achieves higher precision than bug-finders, we inspected

all 37 (=13+14+10) false positives reported by bug-finders.

Bug-finders reported 18 among 37 false positives due to

the lack of inferring transaction invariants, all of which are

avoided by VERISMART. The remaining 19 false positives

were due to imprecise handling of conditional statements. For

example, consider the following code snippet (from #55):

function transfer(address _to, uint _value) {
if (msg.sender.balance < min)

sell((min - msg.sender.balance) / sellPrice);
}

where the safety of min - msg.sender.balance is en-

sured by the preceding guard. Both OSIRIS and OYENTE in-

correctly reported that the subtraction is unsafe and integer

underflow would occur. This might be because OSIRIS and

OYENTE do not keep track of complex path conditions (e.g.,

involving structures in this case) for some engineering issues.

In contrast, VERISMART analyzes every conditional statement
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1 function unlockReward(address addr, uint value) {
2 require(totalLocked[addr] > value);
3 require(locked[addr][msg.sender] >= value);
4 if(value == 0) value = locked[addr][msg.sender];
5 totalLocked[addr] -= value; // false positive
6 locked[addr][msg.sender] -= value;
7 }

Fig. 6. A function simplified from the benchmark #8. OSIRIS, OYENTE,
and VERISMART warn that the subtraction at line 5 can cause arithmetic
underflow, which is false positive (i.e., the subtraction is safe).

precisely and do not produce such false alarms.

False Alarms of VERISMART: VERISMART produced

two false alarms in the benchmark #8, because it is currently

unable to capture quantified transaction invariants. Consider

the unlockReward function in Figure 6. The subtraction

operation at line 5 seems to cause arithmetic underflow; the

value may be changed at line 4, and thereafter the relation

totalLocked[addr] > value seems not to hold any-

more. However, the subtraction is safe because the following

transaction invariant holds over the entire contract:

∀x.totalLocked[x] =
∑
i

locked[x][i] (2)

with an additional condition that computing the summa-

tion (
∑

i locked[x][i]) does not cause overflow. With

this transaction invariant, value is always less than

totalLocked[addr]. Because VERISMART considers

quantifier-free invariants only (Section III-C), it falsely re-

ported that an underflow would occur at line 5. OSIRIS and

OYENTE produced the false alarm too at the same location.

False Negatives of Bug-finders: We inspected CVE vul-

nerabilities that were commonly missed by the four bug-

finders, and we found that the bug-finders often fail to detect

bugs when vulnerabilities could happen via inter-contract

function calls. For example, consider code adapted from #18:

function mint (address holder, uint value) {
require (total+ value <= TOKEN_LIMIT); // CVE bug
balances[holder] += value; // CVE bug
total += value; // CVE bug

}

There is a function call token.mint (...,...) in

a main contract, where token is a contract object. We

can see that all three addition operations possibly over-

flow with some inputs. For example, suppose total=1,

value=0xfff...ff, and TOKEN_LIMIT=10000. Then,

total+value overflows in unsigned 256-bit and thus

the safety checking statement can be bypassed. Next, if

balances[holder]=0, the holder can have tokens

more than the predetermined limit TOKEN_LIMIT. VERIS-

MART detected the bugs as it conservatively analyzes inter-

contract calls (Section IV).

Incorrect CVE Reports Found by VERISMART: Inter-

estingly, VERISMART unexpectedly identified six incorrectly-

reported CVE vulnerabilities. In Table III, the column #
Incorrect Queries denotes the number of queries incorrectly

reported to be vulnerable for each CVE ID. We could discover

them as VERISMART did not produce any alarms for those

TABLE III
LIST OF INCORRECT CVE REPORTS FOUND BY VERISMART.

#INCORRECT QUERIES: THE NUMBER OF INCORRECTLY REPORTED

QUERIES TO BE VULNERABLE. #FP: THE NUMBER OF ALARMS RAISED BY

EACH TOOL FOR THE INCORRECTLY REPORTED QUERIES.

CVE ID Name #Incorrect #FP
Queries OSIRIS OYENTE VERISMART

2018-13113 ETT 2 2 2 0
2018-13144 PDX 1 1 1 0
2018-13326 BTX 2 2 2 0
2018-13327 CCLAG 1 1 1 0

queries and then we manually confirmed that the CVE reports

are actually incorrect. We have submitted a request for revising

these issues to the CVE assignment team.

With the capability of automatically computing transaction

invariants, VERISMART successfully proved the safety for all

the incorrectly reported vulnerabilities (i.e., zero false posi-

tives). In other words, VERISMART could not have discovered

incorrect CVE reports if it were without transaction invariants.

The transaction invariants generated for proving the safety

were similar to those in Example 3 of Section II. In contrast,

existing bug-finders cannot be used for this purpose such as

proving the safety; for example, OSIRIS and OYENTE pro-

duced false positives for all of the 6 safe queries (i.e., the 6

incorrectly reported queries).

B. Comparison with Verifiers

We now compare VERISMART with SMTCHECKER [12]

and ZEUS [11], two recently-developed verifiers for smart

contracts. In particular, SMTCHECKER is the “official” veri-

fier for Ethereum smart contracts developed by the Ethereum

Foundation, which is available in the Solidity compiler. Like

VERISMART, the primary goal of SMTCHECKER is to detect

arithmetic over/underflows and division-by-zeros [12].

Setup: First of all, we must admit that the comparison with

ZEUS and SMTCHECKER in this subsection is rather limited,

because ZEUS is not publicly available and SMTCHECKER is

currently an experimental tool that does not support the

full Solidity language. Since we cannot run ZEUS on our

dataset, the only option was to use the public evaluation

data [28] provided by the ZEUS authors. However, the public

data was not detailed enough to accurately interprete as the

ZEUS authors classify each benchmark contract simply as

‘safe’ or ‘unsafe’ without specific alarm information such

as line numbers. The only objective information we could

obtain from the data [28] was the fact that ZEUS produces

some (nonzero) number of false (arithmetic-overflow) alarms

on 40 contracts, and we decided to use those in our evaluation.

Starting with those 40 contracts, we removed duplicates with

trivial syntactic differences, resulting in a total of 25 unique

contracts (Table IV). Thus, the objective of our evaluation is

to run VERISMART and SMTCHECKER on the 25 contracts

to see how many of them can be successfully analyzed by

VERISMART and SMTCHECKER without false alarms. We

ran SMTCHECKER with the default setting.
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TABLE IV
EVALUATION ON THE ZEUS DATASET. VERIFIED: A TOOL DETECTS ALL

BUGS WITHOUT FALSE POSITIVES (�: SUCCESS, �: FAILURE)

No. LOC #Q VERISMART SMTCHECKER [12] ZEUS [11]
#Alarm #FP Verified #Alarm #FP Verified Verified

#1 42 3 0 0 � 3 3 � �
#2 78 2 1 0 � 2 1 � �
#3 75 7 2 0 � 7 5 � �
#4 70 7 0 0 � 7 7 � �
#5 103 8 0 0 � 6 6 � �
#6 141 5 2 0 � internal error �
#7 74 6 1 0 � 6 5 � �
#8 84 6 0 0 � 4 4 � �
#9 82 6 0 0 � 6 6 � �
#10 99 2 1 0 � internal error �
#11 171 15 9 0 � internal error �
#12 139 7 0 0 � internal error �
#13 139 7 0 0 � internal error �
#14 139 7 0 0 � internal error �
#15 139 7 0 0 � internal error �
#16 141 16 10 0 � internal error �
#17 153 5 0 0 � internal error �
#18 139 7 0 0 � internal error �
#19 113 4 0 0 � 4 4 � �
#20 40 3 0 0 � 3 3 � �
#21 59 3 0 0 � internal error �
#22 28 3 1 0 � 1 0 � �
#23 19 3 0 0 � 3 3 � �
#24 457 30 13 6 � internal error �
#25 17 3 0 0 � 3 3 � �

Total 2741 172 40 6
�:24

55 50
�: 1 �: 0

� : 1 �: 12 �:25

Results: Table IV shows the evaluation results on the

ZEUS dataset. For each contract, the table shows the number

of alarms (#Alarm), the number of false positives (#FP)

produced by VERISMART and SMTCHECKER. The column

Verified indicates whether each tool detected all bugs without

false positives (�: success, �: failure).

The results show that VERISMART successfully addresses

limitations of ZEUS and SMTCHECKER. The 25 contracts

contain 172 arithmetic operations, where VERISMART pointed

out 40 operations as potential bugs. We have manually checked

that 34 out of total alarms are true positives. In benchmark #24,

VERISMART produced 6 false positives due to unsupported

invariants (quantified invariants and compound invariants, Sec-

tion III-C), and imprecise function call analysis. We manually

checked that the remaining 132 (=172-40) queries proven to be

safe by VERISMART are actually true negatives. By contrast,

according to the publicly available data [28], ZEUS produces

at least one false positives for each contract in Table IV

(i.e., ≥ 25 false alarms in total). SMTCHECKER could

only analyze 13 contracts as it raised internal errors for the

other 12 contracts, which is due to its immature support of

Solidity syntax [29]. Among 61 operations from 13 contracts,

SMTCHECKER succeeded to detect all 5 bugs in them thanks

to its exhaustive verification approach. However, it reported

55 alarms in total, of which 50 are false positives. In terms of

efficiency, SMTCHECKER took about 1 second per contract

and VERISMART took about 20 seconds per contract.

Importance of Transaction Invariants: The key enabler

for high precision was the ability of VERISMART to lever-

age transaction invariants. We also ran VERISMART without

inferring transaction invariants (i.e., using true as transaction

invariants); without transaction invariants, VERISMART fails

to verify 17 out of 25 contracts.

C. Case Study: Application to Other Types of Vulnerabilities

VERISMART can be used for analyzing other safety prop-

erties as well. To show this, we applied VERISMART to

finding bugs related to access control, where security-sensitive

variables can be manipulated by anyone for malicious use.

For example, consider the code snippet adapted from the

EtherCartel contract for crypto idle game (CVE 2018-11329):

function DrugDealer() public { ceoAddr = msg.sender; }
function buyDrugs () public payable {

ceoAddr.transfer(msg.value); // send Ether to ceoAddr
drugs[msg.sender] += ...; // buy drugs by paying Ether

}

Observe that the address-typed variable ceoAddr, the benefi-

ciary of Ether, can be taken by anyone who calls the function

DrugDealer. If an attacker becomes the beneficiary by

calling DrugDealer, the attacker might illegally take some

digital assets whenever benign users buy some digital assets

(i.e., drugs) by calling buyDrugs where transfer in it is

a built-in function that sends Ether to ceoAddr. This vulner-

ability was exploited in about 1 hour after deployment [30].

To detect this bug, we used VERISMART as follows. First,

we specified safety properties by automatically generating

the assertion assert(msg.sender==addr) right before

each assignment of the form addr=...;, where addr is a

global address-typed variable which is often security-sensitive

(excluding assignments in constructors, which typically set the

contract owners). Next, we ran VERISMART without any mod-

ification of its verification algorithm. With this simple exten-

sion, VERISMART worked effectively; it not only detected all

known CVE vulnerabilities (2018-10666, 2018-10705, 2018-

11329) but also proved the absence of this bug scenario for

55 contracts out of 60 from Table II. VERISMART could not

prove safety of the remaining 5 contracts due to the imprecise

specification described above.

D. Threats to Validity

We summarize limitations of our evaluation and consequent

threats to validity. Firstly, the benchmark contracts that we

used (60 CVE dataset + 25 ZEUS dataset) might not be repre-

sentative although we made effort to avoid bias in the datasets

(e.g., removal of duplicates). Secondly, the performance of

VERISMART may vary depending on the performance of the

off-the-shelf SMT solver (i.e., Z3) used internally or timeout

options used in the experiments. Thirdly, we did not study

the exploitability of bugs in this paper and did not compare

VERISMART and other tools in this regard. Thus, the results

may be different if those tools are evaluated with exploitability

in mind. Lastly, although we did our best, we realized that

manually classifying static analysis alarms into true or false

positives is extremely challenging and the classification can

be even subjective in a few cases.

VI. RELATED WORK

In this section, we place our work in the literature and clar-

ify our contributions regarding existing works. Section VI-A

1689



compares our work with existing smart contract analyses. Sec-

tion VI-B discusses verification techniques for other domains.

A. Analyzing Smart Contracts

Compared to existing techniques for analyzing smart con-

tracts [9], [26], [8], [18], [7], [31], [32], [33], [34], [12], [11],

[19], [20], [35], [36], [37], [38], [39], [40], VERISMART is

unique in that it achieves full automation, high precision, and

high recall at the same time. Below, we classify existing ap-

proaches into fully automated and semi-automated approaches.

Fully Automated Approaches: VERISMART belongs to

the class of fully automated tools based on static or dynamic

program analysis techniques that require no manual effort and

can be used by end-users who lack expertise in formal veri-

fication. Instead, these approaches focus on relatively simple

safety properties (e.g., overflows).

One popular approach is bug-finders based on symbolic

execution or fuzz testing. For example, OYENTE [9], [26],

MYTHRIL [8], OSIRIS [7], MANTICORE [10] and MA-

IAN [18] discover bugs by symbolically executing EVM byte-

code. OYENTE is the first such tool for Ethereum smart con-

tracts, which detects various bug patterns including arithmetic

bugs. MYTHRIL is also a well-known open-sourced tool for

detecting a variety of bugs by performing symbolic execution.

OSIRIS [7] is a tool that is specially designed for detecting

arithmetic bugs. MAIAN [18] focuses on finding violations

of trace properties. GASPER [31] uses symbolic execution

to identify gas-costly programming patterns. REGUARD [34]

and ContractFuzzer [41] use fuzz testing to detect common

security vulnerabilities. Although symbolic execution and fuzz

testing are effective for finding bugs, they inevitably miss

critical vulnerabilities, which is particularly undesirable for

safety-critical software like smart contracts.

Other approaches are verifiers that perform exhaustive anal-

yses based on static analysis or automatic program verification

techniques. ZEUS [11] is a sound static analyzer that can

detect arithmetic bugs or prove their absence. ZEUS leverages

abstract interpretation and software model checking [42].

SMTCHECKER [12] is the “official” verifier for Solidity

developed by the Ehtereum Foundation. Its primarily goal is to

verify the absence of arithmetic bugs such as integer over/un-

derflows and division-by-zeros [12] by performing SMT-

based bounded verification. Unlike VERISMART, ZEUS and

SMTCHECKER lack inter-transactional reasoning and this is

currently considered a key limitation of these tools [11], [12].

SECURIFY [19], MadMax [20], and Vandal [21] use declar-

ative static analysis techniques based on Datalog [43]. Besides

their inability to infer transaction invariants, one common

drawback of Datalog-based analyzers is that they cannot

describe general classes of (in particular, numerical) static

analyses and is inappropriate for finding arithmetic bugs.

Semi-Automated Approaches: Semi-automated tools for

formally specifying and verifying smart contracts have dif-

ferent goals. These approaches can prove a wide range of

functional properties at the expense of full automation; they

require users to manually provide specifications or invariants.

Hirai [36] formalizes the Ethereum Virtual Machine

(EVM) and provides a way to prove safety properties of

smart contracts in interactive theorem provers such as Is-

abelle/HOL [44]. Bharagavan et al. [37] provide a framework

for formally specifying and verifying functional correctness of

smart contracts using the F* proof assistant [45]. Grishchenko

et al. [38] also use F* to formalize small-step semantics of

EVM bytecode and express a number of security properties

of smart contracts. Hildenbrandt et al. [46] define formal

semantics of EVM using the K framework [47]. Amani

et al. [39] formalize EVM in Isabelle/HOL and provide a

program logic for reasoning about smart contracts. Lahiri et

al. [40] describe an approach for formal specification and

verification of smart contracts, where the primary goal is to

take a high-level specification expressed by a state machine

and to verify that the implementation meets the specification.

Manual Safety Checking: Some techniques (e.g., Safe-

Math [48]) depend on manual annotation of programs to

prevent bugs, which has two drawbacks. First, manual an-

notation is error-prone, hardly exhaustive, and sometimes

not recommended (e.g., decreasing readability, unnecessary

waste of gas fees). As a result, many smart contracts do

not perform manual safety checking exhaustively [7], [11].

Second, verification prevents bugs at compile time so that they

can be fixed before deployment, but manual checking detects

bugs only at runtime.

B. Analyzing Arithmetic Safety of Traditional Programs

Ensuring arithmetic safety has been studied extensively in

the program analysis and verification communities [49], [50],

[51], [52], [53], [54], [55], [56], [56], [57], [58]. Our work

differs from them in two ways. First, we focus on smart

contracts and provide a domain-specific algorithm. Second,

to our knowledge, our CEGIS-style algorithm for verifying

arithmetic safety is also new in this general context.

Astrée [49], [50] is a domain-specific static analyzer tailored

to flight-control software. Sparrow [51] and Frama-C [52],

[53] are domain-unaware static analyzers for C programs.

Astrée, Sparrow, and Frama-C are based on abstract inter-

pretation [59], [60]. Instead, we use a CEGIS-style algorithm

because existing abstract domains such as intervals [59] and

octagons [61] cannot capture domain-specific invariants (e.g.,

sum) of smart contracts. Furthermore, abstract interpretation

cannot infer invariants that are useful in practice but not in-

ductive with respect to their abstract semantics. While our ap-

proach is similar to the existing CEGIS approaches (e.g., [13],

[14], [15]), to the best of our knowledge, its application to

arithmetic safety verification has not been studied. Bounded

verification approaches (e.g., [62], [63]) are different from

our work as we perform unbounded verification. Our work is

different from symbolic execution-based techniques [54], [55],

[56], [56], [57], [58] or unsound static analysis [64], [65], as

we aim to detect all bugs. A few techniques aim to fix integer

overflow bugs [66], [67], [68], which may introduce unwanted

changes in programs though useful.
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VII. CONCLUSION

As smart contracts are safety-critical, formally verifying their

correctness is of the greatest importance. In this paper, we

presented a new and powerful verification algorithm for smart

contracts. Its central feature is the ability to automatically

infer hidden, in particular transaction, invariants of smart

contracts and leverage them during the verification process.

We implemented the algorithm in a tool, VERISMART, for

verifying arithmetic safety of Ethereum smart contracts and

demonstrate its effectiveness on real-world smart contracts in

comparison with existing safety analyzers. Our work shows a

common yet significant shortcoming of existing approaches

(i.e., inability to infer and use transaction invariants) and

sheds light on the future development of automated tools for

analyzing smart contracts.

ACKNOWLEDGMENT

We thank Junhee Lee and Minseok Jeon for their valuable

comments on Proposition 1 and Appendix A. This work

was supported by Institute of Information & communications

Technology Planning & Evaluation(IITP) grant funded by

the Korea government(MSIT) (No.2019-0-01697, Develop-

ment of Automated Vulnerability Discovery Technologies for

Blockchain Platform Security and No.2019-0-00099, Formal

Specification of Smart Contract).

REFERENCES

[1] 2018, [Online; accessed 31-May-2019]. [Online]. Available: http:
//virtual- strategy.com/2018/12/05/hashcash-enters-malta-with- smart-
contract-based-insurance-automation/

[2] Y. Hanada, L. Hsiao, and P. Levis, “Smart contracts for machine-
to-machine communication: Possibilities and limitations,” CoRR, vol.
abs/1806.00555, 2018. [Online]. Available: http://arxiv.org/abs/1806.
00555

[3] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on
ethereum smart contracts sok,” in Proceedings of the 6th International
Conference on Principles of Security and Trust - Volume 10204. New
York, NY, USA: Springer-Verlag New York, Inc., 2017, pp. 164–186.
[Online]. Available: https://doi.org/10.1007/978-3-662-54455-6 8

[4] 2016, [Online; accessed 31-May-2019]. [Online]. Available: https:
//www.wired.com/2016/06/50-million-hack-just-showed-dao-human/

[5] 2018, [Online; accessed 31-May-2019]. [Online]. Available:
https://blockexplorer.com/news/260-million-parity-proposes-eip-999-
to-recover-frozen-multi-sig-funds/

[6] 2018, [Online; accessed 31-May-2019]. [Online]. Available: https:
//blog.peckshield.com/2018/04/25/proxyOverflow/
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APPENDIX

A. Preprocessing of Verification Conditions
Given a basic path p, let F be a verification condition

(either an inductiveness condition, i.e., F = GENVC(p).1,

or a safety condition, i.e., F ∈ GENVC(p).2) that contains

equalities of the form sum(x) = e for some mapping variable

x and expression e. For simplicity, we assume that F does not

contain primed instances (e.g., x′, x′′) of the mapping variable

x. Let I be the set of variables in F used as indices of x.

Then, we replace each equality sum(x) = e by G as follows.

If I = ∅, we define G to be G1 ∧G2 where G1 = (Rx = e),
G2 = Bx (Rx and Bx are fresh variables, see Section III-D). If

I = {i} (i.e., I is a singletone set), we define G to be G1∧G2

where G1 = (x[i]+Rx = e) and G2 = (x[i]+Rx ≥ Rx∧Bx).
Otherwise (i.e., I = {i1, . . . , in}, n ≥ 2), we define G to be

G1 ∧G2 where

G1 =
∧

a∈[1,m],
Pa=

{{i1,...},··· ,{ik,...}}

(
(

∧
Iu∈Pa

(
∧

i,j∈Iu

i = j) ∧
∧

Iu,Iv∈Pa,
Iu �=Iv

(
∧

i∈Iu,
j∈Iv

i �= j)) →

x[i1] + · · · + x[ik] + Rx = e
)

and

G2 =
∧

a∈[1,m],
Pa=

{{i1,...},··· ,{ik,...}}

(
(

∧
Iu∈Pa

(
∧

i,j∈Iu

i = j) ∧
∧

Iu,Iv∈Pa,
Iu �=Iv

(
∧

i∈Iu,
j∈Iv

i �= j)) →

Hx,i,k ∧ x[i1] + · · · + x[ik] + Rx ≥ Rx)
)
∧ Bx.

Hx,i,k is defined as true if k = 1, and defined as
∧k

c=2 x[i1]+
· · ·+ x[ic] ≥ x[ic] otherwise (i.e., k ≥ 2). P1, . . . , Pm are all

possible partitions of the index variable set I , where a partition

is a set of disjoint non-empty subsets of I such that the

union of the subsets equals I . For example, given I = {i, j},

we have two partitions: {{i, j}} and {{i}, {j}}. Also, given

I = {i, j, k}, we have five partitions: {{i, j, k}}, {{i}, {j, k}},

{{j}, {i, k}}, {{k}, {i, j}}, and {{i}, {j}, {k}}.

Intuitively, G1 asserts that the sum of distinct elements of x
equals e, and G2 asserts that overflows do not occur during

computing the sum of the distinct elements. More specifically,

using the partitions of I , we first consider all possible cases of

(in)equalities among the variables in I; for each partition Pa =
{I1, . . . , Ik} (where �1≤i≤kIi = I), the variables in the same

subsets have the same values (i.e.,
∧

Iu∈Pa
(
∧

i,j∈Iu
i = j)),

and the variables in different subsets have different values (i.e.,∧
Iu,Iv∈Pa,Iu �=Iv

(
∧

i∈Iu,j∈Iv
i �= j)). Then, for each partition

case, we generate constraints on the distinct elements of x by

selecting an index variable from each subset.

Example 4: Given a basic path p, suppose F ∈ GENVC(p).2
is given as follows:

sum(y) = 100 ∧ y[i] ≥ v → y[j] + v ≥ y[j]

In this case, the index variable set for y is I = {i, j}, because

i and j are used as indices in y[i] and y[j], respectively. For

I , we have two partitions P1 = {{i, j}} and P2 = {{i}, {j}},

and thus we consider two cases: i = j from P1 and i �= j
from P2. Then, we replace sum(y) = 100 by G1 ∧G2 where

G1 is

(i �= j → y[i] + y[j] +Ry = 100) ∧ (i = j → y[i] +Ry = 100)

and G2 is

(i �= j → y[i] + y[j] ≥ y[i] ∧ y[i] + y[j] +Ry ≥ Ry)∧
(i = j → y[i] +Ry ≥ Ry) ∧By.

Finally, by replacing sum(y) = 100 in F by G1 ∧ G2, we

obtain the following F ′
(
(i �= j → y[i] + y[j] +Ry = 100)∧
(i = j → y[i] +Ry = 100)∧
(i �= j → y[i] + y[j] ≥ y[i] ∧ y[i] + y[j] +Ry ≥ Ry)∧
(i = j → y[i] +Ry ≥ Ry) ∧By∧
y[i] ≥ v

)
→ y[j] + v ≥ y[j]

which is satisfiable iff the original formula F is satisfiable.

B. Proof of Proposition 1
Proof by contradiction. Assume p =⇒ q:

∀I.I |= ¬p ∨ q. (3)

From condition (ii) and (3), we have

Ip |= q (4)

where Ip is an interpretation that makes the evaluation of p
true (i.e., Ip |= p). From condition (ii), condition (iii), and

(4), we have a x-variant of Ip, denoted as I ′p, such that

I ′p : Ip � {x �→ v} |= ¬q (5)

where x ∈ FV(q) \ FV(p) and v ∈ DIp \ {αIp [x]}. Since

Ip |= p and x �∈ FV(p),

I ′p |= p. (6)
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Combining (5) and (6), we have I ′p |= ¬(¬p ∨ q), which

contradicts with the assumption (3). Thus p �=⇒ q.

C. More Examples of Validity Templates
We provide three more examples that are important for

performance. We assume that formula F below is in CNF

(conjunctive normal form). We write c ∈ F for indicating that

F has clause c.
Example 5: Consider a template

sum(x) = n ∈ F, x[p] ≥ v ∈ F

F → x[q] + v ≥ x[q]
n+ n ≥ n

where x is a mapping variable that maps address-typed index

variables to 256-bit unsigned integer-typed variables, n is an

integer constant (where n+ n does not overflow in unsigned

256-bit), and p and q are address-typed variables. The template

above states that, when sum(x) = n and x[p] ≥ v hold in the

precondition F , x[q] + v ≥ x[q] also holds for any index

address-typed variable q. For example, we can use the rule to

check that the VC

· · · ∧ sum(a) = 100 ∧ · · · ∧ a[i] ≥ k ∧ · · · → a[j] + k ≥ a[j]

is valid without preprocessing the formula and invoking an

SMT solver.

Example 6: Consider a template:

sum(x) = y ∈ F, y = n ∈ F, x[p] ≥ v ∈ F

F → x[q] + v ≥ x[q]
n+ n ≥ n

where x is a mapping variable that maps address-typed index

variables to 256-bit unsigned integer-typed variables, y and v
are 256-bit unsigned integer-typed variables, n is an integer

constant (where n+n does not overflow in unsigned 256-bit),

and p and q are address-typed variables. Note that the template

above is similar to the one in Example 5, where sum(x) = n
is changed into a combination of sum(x) = y and y = n.

Using the template, we can prove the validity of the VC:

· · · ∧ sum(a) = b ∧ · · · ∧ b = 100 ∧ · · · ∧ a[i] ≥ k ∧ . . .
→ a[j] + k ≥ a[j]

Example 7: Consider a template:

F → n1 + (x%n2) ≥ n1
n1 + n2 ≥ n1

where x is a 256-bit unsigned integer-typed variables, and n1
and n2 are integer constants (where n1+n2 does not overflow

in unsigned 256-bit). Using the validity template above, we

can prove that · · · → 48 + (y%10) ≥ 48 is valid.
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