
PMP: Cost-effective Forced Execution with Probabilistic Memory Pre-planning

Wei You1, Zhuo Zhang1, Yonghwi Kwon2, Yousra Aafer1, Fei Peng1, Yu Shi1, Carson Harmon1, Xiangyu Zhang1
1Department of Computer Science, Purdue University, Indiana, USA

2Department of Computer Science, University of Virginia, Virginia, USA

Email: {you58, zhan3299, yaafer, pengf, shi442, harmon35, xyzhang}@purdue.edu, yongkwon@virginia.edu

Abstract—Malware is a prominent security threat and exposing
malware behavior is a critical challenge. Recent malware often
has payload that is only released when certain conditions are
satisfied. It is hence difficult to fully disclose the payload by
simply executing the malware. In addition, malware samples
may be equipped with cloaking techniques such as VM detectors
that stop execution once detecting that the malware is being
monitored. Forced execution is a highly effective method to
penetrate malware self-protection and expose hidden behavior, by
forcefully setting certain branch outcomes. However, an existing
state-of-the-art forced execution technique X-Force is very heavy-
weight, requiring tracing individual instructions, reasoning about
pointer alias relations on-the-fly, and repairing invalid pointers
by on-demand memory allocation. We develop a light-weight and
practical forced execution technique. Without losing analysis pre-
cision, it avoids tracking individual instructions and on-demand
allocation. Under our scheme, a forced execution is very similar
to a native one. It features a novel memory pre-planning phase
that pre-allocates a large memory buffer, and then initializes
the buffer, and variables in the subject binary, with carefully
crafted values in a random fashion before the real execution.
The pre-planning is designed in such a way that dereferencing
an invalid pointer has a very large chance to fall into the
pre-allocated region and hence does not cause any exception,
and semantically unrelated invalid pointer dereferences highly
likely access disjoint (pre-allocated) memory regions, avoiding
state corruptions with probabilistic guarantees. Our experiments
show that our technique is 84 times faster than X-Force, has
6.5X and 10% fewer false positives and negatives for program
dependence detection, respectively, and can expose 98% more
malicious behaviors in 400 recent malware samples.

I. INTRODUCTION

The proliferation of new strains of malware every year

poses a prominent security threat. Recently reported attacks

demonstrate the emergence of new attacking trends, where

malware authors are designing for stealth and leaving lighter

footprints. For example, Fileless malware [5] infects a target

host through exploiting built-in tools and features, without

requiring the installation of malicious programs. Clickless

infections [1] avoid end-user interaction through exploiting

shared access points and remote execution exploits. Cryptocur-

rency malware [4] allow attackers to generate huge revenues

by illegally running mining algorithms using victim’s system

resources. According to [3], a massive cryptocurrency mining

botnet has generated $3 million revenue in 2018. Under this

new threatscape, malicious payloads have evolved and look

much different than traditional ones. Thus, a critical challenge

the security community is facing today is to understand and

analyze emerging malware’s behavior in an effort to prevent

potentially epidemic consequences.

A popular approach to understanding malware behavior is to

run it in a sandbox. However, a well-known difficulty is that

the needed environment or setup may not be present (e.g.,

C&C server is down and critical libraries are missing) such

that the malware cannot be executed. In addition, recent mal-

ware often makes use of time-bomb and logic-bomb that define

very specific temporal and contextual conditions to release

payload, and some samples even use cloaking techniques such

as packing, and VM/debugger detectors that prevent execution

when the malware is being monitored.

Researchers in [32] proposed a technique called forced-
execution (X-Force) that penetrates these malware self-

protection mechanisms and various trigger conditions. It works

by force-setting branch outcomes of some conditional instruc-

tions. (e.g., those checking trigger conditions). As forcing

execution paths could lead to corrupted states and hence

exceptions, X-Force features a crash-free execution model
that allocates a new memory block on demand upon any

invalid pointer dereference. However, X-Force is a very

heavy-weight technique that is difficult to deploy in practice.

Specifically, in order to respect program semantics, when X-

Force fixes an invalid pointer variable (by assigning a newly

allocated memory block to the variable), it has to update

all the correlated pointer variables (e.g., those have constant

offsets with the original invalid pointer). To do so, it has

to track all memory operations (to detect invalid accesses)

and all move/addition/subtraction operations (to keep track of

pointer variable correlations/aliases). Such tracking not only

entails substantial overhead, but also is difficult to implement

correctly due to the complexity of instruction set and the

numerous corner situations that need to be considered (e.g., in

computing pointer relations). As a result, the original X-Force

does not support tracing into library functions.

In this paper, we propose a practical forced execution

technique. It does not require tracking individual memory or

arithmetic instructions. Neither does it require on demand

memory allocation. As such, the forced execution is very

close to a native execution, naturally handling libraries and

dynamically generated code. Specifically, it achieves crash-

free execution (with probabilistic guarantees) through a novel

memory pre-planning phase, in which it pre-allocates a region

of memory starting from address 0, and fills the region with

carefully crafted random values. These values are designed in

such a way that (1) if they are interpreted as addresses and

further dereferenced, the addresses fall into the pre-allocated

region and do not cause exception; (2) they have diverse

1121

2020 IEEE Symposium on Security and Privacy

© 2020, Wei You. Under license to IEEE.
DOI 10.1109/SP40000.2020.00035

random values such that semantically unrelated pointer vari-

ables unlikely dereference the same random address and avoid

causing bogus program dependencies and corrupted states. An

execution engine is developed to systematically explores dif-

ferent paths by force-setting different sets of branch outcomes.

For each path, multiple processes are spawned to execute the

path with different randomized memory pre-planning schemes,

further reducing the probability of coincidental failures. The

results of these processes are aggregated to derive the results

for the particular path. The engine then moves forward to the

next path.

Our contributions are summarized as follows.

• We develop a practical forced-execution engine that does

not entail any heavy-weight instrumentation.

• We propose a novel memory pre-planning scheme that

provides probabilistic guarantees to avoid crashes and

bogus program dependencies. The execution under our

scheme is very similar to a native execution. Once the

memory is pre-planned and initialized at the beginning,

the execution just proceeds as normal, without requiring

any tracking or on the fly analysis (e.g., pointer correla-

tion analysis).

• We have implemented a prototype called PMP and eval-

uated it on SPEC2000 programs (which include gcc),

and 400 recent real-world malware samples. Our results

show that PMP is a highly effective and efficient forced

execution technique. Compared to X-Force, PMP is 84

time faster, and the false positive (FP) and false negative

(FN) rates are 6.5X and 10% lower, respectively, regard-

ing dependence analysis; and detect 98% more malicious

behaviors in malware analysis. It also substantially super-

sedes recent commercial and academic malware analysis

engines Cuckoo [2], Habo [10] and Padawan [8].

II. MOTIVATION

In this section, we use an example to motivate the problem,

explain the limitations of existing techniques, and illustrate our

idea. The code snippet in Figure 1 simulates the command and

control (C&C) behavior of a variant of Mirai [7], a notorious

IoT malware that launches distributed denial of service attacks

when receiving commands from the remote C&C server. In

particular, it reads the maximum number of destination hosts

(to attack) from a configuration file (line 9), and allocates

a Cmd object with sufficient memory to store destination

information in the Dest objects (lines 10-12). When the

C&C server is connectable (line 15), the malware scans the

local network for the destination hosts (line 16), receives the

requested command (line 17), and performs the corresponding

actions on the destination hosts (lines 18-22).

To expose such malicious behavior, analysts could run the

sample in a sandbox and monitor its system call sequences

and network flows [8]. Unfortunately, a naive execution-based

analysis is incomplete and hence cannot reveal all the mali-

cious payloads, especially those that are condition-guarded and

environment-specific. In our example, if the configuration file

does not exist or the C&C server is not connectable, the mali-

cious behavior will not be exposed at all. One may consider to

construct an input file and simulate the network data. However,

such a task is time-consuming and not practical for zero-

day malware whose input format and network communication

protocol are unknown. In addition, recent malware samples are

increasingly equipped with anti-analysis mechanism, which

prevents these samples from execution even if they are given

valid inputs (please refer to Section IV for real-world cases).

This poses great difficulties for dynamic analysis.

Forced execution [32] provides a practical solution to sys-

tematically explore different execution paths (and, hence reveal

different program behaviors) without any input or environment

setup. It works by force-setting branch outcomes of a small set

of predicates and jump tables. One critical problem faced by

forced execution is invalid memory accesses due to the absence

of necessary memory allocations and initializations, which

are present in normal execution. Without appropriate handling

of invalid memory accesses, the program is most likely to

crash before reaching any malicious payload. In our example,

the malicious behaviors were supposed to be exposed, if the

predicate in line 15 is forced to take the true branch, and

the jump table in line 18 is forced to iterate different entries.

However, the forced execution fails in line 30, because cmd is

not properly allocated and its dests field is not initialized.

X-Force. In X-Force [32], researchers show that simply ignor-

ing exceptions does not work as that leads to cascading failures

(i.e., more and more crashes), they propose to recover from

invalid memory accesses by performing on-demand memory

allocation. In particular, X-Force monitors all memory oper-

ations (i.e., allocate, free, read and write) to maintain a list

of valid memory addresses. If an accessed memory address is

not in the valid list, a new memory block will be allocated

on demand for the access. To respect program semantics,

when a pointer variable holding an invalid address x is set

to the address of the allocated memory, all the other pointer

variables that hold a value denoting the same invalid address

or its offset (e.g., x + c with c some constant) need to be

updated. X-Force achieves this through linear set tracing,

which identifies linearly correlated pointer variables that are

induced by address offsetting. When a pointer variable is

updated, all the correlated pointers in its linear set need to

be updated accordingly based on their offsets.

Assume in an execution instance, line 8 takes the false
branch and line 15 is forced to take the true branch. In this

execution, cmd is a NULL pointer, hence the dests pointer

in line 27 points to 0x8 (the offset of dests field is 8). The

rounded rectangle in Figure 1 illustrates what X-Force does

for the memory access of dests[0]->ip in line 30. Linear

sets are maintained for each register and each memory address.

In particular, SR(r) and SM(a) are used to denote the linear

set of register r and address a, respectively. After executing

instruction α, the linear set of register rbx is updated to be

the same as that of &dests, i.e., SR(rbx)← SM (&dests)

such that SR(rbx)=SM (&dests)={0x7ffdfffffed0}, which

1122

01 typedef struct{char ip[16]; long port;} Dest;
02 typedef struct{long act; Dest* dests[0];} Cmd;
03
04 int main(int argc, char *argv[]) {
05 Cmd *cmd = NULL;
06 int max = 0;
07
08 if (config_file_exists()) {
09 max = read_from_config_file();
10 cmd = malloc(sizeof(Cmd) + max*sizeof(Dest*));
11 for (int i = 0; i < max; i++)
12 cmd->dests[i] = malloc(sizeof(Dest));
13 }
14 ...
15 if (cnc_server_connectable()) {
16 scan_intranet_hosts(cmd, max);
17 cmd->act = get_action_from_cc_server();
18 switch (cmd->act) {
19 case 1: do_action_1(cmd->dest, max); break;
20 case 2: do_action_2(cmd->dest, max); break;
21 ...
22 }
23 }
24 ...
25 }

26 void scan_intranet_hosts(Cmd *cmd, int max) {
27 Dest **dests = cmd->dests;
28 for (int i = 0; i < max; i++) {
29 struct sockaddr_in *host = iterate_host();

30 inet_ntop(host->ip, dests[i]->ip);

31 dests[i]->port = ntohl(host->port);
32 }
33 }

α. mov rbx, [rbp - 0x10] // rbx = [rbp - 0x10] = [0x7ffdfffffed0] = 0x8
/* Validate Memory Address: get accessible(0x7ffdfffffed0) = true */
/* Update Linear Set: SR(rbx) ← SM (&dests) = {0x7ffdfffffed0} */

β. mov ecx, [rbp - 0x14] // ecx = [rbp - 0x14] = [0x7ffdfffffecc] = 0x0
/* Validate Memory Address: get accessible(0x7ffdfffffed4) = true */
/* Update Linear Set: SR(rcx) ← SM (&i) = {0x7ffdfffffecc} */

γ. lea rdx, [rbx + 8*rcx] // rdx = rbx + 8*rcx = 0x8
/* Update Linear Set: SR(rdx) ← SR(rbx) = {0x7ffdfffffed0} */

δ. mov rax, [rdx] // rax = [rdx] = [0x8]
/* Validate Memory Address: get accessible(0x8) = false (invalid read on 0x8) */
/* Allocate Memory Block: malloc(BLOCK SIZE) = 0x2531000 */
/* Update Reference: rdx = *(0x7ffdfffffed0) = 0x2531000 + 0x8 = 0x2531008 */

ε. mov rax, [rax] // rax = [rax] = [0x0]
/* Validate Memory Address: get accessible(0x0) = false (invalid read on 0x0) */
/* Allocate Memory Block: malloc(BLOCK SIZE) = 0x2532000 */
/* Update Reference: rdx = *(0x7ffdfffffed0) = 0x2532000 + 0x8 = 0x2532008 */

Fig. 1: Motivation example. The assembly code here is functionally equivalent with the original one for easy understanding.

is the address of dests. Intuitively, the pointer value in rbx
is linearly correlated to that in dests. Hence, fixing either

one entails updating the other. The linear correlation is further

propagated to register rdx after executing instruction γ, since

its value is derived from rbx by address offsetting (i.e.,

&dests[0] = &dests + 0). When executing instruction δ,

X-Force detects an invalid access through the pointer denoted

by rdx (i.e., &dests[0]), holding an invalid address 0x8.

Hence, it allocates a memory block with address 0x2531000

and initializes it with zero values. Register rdx is then

updated to 0x2531008. The value of &dest should also be

updated, since it linearly correlates with rdx. Similar memory

recovery operations are needed for instruction ε that accesses

dests[0]->ip through an invalid memory address 0x0.

As we can see that each memory operation should be

intercepted by X-Force for memory address validation and

linear set tracing. Upon the recovery of an (invalid) pointer

variable, all the linearly correlated variables need to be updated

accordingly. This causes substantial performance degradation.

It was reported that X-Force has 473 times runtime overhead

over the native execution [32]. Furthermore, since many library

functions such as string functions in glibc can lead to linear

set explosion (due to substantial heap array operations), X-

Force chose not to trace into library functions to update linear

sets. As a result, its memory recovery is incomplete (see

Section IV for a real-world example).

Our technique. We propose a novel randomized memory pre-

planning technique (called PMP) to handle invalid memory

accesses with probabilistic guarantees. Instead of allocating

new memory blocks on demand, PMP pre-allocates a large

memory block with a fixed size (e.g., 16KB) when the

program is loaded. The pre-allocated memory area (PAMA)

is filled with carefully crafted random values such that if these

values are interpreted as memory addresses, the corresponding

accesses still fall into PAMA. We call this self-contained
memory behavior (SCMB). In addition, these random val-

ues are designed in a way that they are self-disambiguated.

That is, it is highly unlikely that two semantically unrelated

memory operations access the same random address, causing

bogus dependencies. We call this self-disambiguated memory
behavior (SDMB). For example, the simplest way to achieve

SCMB is to pre-allocate a chunk of memory starting at 0x00

and fill it with 0x00. As such, dereferences of null pointers

(e.g., ∗p with p = 0) or pointers with some offset from null

(e.g., ∗(p+ 8)), yield value 0x00 due to the initialization.

If the yielded value 0x00 is further interpreted as a pointer,

its dereference continues to yield 0x00, without causing any

memory exception. However, such a scheme leads to sub-

stantial bogus program dependencies as semantically unrelated

memory operations through uninitialized/invalid pointer vari-

ables all end up accessing address 0x00. For example, assume

p and q are not properly initialized and both have a null value

due to forced execution and there are two pointer dereference

statements “1. ∗ p = ...; 2. ... = ∗q”. A bogus dependence

will be introduced between 1 and 2. Such bogus dependencies

further lead to highly corrupted program states. SDMB is to

ensure that unrelated pointer variables have a high likelihood

to contain disjoint addresses such that it is like they were all

properly allocated and initialized. Intuitively, PMP diversifies

the values filled in the pre-allocated large memory region such

that dereferences at different offsets yield different values.

Consequently, follow-up dereferences (of these values) can

continue to disambiguate themselves.

In addition to the aforementioned pre-planning, during

execution, PMP also initializes global, local variables, and

heap regions allocated by the original program logic with

random values pointing to PAMA. Note that otherwise they

are initialized to 0 by default. As such, when these variables

are interpreted as pointers and dereferenced without being

1123

 0 1 2 3 4 5 6 7 8 9 a b c d e f
0 x 0 0 0 0 8 0 f e 0 0 0 0 0 0 0 0 0 0 0 0 5 0 3 8 0 0 0 0 0 0 0 0 0 0 0 0
0 x 0 0 1 0 4 8 7 4 0 0 0 0 0 0 0 0 0 0 0 0 f 8 0 4 0 0 0 0 0 0 0 0 0 0 0 0
0 x 0 0 2 0 d 0 f f 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 x f f d 0 8 8 1 9 0 0 0 0 0 0 0 0 0 0 0 0 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 x f f e 0 4 0 f c 0 0 0 0 0 0 0 0 0 0 0 0 9 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 x f f f 0 2 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 e 8 a 7 0 0 0 0 0 0 0 0 0 0 0 0

......

Fig. 2: Pre-allocated memory area. The data is presented in

the little-endian format for the x86 64 architecture. The bytes

in gray are free to be filled with 8-multiple random values.

properly initialized along some forced path, the accesses still

fall in PAMA and also have low likelihood to collide (on

the same address). Through SCMB, PMP enables crash-free

memory operations, which are critical for forced execution.

Since it does not require tracing memory operations or per-

forming on-demand allocation, it is 84 times faster than X-

Force (Section IV). Through SDMB, PMP respects program

semantics such that it can faithfully expose (hidden) program

behaviors with probabilistic guarantees. As shown in our

evaluation (Section IV), PMP has fewer false positives (FP)

and false negatives (FN) than X-Force as well.

Figure 2 illustrates a 64-KB pre-allocated memory area

mapped in the address space from 0x0 to 0xffff. Note that

although this memory region may overlap with some reserved

address ranges, we leverage QEMU’s address mapping to

avoid such overlap (see Section III-E). It is filled with crafted

random values that ensure both SCMB and SDMB. For our

motivation example, instruction δ reads the memory unit at

address 0x8 (i.e., &dests[0]) and gets the value 0x3850.

Subsequently, the instruction ε uses 0x3850 as the address

to access dests[0]->ip. These two accessed addresses

(0x8, 0x3850) are contained in the PAMA, hence no memory

exception occurs. The data dependence between these two

addresses are also faithfully exposed, without undesirable

address collision. Observe that there is no memory validation

and linear set tracing required.

We want to point out while SCMB and SDMB can be

effectively ensured in forced execution, they may not be as

effective in regular execution. Otherwise, dynamic memory

allocation could be completely avoided. The reason is that

forced execution aims to achieve good coverage to expose

program behaviors such that it bounds loop iterations [32].

As a result, linear scannings of large memory regions are

mostly avoided, allowing to establish SCMB and SDMB

effectively and efficiently. Intuitively, one can consider that

our design is equivalent to pre-allocating many small regions

that are randomly distributed. This is particularly suitable for

heap accesses in forced-execution as they tend to happen in

smaller memory regions. Even if overflows might happen, the

likelihood of critical data being over-written is low due to the

random distribution.

III. DESIGN

A. Overview

Figure 3 presents the architecture of PMP, which consists

of three components: the path explorer, the dispatcher and the

Executor n
low address

(0x0)

end of PAMA

high address

(0x7fffffffffff)

Executor 1

Path Explorer Dispatcher

…
path

schem�

execution result

memory schem� n

memory schem� 1

stack

heap

…

.bss

.text

Pre-Allocated
Memory Area

(PAMA)

80 fe 00 00 00 00 00 00 50 38 00 00 00 00 00 00
48 74 00 00 00 00 00 00 f8 04 00 00 00 00 00 00
d0 ff 00 00 00 00 00 00 08 00 00 00 00 00 00 00

88 19 00 00 00 00 00 00 30 30 00 00 00 00 00 00
40 fc 00 00 00 00 00 00 98 20 00 00 00 00 00 00
20 50 00 00 00 00 00 00 e8 a7 00 00 00 00 00 00

......

Fig. 3: Architecture of PMP.

executors. Given a target binary, the path explorer systemat-

ically generates a sequence of branch outcomes to enforce,

including the PCs of the conditional instructions and their

true/false values. We call it a path scheme. Note that like

X-Force, PMP does not enforce the branch outcome of all

predicates, but rather just a very small number of them (e.g.,

less than 20). The other predicates will be evaluated as usual.

PMP operates in rounds, each round executing a path scheme.

For each path scheme, PMP further generates multiple versions

of variable initializations, each having different initial values

but satisfying both SCMB and SDMB. We call them memory
schemes. The reason of having multiple memory schemes is

to reduce the likelihood of coincidental address collisions.

A process is forked for each path and memory scheme and

distributed to an executor for execution. At the end of a round,

the dispatcher aggregates the results from the executors (e.g.,

coverage). Another path scheme is then computed by the path

explorer to get into the next round, based on the results from

previous rounds.

Path Explorer. In essence, path exploration is a search process

that aims to cover different parts of the subject binary. In each

round, a new path scheme is determined by switching ad-

ditional/different predicates, or enforcing additional/different

jump table entries, to improve code coverage. Since the search

space of all possible paths is prohibitively large for real-world

binaries, PMP follows the same path exploration strategies in

X-Force [32], including the linear search, the quadratic search

and the exponential search. In particular in each round, the

linear search selects a new predicate or jump table entry to

enforce, which is usually the last one that does not have all its

branches covered in previous rounds. The exponential strategy

aims to explore all combinations of branch outcomes and is

hence the most expensive. It is only used to explore some

critical code regions. Quadratic search falls in between the

two. Since these are not our contributions, interested readers

are referred to the X-Force project [32].

Dispatcher. The dispatcher aggregates execution results (e.g.,

code coverage and program dependencies) of multiple ex-

ecutors in a conservative fashion. Specifically, it considers

a result valid if and only if it is agreed by n executors,

with n configurable. In our experience, n = 2 is good

enough in practice. Such aggregation further improves our

1124

Program Loading

address spacecrafted file

PAMA
PAMA Preparation

During Execution

program entry Global Variable Init

call instructions Local Variable Init

memory allocation Heap Init

Fig. 4: Workflow of Memory-preplanning.

probabilistic guarantees. Intuitively, assume PMP ensures that

a reported result has lower than p ∈ [0, 1] probability to be

incorrect during a single execution (on an executor), due to

the inevitable accidental violations of SCMB or SDMB. The

aggregation further reduces the probability to pn if the memory

schemes on the various executors are truly randomized (and

hence independent).

Executors. All executors are forked from the same main

process with the same initialized PAMA. Each executor then

enforces a given path and memory scheme assigned to it. Such

a design avoids the redundant initialization of PAMA. Note

that all memory accesses must start from some variable, whose

value is fully randomized across executors.

The rest of this section will explain in details the memory

pre-planning step and the probability analysis for SCMB and

SDMB guarantees. Execution result aggregation is omitted due

to its simplicity.

B. Memory Pre-planning

Overview. Figure 4 presents the workflow of memory pre-

planning. When a program is loaded, a pre-allocated memory

area (PAMA) is prepared by invoking the mmap system call

to map a crafted file to the program address space. The file

content is randomly generated beforehand. During execution,

program variables (including global, local variables and heap

regions) are initialized by PMP with random eight-multiple

values pointing to PAMA. Specifically, PMP intercepts: 1) the

program entry point for initializing global variables; 2) call

instructions for initializing local variables; and 3) memory

allocations for initializing heap regions. Note that PAMA

preparation happens a priori and incurs negligible runtime

overhead, while variable initialization occurs on-the-fly during

execution. Both are generic and do not require case-by-case

crafting. We further discuss these steps in the following.

PAMA Preparation. PAMA is mapped at the lower part of

the address space starting from 0x0, in order to accommodate

null pointers or pointers with invalid small values. The word-

aligned addresses within PAMA (i.e., those having 0 at the

lowest three bits) are filled with carefully crafted random

values, such that if these values are interpreted as addresses,

they fall within PAMA. As such, the range of random values

that we can fill is dependent on the size of PAMA. For a

64-KB PAMA (i.e., in the address range of [0, 0xffff]), the

first two least-significant bytes of a filling value are free to

be set with a random eight-multiple value. Other bytes are

fixed to zero. Note that such a value is essentially a valid

word-aligned address in PAMA. For a 64-MB PAMA, the

first three least-significant bytes of a filling value can be set

randomly, providing better SDMB. The maximum PAMA can

be as large as 128 TB, as a larger PAMA would overlap with

the kernel space. While a feasible design is to change the entire

virtual space layout (by changing kernel), it would hinder the

applicability of our technique. In practice, we find that 4-MB

of PAMA provides a good balance of SCMB and SDMB.

Global Variable Initialization. In an ELF binary, the unini-

tialized or zero-initialized global variables are stored in the

.bss segment. During loading, PMP reads the offset and size

information of the .bss segment from the ELF header. PMP

then initializes the segment like a heap region.

Heap Initialization. Pre-planning heap regions that are dy-

namically allocated by instructions in the subject binary is

relatively easier. PMP intercepts all memory allocations and

set the allocated regions to contain random word-aligned

PAMA addresses. Note that PMP writes these values to each

word-aligned address in the heap region. If a regular compiler

is used to generate the subject binary, the compiler would

enforce pointer-related memory accesses to be word-aligned

through padding. However, malware may intentionally intro-

duce pointer accesses that are not word-aligned. Section III-E

will discuss how PMP handles such cases. In the following

discussion, we always assume word alignment.

Local Variable Initialization. Initializing local variables is

more complex. After initializing PAMA and before spawning

the executors, PMP initializes the entire stack region like a

heap region. Note that stack frames are pushed and popped

frequently and the same stack address space may be used by

many function calls. As such, the stack space may need to be

re-initialized. A plausible solution is to identify stack frame

allocations (e.g., updates of rsp register) and conduct initial-

ization after each allocation. However, due to the flexibility

of stack allocations, it is difficult to precisely identify them.

Inspired by stack canaries used to detect stack overflows, PMP

uses the following design to initialize stack regions. It inter-

cepts each function invocation. Then starting from the current

address denoted by rsp, it randomly checks eight 1 unevenly

distributed addresses lower than the rsp address (i.e., the

potential stack space to be allocated), in the order from high

to low, to see if they are PAMA addresses (meaning that they

were not overwritten by previous function invocations). We

also call these addresses canaries without causing confusion in

our context and use Ci to denote the ith canary. PMP identifies

the lowest (last) canary that is not PAMA address, say Ct, and

then re-initializes [Ct+1, rsp] (note that stack grows from high

address to low address). If all eight canaries are overwritten,

PMP continues to check the next eight. Observe that since

stack writes may not be continuous, the detection scheme has

only probabilistic guarantees. In practice, our scheme is highly

1Eight is an empirical choice and works well in our evaluation. The number
and the distribution of canaries are configurable.

1125

01 typedef struct{double *f1; long *f2;} T;
02 typedef struct{char f3; long *f4; long *f5;} G;
03 G *g;
04
05 void case3() {
06 long *e = NULL, *f = NULL;
07 if (cond1()) init(e, f);
08 if (cond2()) {
09 *e = 0x6038; // [0x0000] = 0x6038
10 long tmp = *f; // tmp = [0x0000]: bogus dep!
11 }
12 }
13
14 void case4() {
15 if (cond1()) init(g);
16 if (cond2()) {
17 *(g->f4) = 0x0830;
18 long tmp = *(g->f5); // &(g->f5) = 0x10000
19 }
20 }

21 void case1() {
22 long **a = malloc(...);
23 T *b;
24 if (cond1()) init(b);
25 if (cond2()) {
26 long *alias = b->f2;
27 *(b->f2) = **a; // [0x0008] = [0x0010]
28 *(b->f1) = 0.1; // [0xffd0] = 0.1
29 long tmp = *alias;
30 }
31 }
32
33 void case2() {
34 long *c; double **d;
35 if (cond1()) init(c, d);
36 if (cond2()) {
37 *c = 0xdeadbeef; // [0xffd8] = 0xdeadbeef
38 double tmp = **d; // [0xdeadbeef]: error!
39 }
40 }

(a) code snippet.

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 x 0 0 0 0 8 0 f e 0 0 0 0 0 0 0 0 0 0 0 0 5 0 3 8 0 0 0 0 0 0 0 0 0 0 0 0
0 x 0 0 1 0 4 8 7 4 0 0 0 0 0 0 0 0 0 0 0 0 f 8 0 4 0 0 0 0 0 0 0 0 0 0 0 0
0 x 0 0 2 0 d 0 f f 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 x f f d 0 8 8 1 9 0 0 0 0 0 0 0 0 0 0 0 0 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 x f f e 0 4 0 f c 0 0 0 0 0 0 0 0 0 0 0 0 9 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 x f f f 0 2 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 e 8 a 7 0 0 0 0 0 0 0 0 0 0 0 0

...

 0 x 1 e d 7 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a:0x01ed7010
b:0x20

...
canary C1

...
canary C2

...
canary C3

...

g:0xfff0

Local Variable (case1)

Local Variable (case2)

Global Variable

PAMA

Heap Region

ef be ad de 00 00 00 00 after line 37

c:0xf1d8
d:0xffd8

(b) memory scheme.

Fig. 5: Memory pre-planning.

effective and we haven’t encountered any problems caused by

incorrect stack initialization.

Example. We use the code snippet shown in Figure 5a as

an example to explain the memory pre-planning process. In

the code, a global variable g is defined at line 3, two local

variables a, b are defined in function case1(). Assume in

an execution instance, line 24 takes the false branch and b
is not allocated and initialized; and line 25 is forced to take

the true branch. Although a is initialized by the original

program code with an allocated heap region, the data in the

heap region is not initialized. Without memory pre-planning,

the program would have exception at any of the memory

operations in lines 26-29.

In this example, the global variable g is set to a random

PAMA address at the beginning. Upon calling case1(),

PMP checks the canaries at C1, C2, and so on (see the stack

frame in the top-left corner of Figure 5b), and then identifies,

say, the region from [C3,rsp] needs re-initialization, which

includes local variables a and b. Inside the function body,

a is set to a dynamically allocated heap region at line 22,

but other variables such as g and b keep their initial PAMA

address value (as line 24 is not executed). Specifically, g and b
point to 0xfff0 and 0x20 (in PAMA), respectively. Consider the

read operation at line 28 that triggers pointer dereferences on

b and then b->f1. The former dereferences address 0x20 and

yields value 0xffd0, which is further interpreted as an address

in the follow-up dereference of b->f1, yielding another valid

PAMA address. Observe that any following dereferences will

be within PAMA and do not cause any exceptions, illustrating

the SCMB property. The value of b->f1 (i.e., 0xffd0) deref-

erenced at line 28 is different from that of b->f2 (i.e. 0x08)

dereferenced at line 27, and hence disambiguate themselves,

illustrating SDMB.

C. Other PAMA Memory Behavior and Interference with
Regular Memory Operations.

Memory pre-planning is particularly designed to handle

exceptional memory operations (caused by forced execution).

As such, all the values filled in PAMA are essentially in

preparation for these values being interpreted as addresses and

further dereferenced. It is completely possible that the subject

binary does not interpret values from PAMA as addresses.

For example, it may interpret a PAMA region as a string

and access individual bytes in the region. In such cases, the

accessed values are just random values. This is equivalent to

how X-Force handles uninitialized/undefined buffers.

A PAMA location can be written to and later read from

by instructions in the subject binary, dictated by the program

semantics. Program dependencies induced by PAMA are no

1126

different from those induced through regular memory regions.

For example, the code at line 26 in Figure 5a establishes

an alias between variable alias and b->f2. At line 27, a

memory write is conducted on b->f2. At line 29, a memory-

read is conducted on alias. PMP can correctly establish the

dependence between line 27 and line 29, since they both point

to the same memory address 0x8.
It may happen that a PAMA location is written to by the

subject binary and then read through a semantically unrelated

invalid pointer dereference later. As the written value may not

be a legitimate PAMA address, the later read causes exception.

For example, line 37 at function case2() of Figure 5a

writes a value 0xdeadbeef that is not a word-aligned address

within PAMA to the address indicated by pointer c. Assume

c happens to have the same value 0xffd8 as an unrelated

pointer d. The write to *c also changes the value in *d to

0xdeadbeef. As such at line 38, an exception is triggered for

the read of **d. In the next subsection, our probability anal-

ysis shows that such cases rarely happen as the likelihood for

two semantically unrelated pointers are initialized to the same

random value is very low. Furthermore, PMP employs different

memory schemes in multiple executors, further reducing such

possibility.
In the worst situation, the subject binary uses its own in-

structions to set semantically unrelated pointers to null. In nor-

mal execution, these pointers would point to different properly

allocated memory regions. However in forced execution, they

may not be allocated, and all point to address 0. In such cases,

PMP cannot disambiguate the accesses of these variables, and

lead to bogus dependencies. For example, the local variables

e and f in function case3 () of Figure 5a are explicitly

set to null by the original program code. In forced execution

where line 7 is not executed, they point to the same address

0x0, resulting in bogus dependence (e.g., between lines 9 and

10). Our experimental results in Section IV show that such

cases rarely happen.

D. Probability Analysis
In this section, we study the probabilistic guarantee of

PMP for the SCMB and SDMB properties. Violations of

SCMB lead to exceptions whereas violations of SDMB lead to

bogus dependences and corrupted variable values. To facilitate

discussion, we introduce the following definitions. Let PA be

the set of all possible addresses within PAMA, and WA be its

word-aligned subset. Assume the size of PAMA is S. Then,

on a 64-bit architecture, we have equation (1).

S = |PA| = |WA| × 8 (1)

In addition, let FV be a random subset of WA, called the

filling value set, whose elements are used as the values to

be filled in PAMA. Without loss of generality, we assume 0

belongs to FV. We define the ratio between the size of FV
and the size of WA as diversity, denoted as d. Then, we have

equation (2).

|FV| = |WA| × d =
d·S
8

(2)

The initialization of PAMA can be formulated as a mapping

f : WA �→ FV, which assigns each word (with 8 bytes

alignment) in PAMA (i.e., denoted by addresses in WA) with

a random value selected from FV. Intuitively, a more diverse

FV leads to a more random memory scheme. The initialization

that fills the whole PAMA with value 0 can be considered an

extremal case where FV contains only a single element 0. Note

that in this case, SCMB is fully respected, while SDMB is

substantially violated as all invalid memory operations collide

on address 0.

Probabilistic Guarantee of SCMB. When a pointer variable

is initialized (by PMP) with a value indicating an address close

to the end of PAMA, dereference of its offset may result in an

access out of the bound of PAMA. As an example, consider

the dereference of g->f5 at line 18 of function case4() in

Figure 5a. Recall that g is set to be 0xfff0 by PMP. The address

of g->f5 is hence 0x10000, out of the bound of PAMA with

16 KB size.

Theorem 1. Let x be a filling value selected from FV, α be an

offset. The probability Perr1 of x+α being out of the bound

of PAMA is calculated by equation (3).

Perr1 = P ((x+α) �∈PA | x∈FV) =
α

S−8 ·
(
1− 8

d · S
)

(3)

Proof. For PMP to access an out-of-bound address x +
α, x must belong to an address set IA = WA ∩
{S−α, S−α+1, . . . , S−1}. To simplify discussion, let α′=
|IA|= α/8 , S′= |WA| and N= |FV|. Let the size of IA ∩ FV
be i. We can infer conditional probabilityP (x∈IA |x∈FV) =
i/N , denoted as Pi1. Additionally, because there are

(
S′−1
N−1

)
possible FVs that could be uniformly chosen from (recall

0∈FV always holds) and
(
α′

i

)·(S′−α′−1
N−i−1

)
FVs have i common

elements with IA, P (|FV ∩ IA|= i)=
(
α′

i

)·(S′−α′−1
N−i−1

)/(
S′−1
N−1

)
,

denoted as Pi2. Enumerating size i ∈ {1, . . . , α′}, Perr1 =∑α′

i=1 Pi1 ·Pi2=(α′/N)·((S′−2
N−2

)/(
S′−1
N−1

)
)= α

S−8 ·
(
1− 8

d·S
)

Intuitively, the larger the pre-allocated memory area (i.e.,

S) and the lower the diversity (i.e., d), the lower the Perr1. In

particular, the Perr1 of a naive initialization that fills PAMA

with value 0 is 0. In a typical setting of S=0x400000, α=8
and d=1, Perr1=1.9073e−06, illustrating a very low chance

of exception. A plausible way to completely avoid SCMB

violation is to avoid using address values close to the end

of PAMA. However this requires knowing the largest possible

offset, which is difficult in practice.

Probabilistic Guarantee of SDMB. SDMB will be compro-

mised when two unrelated pointers are initialized to the same

value by chance. Taking local variables c and d for case2()
in Figure 5a as an example, both of them are initialized to

0xffd8, causing invalid pointer dereference at line 38.

Theorem 2. Let x and y be two filling values independently se-

lected from FV. The probability Perr2 of coincidental address
collision, when x and y have the same value, is calculated by

equation (4).

1127

Perr2 = P (x = y | x∈FV, y∈FV) =
8

d·S (4)

Proof. Recall x and y are independently selected from FV.

Thus, fixing x=v0 as a constant, we can infer Perr2=P (y=
v0 |y∈FV)= 1/|FV|= 8/(d·S) .

With a typical setting d = 1 and S = 0x400000, Perr2 =
1.9073e−06, a very low probability.

Perr3 =P (l (x, β) ∩ l (y, γ) �= ∅ | x∈FV, y∈FV)
≤ 64

d2 ·S2
+(1− 8

d·S)2 · β+γ− 8

S−8

(5)

Proof is elided due to space limitations. With a setting of

β = 0x1000, γ = 0x1000, and the rest as the same before,

Perr3 = 0.00195, still reasonably low. Note that one can

always improve the guarantee by having more executors with

different pre-plans.

E. Implementation

PMP is implemented based on the QEMU user-mode em-

ulator [9]. Specifically, PMP instruments conditional jumps

and indirect jumps to enforce path scheme. A path scheme is

a sequence of branch outcomes that need to be enforced. As

an instance, “401a4c:T, 4094fc:F, 40a322#40a566” is a path

scheme that contains three branch outcomes to be enforced in

order. Particularly, the predicates at 0x401a4c and 0x4094fc

should take the true branch and false branch respectively,

the jump table at 0x40a322 should take the entry at 0x40a566.

Currently, PMP supports ELF binary on the x86 64 platform.

It can be easily extended to support other architectures due to

the cross-platform feature of QEMU. We leave it as our future

work. In the rest of the subsection, we discuss a number of

practical challenges faced by PMP.

Handling File and Network I/O, Infinite Loop and Re-
cursion. Forced execution may result in exceptional program

behaviors, such as invalid file/network access, infinite loop

and infinite recursion. To make PMP applicable to real-world

executables, these issues need to be handled. PMP follows

similar solutions to X-Force regarding these problems. The

difference lies in that we implement them on QEMU while

X-Force was on PIN. We briefly discuss these solutions for

the completeness of discussion.

To handle invalid file access, PMP wraps file open functions

(e.g., open and fopen). If the file to be opened does not

exist, a file padded with random values will be used. To

handle infinite loop, PMP adopts the profiling-based approach

proposed in [31] to dynamically identify loop structures. For

each identified loop structure, PMP resets the loop bound

to a pre-define constant. This is more sophisticated than X-

Force, which uses a fixed global loop bound. To handle

infinite recursion, PMP intercepts call and return instructions

to maintain a call stack. At each function invocation, PMP

checks whether the appearances of the target function in the

call stack exceed a pre-defined threshold. If so, PMP skips

the function invocation. Note that while maintaining a faithful

shadow call stack is very challenging due to the various strange

calling conventions, PMP does not require a precise shadow

stack.

Allocation of Large PAMA. PAMA is located at the lower

part of the address space starting from 0x0. The default load

address for non-position-independent executables is usually

0x400000. If the size of PAMA is larger than 4MB, there

will be overlap between PAMA and the text/data segment of

the subject executable, which is problematic.

To support large-size PAMA, we enable the address map-

ping mechanism provided by QEMU, which translates a guest

address (denoted as GA) used by the subject executable to a

host address (denoted as HA) used by QEMU. In the user-

mode emulation, QEMU and the subject executable share the

same address space. The address mapping g2h is flattened to

essentially an offsetting operation, such that ha = g2h(ga) =
ga+ base, where ga∈GA, ha∈HA, and base is a pre-defined

base address. We set the base address to the size of PAMA to

avoid any overlap. Consequently, we need to adjust the filling

values accordingly such that they are mapped to the addresses

within PAMA (started from 0x0 in the host space). Formally,

let FV
′

be the set of the adjusted filling values. Then we have

FV
′
={x− base | x∈FV}.

Misaligned Memory Access. The memory pre-planning of

PMP assumes that any pointer field of a structure is word-

aligned. It is a reasonable assumption for most real-world

applications, since making pointer fields word-aligned (by

padding if needed) is the default behavior of compilers. For

example, mainstream compilers will place a 7-byte padding

between the f3 field and the f4 field of the structure G in

Figure 5a by default, such that the offset of f4 is word-aligned.

Although we didn’t find any real-world cases in our eval-

uation, it is possible to disable word-alignment via a spe-

cial compilation option. The misalignment of a pointer field

(within PAMA) may result in invalid memory access. For

example, assume the global variable g in Figure 5a points

to 0xfff0 set by PMP. If its pointer field f4 is not word-

aligned, its value will be loaded from 0xfff1, which would be

0xe800000000000050. If this value is used as an address, the

access falls out of PAMA (even out of the user address space)

and causes exception.

We develop the following mechanism in the dispatcher

to handle misaligned memory accesses in a demand driven

fashion. If a path scheme results in invalid memory access in

all the executors (most likely induced by misaligned accesses),

the dispatcher checks the QEMU exception log to acquire

the instruction i that accesses misaligned address. Then PMP

additionally intercepts the code generation of instruction i
to mask the most-significant bytes of the accessed memory

address to make it fall within PAMA. Note that while our

design anticipates misaligned pointer field accesses are rare,

which is true according to our experience (see Section IV), it is

possible future malware may purposely introduce lots of such

misalignments. In this case, PMP would have to instrument

all memory operations to sanitize the addresses.

1128

IV. EVALUATION

A. Experiment Setup

We evaluate PMP with the SPEC2000 benchmark set as

well as a set of malware samples provided by VirusTotal [12]

and Padawan [8]. The experiment on SPEC2000 is conducted

on a desktop computer equipped with an 8-core CPU (Intel R©
CoreTM i7-8700 @ 3.20GHz) and 16G main memory. The

experiment on the malware samples is conducted on a virtual

machine (to sandbox their malicious behaviors) hosted on

the same desktop. On both experiments, the configuration of

PMP is as follows: 4-MB pre-allocated memory area (i.e.,

S = 0x400000), diversity d = 1, and 2 executors (i.e., n = 2).

B. SPEC2000

SPEC2000 is a well-known benchmark set contains 12 real

world programs, some of them are large (e.g., 176.gcc). The

list of programs and the characteristics of their executables can

be found in Appendix A. We choose SPEC2000 for the pur-

pose of comparison as it was used in X-Force. Table I presents

the comparative results on different aspects, including forced

execution outcomes, code coverage and memory dependence.

Forced Execution. In this experiment, both PMP and X-Force

use the same linear path exploration strategy. Specifically, it

first executes the binary once without forcing any branch out-

come. Then it traverses the executed predicates in the reverse

temporal order (the last predicate first) and finds the predicate

that has an uncovered branch. A new path scheme is then

generated to force-set the uncovered branch. The procedure

repeats until there are no more schemes that can lead to new

coverage. Column 2 in Table I reports the total execution time

when PMP finishes the exploration. Columns 3 and 4 present

the number of executions that pass and fail (i.e., encounters

an exception), respectively. The number in parentheses denote

the number of executions finished per second. Columns 11-

13 show the corresponding results for X-Force. From these

results, we have the following observations. (1) PMP can

perform 12.6 forced executions per second on average, which

is 84 times faster than X-Force (0.15 execution per second).

Since PMP uses 2 executors for each path scheme, one may

argue that X-Force can be parallelized to use two cores (for fair

comparison). We want to point out that first it is unclear how to

parallelize the linear search algorithm; and the second executor

in PMP is just to provide better probabilistic guarantees. In

most cases, such improvement may not have practical impact

(see our next experiment). Hence in deployment, additional

executors may be turned off. (2) The execution failure rate of

PMP is 3.5%, which is reasonably low and comparative with

X-Force. Note that the rate is higher than what we identified in

the SCMB probability analysis (Section III-D). The reason is

that the majority of failures reported by both PMP and X-Force

are not caused by memory exceptions, but rather inevitable as

the path explorer forces the execution to enter branches that

must lead to failures (e.g., forcing the true branch of a stack

smash check inserted by the compiler).

Code Coverage. Columns 5∼7 and 14∼16 show the code

coverage of PMP and X-Force, respectively. Observe that on

average PMP covers 83.8% instructions, 79.1% basic blocks

and 91.8% functions, which is comparable to X-Force. For

most of the benchmark programs, PMP achieves more than

80% code coverage. Specifically, for mcf and gzip, PMP

achieves 100% code coverage.

The worst cases are eon and gcc. Further manual inspection

shows that this is due to some inherent shortcoming of the

linear search strategy. To illustrate, consider the code snippet

in Figure 6, which is extracted from gcc that validates function

arguments before proceeding. When the check_arg() func-

tion is invoked for the first time at line 2, the true branch of

predicate at line is taken by default. The linear path exploration

will force the next execution to take the false branch, since it

has not been covered before. At the second-time invocation of

check_arg() at line 3, the false branch of the predicate

at line 8 will not be forced to execute again (hence take the

true branch by default), since it has been covered before.

That means, the code after line 3 will not get executed due to

the validation failure at line 3.

The essence of the problem is that linear search only

focuses on predicates, without considering their context. For

example, function check_arg() may be invoked from mul-

tiple places, and each calling context should be considered

differently. That is, a branch being covered in a context should

not prevent it from being explored again in a different context.

In our future work, we will explore a context-sensitive path

exploration method that can provide probabilistic guarantees.

Specifically, we will explore a sampling algorithm that can

sample a predicate, together with its unique context, in a

specific distribution (e.g., uniform distribution).

Memory Dependence. We also conducted an experiment,

in which we detect the program dependencies exercised by

forced execution. A dependence is exercised when an in-

struction writes to some address, which is later read by

another instruction. This is to evaluate the SDMB property

of PMP. Note that it is intractable to acquire the ground

truth of program dependencies, even with source code (due

to reasons such as aliasing). Therefore, we use two methods

to evaluate the quality of detected dependencies. First, we run

the SPEC programs on the inputs provided by the SPEC suite

(some of them are large and comprehensive) and collect the

dependencies observed. These must be true positive program

dependencies. As such, forced execution is supposed to expose

most of them. Any missing one is an FN. Second, we built a

static type checker to check if the source and destination of a

(detected) dependence must have the same type. We developed

an LLVM pass to propagate symbolic information to individual

instructions, registers, and memory locations such that we

know the type of each binary operation and its operands. Note

that we need the symbolic information just for this experiment.

PMP operates on stripped binaries. Ideally, force execution

should report as few mistyped dependencies as possible. Each

mistyped dependence must be an FP. Columns 8∼10 and

1129

TABLE I: SPEC2000 Results

Benchmark
PMP X-Force

execution status code coverage memory dependence execution status code coverage memory dependence
time (s) # run # fail # insn # block # func # found # correct # mistyped time (s) # run # fail # insn # block # func # found # correct # mistyped

164.gzip 24.6
382

(15.6/s)
11

(3%)
7,650

(100%)
699

(99%)
61

(100%)
3,529

2,824
(80%)

0
(0%)

2,112
369

(0.17/s)
10

(3%)
7,420
(97%)

669
(95%)

61
(100%)

3,662
2,343
(64%)

28
(1%)

175.vpr 76.8
1,006

(13.1/s)
82

(8%)
26,783
(83%)

2,007
(71%)

226
(89%)

13,418
8,983
(67%)

333
(2%)

9,436
1,000

(0.10/s)
79

(8%)
26,677
(83%)

2,004
(70%)

226
(89%)

13,332
7,199
(57%)

2,428
(18%)

176.gcc 3490.2
26,524
(7.6/s)

822
(3%)

186,310
(49%)

16,104
(44%)

1,239
(65%)

573,375
384,161
(67%)

11,467
(2%)

347,014
26,647
(0.08/s)

799
(3%)

183,280
(48%)

16,098
(43%)

1,221
(64%)

573,926
332,303
(58%)

63,131
(11%)

181.mcf 8.6
144

(16.7/s)
2

(1%)
2,977

(100%)
213

(100%)
24

(100%)
1,718

1,248
(73%)

0
(0%)

374
164

(0.43/s)
2

(1%)
2,947
(99%)

213
(100%)

24
(100%)

1,487
1,011
(68%)

130
(9%)

186.crafty 860.3
2,753
(3.2/s)

15
(0.5%)

40,404
(96%)

4,237
(96%)

104
(100%)

22,437
14,300
(64%)

20
(0.08%)

99,764
2,830

(0.03/s)
13

(0.4%)
41,685
(99%)

4,381
(99%)

104
(100%)

22,816
12,092
(53%)

2,749
(12%)

197.parser 98.2
1,590

(16.2/s)
68

(4%)
22,093
(90%)

2,688
(92%)

279
(94%)

9,958
6,664
(67%)

887
(9%)

6,340
1,685

(0.27/s)
69

(4%)
23,331
(95%)

2,799
(96%)

288
(97%)

11,740
5,870
(50%)

3,682
(31%)

252.eon 37.2
707

(19.0/s)
27

(4%)
28,600
(71%)

5,560
(70%)

502
(82%)

9,521
4,457
(47%)

142
(1%)

4,020
659

(0.16/s)
26

(4%)
27,622
(69%)

5,413
(68%)

501
(81%)

9,121
3,557
(39%)

5,669
(62%)

253.perlbmk 1,189
10,318
(8.7/s)

508
(5%)

118,135
(88%)

11,600
(90%)

692
(97%)

66,726
28,394
(43%)

4,001
(6%)

176,096
10,400
(0.06/s)

502
(4%)

119,467
(89%)

11,676
(90%)

696
(97%)

70,611
24,713
(35%)

18,866
(27%)

254.gap 1,054
7,754
(7.3/s)

310
(4%)

49,869
(54%)

4,519
(50%)

401
(88%)

38,243
20651
(54%)

3,059
(8%)

103,458
7,461

(0.07/s)
298
(4%)

49,920
(54%)

4,521
(50%)

401
(88%)

38,784
18228
(47%)

6,593
(17%)

255.vortex 487.0
7,232

(14.9/s)
157
(2%)

100,718
(92%)

15,513
(91%)

577
(92%)

55,205
19,939
(36%)

630
(1%)

58,646
7,223

(0.12/s)
132
(2%)

100,652
(92%)

15,489
(91%)

577
(92%)

54,977
15,393
(28%)

14,072
(26%)

256.bzip2 16.0
249

(15.6/s)
13

(5%)
6,338
(92%)

545
(94%)

60
(95%)

2,755
2,375
(86%)

0
(0%)

842
258

(0.19/s)
11

(4%)
5,179
(76%)

471
(82%)

53
(84%)

2,434
1,849
(76%)

215
(9%)

300.twolf 221.4
2,972

(13.4/s)
97

(3%)
52,351
(91%)

3,682
(86%)

165
(99%)

24,032
10,333
(43%)

528
(2%)

21,308
2,997

(0.14/s)
90

(3%)
52,831
(92%)

3,749
(88%)

165
(99%)

25,664
8,212
(32%)

3,132
(12%)

Average - 12.6/s 3.5% 83.8% 79.1% 91.8% - 60.6% 2.6% - 0.15/s 3.4% 82.7% 81.0% 90.9% - 50.6% 19.6%

01 int some_func(char *arg1, char *arg2) {
02 check_arg(arg1);
03 check_arg(arg2);
04 do_something(); // do nothing
05 ...
06 }
07 void check_arg(char *arg) {
08 if (strlen(arg) == 0) exit(-1);
09 ...
10 }

Fig. 6: Explaining problem of linear search using gcc.

17∼19 show the memory dependence results for PMP and

X-Force, respectively.

Observe that X-Force has 6.5 times more mis-typed memory

dependences compared to PMP (19.6% versus 2.6%), that

is, 6.5X more FPs. In addition, the must-be-true memory

dependences reported by X-Force are 10% fewer than those by

PMP. That is, X-Force has 10% more FNs. The main reason

is that X-Force does not trace into library execution such that

pointer relations are incomplete. We will use a case study

to explain this in the next paragraph. Mis-typed dependences

(FPs) in PMP are mostly caused by violations of SDMB. The

results are consistent with our analysis in Section III-D. Note

that our probabilistic guarantee for SDMB was computed for

a pair of accesses, whereas the reported value is the expected

value over a large number of pairs.

Case Study. We use 181.mcf as a case study to demonstrate

the advantages of PMP over X-Force, as well as over a naive

memory pre-planning that fills the pre-allocated region and

variables with 0. To reduce the interference caused by the

path exploration algorithm, we use the execution traces of the

runs on the provided test cases as the path schemes. That is,

we enforce the branch outcomes in a way that strictly follows

the traces. The test cases fall into three categories: training,

test, and reference, with difference sizes (reference tests are

01 long suspend_impl(..){..
02 if (is_valid(arc)) {..
03 memcpy(new_arc, arc, 0x40);..
04 *(arc->tail) = node1;..
05 node2 = *(new_arc->tail);..
06 }
07 }

Fig. 7: Explaining FPs and FNs by X-Force using mcf.

the largest). We use the memory dependences reported while

executing the test cases normally as the ground truth to identify

the false positives and false negatives for PMP and X-Force.

Since both the forced and unforced executions of a test input

follow the same path, the comparison particularly measures

the effectiveness of the memory schemes. To be more fair, we

only run PMP on a single executor.

The results are shown in Table II. The 2nd and 3rd columns

compare the execution speed. Observe that PMP is much

faster, consistent with our earlier observation. For the memory

dependences, PMP has no FPs or FNs while the naive planning

method has some; and X-Force has the largest number of FPs

and FNs. The former is because SDMB is violated. The latter

is due to the incompleteness of pointer relation tracking (i.e.,

missing the library part). Note that the numbers of FPs and

FNs are smaller compared to the previous experiment as these

are results for a small number of runs, without exploring paths.

Consider the code snippet from mcf shown in Figure 7.

Variable arc is a buffer that contains many pointer fields. As

it is copied to new_arc at line 3, the pointer fields in arc and

new_arc are linearly correlated. However, X-Force misses

such correlations as it does not trace into memcpy() at line 2.

This could lead to missing dependences such as that between

lines 4 and 5; and also bogus dependences. For example, the

read *(new_arc->tail) at line 5 must falsely depend on

some write that happened earlier.

1130

Cuckoo

Habo

Padawan

Cuckoo++

X-Force

PMP

0 50 100 150 200 2500 50 100 150 200 250

(a) number of exposed syscall sequences.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00 PMP X-Force

(b) executions per second.

0

5

10

15

20

25

30 PMP X-Force

(c) length of path scheme.

Fig. 8: Overall result of malware analysis.

TABLE II: Experiment with mcf.

Item
Execution Time (s) Memory Dependence

PMP X-Force ground
PMP Naive X-Force

found fp fn found fp fn found fp fn

test 0.0305 1.987 1847 1847 0 0 1848 5 4 1858 28 17

train 0.0348 2.578 2065 2065 0 0 2069 13 9 2088 45 22

ref 0.0609 4.390 2062 2062 0 0 2068 14 8 2080 37 19

C. Malware Analysis

We use 400 malware samples. Half of them are acquired

from VirusTotal under an academic license, and the other half

fall into the set of malware used in the Padawan project.

Note that the authors of Padawan cannot share their samples

due to licensing limitations. Hence, we crawled the Internet

for these samples based on a set of hash values provided

by the Padawan’s authors through personal communication.

Many samples could not be found and are hence elided. The

400 samples cover up-to-date malware of different families

captured from year 2016 to 2018. We compare the malware

analysis result of PMP with that of Cuckoo [2] (a well-known

sandbox for automatic malware analysis), Padawan [8] (an

academic multi-architecture ELF malware analysis platform),

Habo [10] (a commercial malware analysis platform used by

VirusTotal for capturing behaviors of ELF malware samples)

as well as X-Force [32].

In order to compare our technique with the state-of-

the-art anti-evasion measures, we implemented two popular

anti-evasion methods [19] (i.e. system time fast-forwarding

and anti-virtualization-detection) as extensions to Cuckoo.

We name the extended system Cuckoo++. Specifically in

the first method, we modify the kernel to make the sys-

tem clock much faster (e.g., 100 times faster), mainly for

the following two reasons. First, a malware analysis VM

often has a very short uptime since it restarts for each

malware execution. As such, advanced malware may check

the system uptime to determine the presence of sandbox

VM. Second, advanced malware samples often sleep for a

period of time before executing their payload (in order to

defeat dynamic analysis). In the other method, we inter-

cept file system operations to conceal the artifacts produced

by virtual machine (e.g., /sys/class/dmi/id/product name and

/sys/class/dmi/id/sys vendor).

The detailed comparison results are shown in Appendix C.

Note that the malware behaviors of Padawan are provided by

its authors. We set up an execution environment similar to

Padawan (Ubuntu 16.04 with Linux kernel version 4.4) for

TABLE III: Analysis on malware samples used for case study.

Case ID Cuckoo Habo Padawan Cuckoo++ X-Force PMP

1 031 12 17 12 12 283 301

2 004 27 29 28 27 32 216

3 225 49 49 166 165 183 220

4 309 153 169 292 221 274 705

the other tools, including PMP, X-Force, Habo, Cuckoo and

Cuckoo++, so that the results can be comparable. We set 5

minutes timeout for each malware sample.

Result Summary. Figure 8 presents the overall result of

malware analysis. Specifically, the number of unique system

call sequences exposed by different tools are show in Fig-

ure 8a. To avoid considering similar system call sequences that

have only small differences on argument values as different

sequences, we consider sequences that have more than 90%

similarity as identical. As we can see that the executions with

anti-evasion measures enabled (i.e., Cuckoo++ and Padawan)

expose more system call sequences than the native executions

(i.e., Cuckoo and Habo), but disclose fewer than the forced

execution methods (i.e., X-Force and PMP). On average, PMP

reports 220%, 243%, 150%, 151% and 98% more system call

sequences over Cuckoo, Habo, Cuckoo++, Padawan and X-

Force, respectively. Details can be found in Appendix C.

The comparison of execution speed and length of path

schemes between PMP and X-Force are shown in Figure 8b

and Figure 8c respectively. Note that Cuckoo and Padawan

only runs each sample once (instead of multiple executions

on different path schemes as force execution tools do). Hence

we do not compare their execution speeds and length of path

scheme. On average, PMP is 9.8 times faster than X-Force

and yields path schemes with the length 1.5 times longer than

X-Force. The longer the path scheme, the deeper the code was

explored. The second case studies in this subsection show that

with the longer path schemes, PMP can expose some malicious

behavior in deep program paths that could not be exposed by

X-Force.

Case Studies. Next, we use four case studies from different

malware families to illustrate the advantages of PMP.

Case1: 1e19b857a5f5a9680555fa9623a88e99. It is

a ransom malware that uses UPX packer [11] to pack its

malicious payload in order to evade static analysis. Figure 9a

shows a constructed code snippet to demonstrate part of its

malicious logic. It mmaps a writable and executable memory

area (line 2), then unpacks itself (line 3) and transfers control

1131

01 int main(int argc, char **argv) {
02 void *code_area = map_exec_write_mem();
03 upx_unpack(code_area);
04 transfer_control(code_area, argc, argv);
05 }
06
07 void code_area(int argc, char **argv) {
08 if (!is_cmdline_valid(argc, argv)) exit();
09 char *action = argv[1], *key = argv[2];
10 delete_self();
11 if (strcmp(action, encrypt) == 0) {
12 for (FILE *file: traverse_directory()) {
13 FILE *encrypted_file = encrypt(file, key);
14 replace_file(encrypted_file, file);
15 }
16 }
17 }

(a) simplified code.

a. mmap(0x400000,,PROT_EXEC|PROT_READ|PROT_WRITE,)
b. unlink("/root/Malware/1e19b857a5f5a9680555fa9623a88e99")
c. open("/etc",O_RDONLY|O_DIRECTORY|O_CLOEXEC)
d. getdents64(0,)
e. open("/etc/passwd",O_RDONLY)
f. open("/etc/passwd.encrypted",O_WRONLY|O_CREAT,0666)
g. unlink("/etc/passwd")

(b) captured system call sequence.

Fig. 9: Case 1: the ransom malware sample.

(line 4) to the unpacked payload (lines 7-17). The malicious

payload checks the validity of command line parameters (line

8) and deletes itself from the file system (line 10). If the

command line parameter specifies the encrypt action, the

malware traverses the file system to replace each file with its

encrypted copy (lines 13-14).

The comparison of different tools on this malware is shown

in the second row of Table III. Triggering payload requires

the correct command line parameters. Hence directly running

the malware using Cuckoo, Habo, Cuckoo++ and Padawan

fail to expose the malicious behavior. Both X-Force and

PMP expose the payload. Figure 9b shows the captured

system call sequence. Observe the unlink syscall b that

removes the malware itself and the encryption and removal

of “/etc/passwd” by syscalls e-g.

Case2: 03cfe768a8b4ffbe0bb0fdef986389dc. It is

a bot malware that receives command from a remote server.

Figure 10a shows the simplified code of its processing logic. It

checks whether a file exists that indicates the right execution

environment (line 2) and whether the remote server is con-

nectable (line 4). If both conditions are satisfied, the malware

communicates with the remote server. The remote server will

validate the identity of the malware by its own communication

protocol (lines 4-7). If the validation is successful, a command

received from the remote server will be executed on the victim

machine (lines 8-9).

The comparison of different tools on this malware is shown

in the third row of Table III. The malicious payload of this

malware sample is hidden in a deeper path, which requires a

much longer path scheme. Figure 10b shows the path scheme

enforced by PMP to expose the malicious behaviors. The

length is 28, which is larger than the longest path scheme

that is enforced by X-Force within the 5 minutes limit. These

forced branches are to get through the ID validation protocol.

01 int main(int argc, char **argv) {
02 if (!files_exist("/tmp/ReV1112")) exit(0);
03 if (!connectable("ka3ek.com")) exit(0);
04 Info *info = get_system_info();
05 Greet *greet = get_validation(info);
06 Reply *reply = compute_reply(greet);
07 Cmd *cmd = get_command(reply);
08 if (!cmd) exit(0);
09 execute_cmd(cmd);
10 }

(a) simplified code.

40492b:T | 404aec:T | 404e07:T | 401f3f:F | 401ee3:T |
404fdc:F | 404fea:T | 405118:F | 40513a:F | 405144:F |
40517b:F | 40517f:F | 40523e:F | 405254:T | 40523e:F |
405254:T | 40523e:F | 405254:T | 40523e:F | 405254:T |
40523e:F | 405254:F | 4044be:T | 4044e9:F | 40454b:F |
404565:T | 404596:T | 404794:F

(b) path scheme.

Fig. 10: Case 2: the bot malware sample.

Case3: 14b788d4c5556fe98bd767cd10ac53ca. It is

an enhanced variant of Mirai, which is equipped with a time-

based cloaking technique. Figure 11 shows a simplified version

of its code snippet. At line 4, it checks whether the system up-

time is short, which indicates a potential analysis environment.

If the system uptime is long enough, it checks whether there

exists any initialization script in the “/etc/init.d” directory (line

8) 2. If both conditions are satisfied, the malware sample adds

itself to an initialization script for launching at system reboot.

Cuckoo and Habo cannot expose the aforementioned be-

haviors. Cuckoo++ and Padawan can expose the traversal

of the “/etc/init.d” directory (line 6), by passing though the

uptime check via fast-forwarding system time and using a

long-running VM snapshot, respectively. However, they cannot

expose the modification of initialization script (line 9), due

to the failure of the initialization script check, as the default

OS environment does not have any initialization script. PMP

and X-Force can expose both behaviors by forcing the branch

results.

Case4: 8ab6624385a7504e1387683b04c5f97a. This

is a sniffer equipped with a vm-detection-based cloaking tech-

nique. Figure 12 shows a simplified version of its code snippet.

If a VM environment is detected, the malware sample deletes

itself and exits (lines 2-3). Otherwise, it enters a sniffing loop,

which randomly selects an intranet IP address and a known

vulnerability and checks whether the host with the IP contains

the vulnerability (lines 5-7). If so, the information about the

vulnerable host is sent to the server and the payload is sent to

the vulnerable host (lines 8-9).

Cuckoo and Habo cannot expose the aforementioned be-

haviors. Cuckoo++ and Padawan can expose the network

communication to the selected IP address, since they are

enhanced to conceal VM-generated artifacts. However, they

cannot expose sending the vulnerable host information and

payload, since the analysis environment is often offline and

there may not exist a vulnerable host on the intranet. PMP

can expose both behaviors. X-Force can expose both in theory

2An initialization script has a file name that starts with ‘S’, followed by a
number indicating the priority.

1132

01 int main(int argc, char **argv) {
02 struct sysinfo info;
03 sysinfo(&info);
04 if (info.uptime < 128) exit(0);
05 DIR *dir = opendir("/etc/init.d");
06 while (struct dirent *ent = readdir(dir)) {
07 char name = ent->d_name;
08 if (name[0] == ’S’ && is_num(name[1]))
09 add_to_init_script("/etc/init.d/S99");
10 }
11 }

Fig. 11: Case 3: the enhanced variant of Mirai.

but fails within the timeout limit due to its substantially larger

runtime cost.

D. Time Distribution

We measure the runtime overhead of different components.

The distribution is shown in Appendix B. As we can see

that most of the time (84%) is spent on code execution,

while only 13% and 3% of time are spent on memory pre-

planning and path exploration, respectively. In memory pre-

planning, 2%, 5%, 69% and 24% of time are spent on PAMA

preparation, initialization of global variables, local variables

and heap variables. Observe that PAMA preparation takes very

little time as most work is done offline.

V. RELATED WORK

Forced Execution. Most related to our work is X-Force [32].

The technical differences between the two were discussed

in the introduction section. As shown by our results, PMP

is 84 times faster than X-Force, has 6.5X, and 10% fewer

FPs and FNs of dependencies, respectively, and exposes 98%
more payload in malware analysis. Following X-Force, other

forced-execution tools are developed for different platforms,

including Android runtime [33] and JavaScript engine [25],

[21]. Compared to these techniques, PMP targets x86 bina-

ries and addresses the low level invalid memory operations.

Additionally, PMP is based on novel probabilistic memory

pre-planning instead of demand driven recovery.

Memory Randomization. Memory randomization has been

leveraged for different purposes, such as reducing vulnerability

to heap-based security attacks through randomizing the base

address of heap regions [14] and randomly padding alloca-

tion requests [15]. DieHard [13] tolerates memory errors in

applications written in unsafe languages through replication

and randomization. It features a randomized memory manager

that randomizes objects in a “conceptual heap” whose size is

a multiple of the maximum real size allowed. PMP shares a

similar probabilistic flavor to DieHard. The difference lies in

that PMP pre-plans the memory by pre-allocation and filling

the pre-allocated space and variables with crafted values. In

addition, PMP aims to survive memory exceptions caused by

forced-execution whereas DieHard is for regular execution.

Malware Analysis. The proliferation of Malware in the past

decades provide strong motivation for research on detecting,

analyzing and preventing malware, on various platforms such

as Windows [16], [23], Linux [19], [20], as well as Web

01 char *data = read_file("/sys/class/dmi/id/product_name");
02 if (contains(data, "VirtualBox", "VMware"))
03 remove_self_and_exit();
04 while (1) {
05 char *ip = select_intranet_ip(ip_list);
06 char *vuln = select_known_vuln(vuln_list);
07 if (connect_and_check(ip, vuln)) {
08 send_info_to_server(ip, vuln);
09 send_payload(ip, vuln);
10 }
11 }

Fig. 12: Case 4: the sniffer malware sample.

browsers [24], [22]. Traditional malware analysis fall into

two categories: signature-based scanning and behavioral-based

analysis. The former [12], [28] detects malware by matching

extracted features with known signatures. Although commonly

used by anti-malware industry, signature-based approaches are

susceptible to evasion through obfuscation. To address this,

behavioral-based approaches [34], [26], [17] execute a subject

program and monitor its behavior to observe any malicious

behavior. However, traditional behavioral-based approaches

are limited to observing code that is actually executed.

Anti-targeted Evasion. Modern sophisticated malware sam-

ples are equipped with various cloaking techniques (e.g.,

stalling loop [27] and VM detection [6]) to evade detection.

To fight against evasion, unpacking techniques [18], [29] are

applied to enhance signature-based scanning, and dynamic

anti-evasion methods [26], [30] are developed to hide dynamic

features of analysis environment such as execution time and

file system artifacts. These techniques are very effective for

known targeted evasion methods. Compared to these tech-

niques, PMP is more general. More importantly, PMP and

forced execution type of techniques allow exposing payload

guarded by complex conditions that are irrelevant to cloaking.

VI. CONCLUSION

We develop a lightweight and practical force-execution

technique that features a novel memory pre-planning method.

Before execution, the pre-planning stage pre-allocates a mem-

ory region and initializes it (and also variables in the subject

binary) with carefully crafted values in a random fashion. As a

result, our technique provides strong probabilistic guarantees

to avoid crashes and state corruptions. We apply the prototype

PMP to SPEC2000 and 400 recent malware samples. Our

results show that PMP is substantially more efficient and

effective than the state-of-the-art.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

and Dr. William Robertson (the PC contact) for their con-

structive comments. Also, the authors would like to express

their thanks to VirusTotal and the authors of Padawan for

their kindness in sharing malware samples and the analysis

results. The Purdue authors were supported in part by DARPA

FA8650-15-C-7562, NSF 1748764, 1901242 and 1910300,

ONR N000141410468 and N000141712947, and Sandia Na-

tional Lab under award 1701331. The UVA author was sup-

ported in part by NSF 1850392.

1133

REFERENCES

[1] Clickless powerpoint malware installs when users hover over a
link. https://blog.barkly.com/powerpoint-malware-installs-when-users-
hover-over-a-link.

[2] Cuckoo. https://cuckoosandbox.org/.
[3] Cybersecurity statistics. https://blog.alertlogic.com/10-must-know-

2018-cybersecurity-statistics/.
[4] Evil clone attack. https://gbhackers.com/evil-clone-attack-legitimate-

pdf-software.
[5] Fileless malware. https://www.cybereason.com/blog/fileless-malware.
[6] Linux anti-vm. https://www.ekkosec.com/blog/2018/3/15/linux-anti-

vm-how-does-linux-malware-detect-running-in-a-virtual-machine-.
[7] Mirai malware. https://en.wikipedia.org/wiki/Mirai (malware).
[8] Padawan. https://padawan.s3.eurecom.fr/about.
[9] Qemu user emulation. https://wiki.debian.org/QemuUserEmulation.

[10] Tencent habo. https://blog.virustotal.com/2017/11/malware-analysis-
sandbox-aggregation.html.

[11] Upx. https://upx.github.io/.
[12] Virustotal. https://www.virustotal.com/gui/home/upload.
[13] Emery D. Berger and Benjamin G. Zorn. Diehard: Probabilistic memory

safety for unsafe languages. In Proceedings of the 27th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’06. ACM, 2006.

[14] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address obfusca-
tion: An efficient approach to combat a board range of memory error
exploits. In Proceedings of the 12th Conference on USENIX Security
Symposium - Volume 12, SSYM’03. USENIX Association, 2003.

[15] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. Efficient tech-
niques for comprehensive protection from memory error exploits. In
Proceedings of the 14th Conference on USENIX Security Symposium -
Volume 14, SSYM’05. USENIX Association, 2005.

[16] Leyla Bilge, Davide Balzarotti, William Robertson, Engin Kirda, and
Christopher Kruegel. Disclosure: detecting botnet command and control
servers through large-scale netflow analysis. In Proceedings of the 28th
Annual Computer Security Applications Conference. ACM, 2012.

[17] Ahmet Salih Buyukkayhan, Alina Oprea, Zhou Li, and William Robert-
son. Lens on the endpoint: Hunting for malicious software through
endpoint data analysis. In International Symposium on Research in
Attacks, Intrusions, and Defenses. Springer, 2017.

[18] Binlin Cheng, Jiang Ming, Jianmin Fu, Guojun Peng, Ting Chen,
Xiaosong Zhang, and Jean-Yves Marion. Towards paving the way for
large-scale windows malware analysis: generic binary unpacking with
orders-of-magnitude performance boost. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2018.

[19] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide
Balzarotti. Understanding linux malware. In Proceedings of the 39th
IEEE Symposium on Security and Privacy, 2018.

[20] Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda,
Christopher Kruegel, and Giovanni Vigna. Triggerscope: Towards
detecting logic bombs in android applications. In 2016 IEEE symposium
on security and privacy (SP). IEEE, 2016.

[21] Xunchao Hu, Yao Cheng, Yue Duan, Andrew Henderson, and Heng Yin.
Jsforce: A forced execution engine formalicious javascript detection. In
Xiaodong Lin, Ali Ghorbani, Kui Ren, Sencun Zhu, and Aiqing Zhang,
editors, Security and Privacy in Communication Networks. Springer
International Publishing, 2018.

[22] Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher
Kruegel, Giovanni Vigna, and Vern Paxson. Hulk: Eliciting malicious
behavior in browser extensions. In 23rd {USENIX} Security Symposium
({USENIX} Security 14), 2014.

[23] Amin Kharraz, William Robertson, Davide Balzarotti, Leyla Bilge,
and Engin Kirda. Cutting the gordian knot: A look under the hood
of ransomware attacks. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment. Springer, 2015.

[24] Amin Kharraz, William Robertson, and Engin Kirda. Surveylance:
automatically detecting online survey scams. In 2018 IEEE Symposium
on Security and Privacy (SP). IEEE, 2018.

[25] Kyungtae Kim, I Luk Kim, Chung Hwan Kim, Yonghwi Kwon, Yunhui
Zheng, Xiangyu Zhang, and Dongyan Xu. J-force: Forced execution on
javascript. In Proceedings of the 26th International Conference on World
Wide Web, WWW ’17. International World Wide Web Conferences
Steering Committee, 2017.

[26] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel,
Engin Kirda, Xiaoyong Zhou, and Xiaofeng Wang. Effective and
efficient malware detection at the end host. In USENIX 2009, 18th
Usenix Security Symposium, 2009.

[27] Clemens Kolbitsch, Engin Kirda, and Christopher Kruegel. The power of
procrastination: detection and mitigation of execution-stalling malicious
code. In Proceedings of the 18th ACM conference on Computer and
communications security. ACM, 2011.

[28] Christopher Kruegel, Engin Kirda, Darren Mutz, William Robertson,
and Giovanni Vigna. Polymorphic worm detection using structural
information of executables. In International Workshop on Recent
Advances in Intrusion Detection. Springer, 2005.

[29] Lorenzo Martignoni, Mihai Christodorescu, and Somesh Jha. Omniun-
pack: Fast, generic, and safe unpacking of malware. In 23rd Annual
Computer Security Applications Conference (ACSAC 2007), 2007.

[30] Kirti Mathur and Saroj Hiranwal. A survey on techniques in detection
and analyzing malware executables. International Journal of Advanced
Research in Computer Science and Software Engineering, 3(4), 2013.

[31] Tipp Moseley, Dirk Grunwald, Daniel A Connors, Ram Ramanujam,
Vasanth Tovinkere, and Ramesh Peri. Loopprof: Dynamic techniques
for loop detection and profiling. In Proceedings of the 2006 Workshop
on Binary Instrumentation and Applications (WBIA), 2006.

[32] Fei Peng, Zhui Deng, Xiangyu Zhang, Dongyan Xu, Zhiqiang Lin, and
Zhendong Su. X-force: Force-executing binary programs for security
applications. In Proceedings of the 23rd USENIX Security Symposium,
2014.

[33] Zhenhao Tang, Juan Zhai, Minxue Pan, Yousra Aafer, Shiqing Ma,
Xiangyu Zhang, and Jianhua Zhao. Dual-force: Understanding web-
view malware via cross-language forced execution. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE 2018. ACM, 2018.

[34] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin
Kirda. Panorama: Capturing system-wide information flow for malware
detection and analysis. In Proceedings of the 14th ACM Conference on
Computer and Communications Security, CCS ’07. ACM, 2007.

APPENDIX

A. Spec2000 Benchmark

Benchmark source lines binary size # insn # block # func

164.gzip 8,643 143,760 7,650 707 61

175.vpr 17,760 435,888 32,218 2,845 255

176.gcc 230,532 4,709,664 378,261 36,931 1,899

181.mcf 2,451 62,968 2,977 213 24

186.crafty 21,195 517,952 42,084 4,433 104

197.parser 11,421 367,384 24,584 2,911 297

252.eon 41,188 3,423,984 40,119 7,963 615

253.perlbmk 87,070 1,904,632 133,755 12,933 717

254.gap 71,461 1,702,848 91,608 9,020 458

255.vortex 67,257 1,793,360 109,739 16,970 624

256.bzip2 4,675 108,872 6,859 577 63

300.twolf 20,500 753,544 57,460 4,280 167

B. Time Distribution

Path
Exploration

3%

Global
Var Init

5%
 Memory

Pre-Planning

13% PAMA
 Preparation

2%

Heap Init

24%

69%

Local
Var Init

Code
Execution

84%

C. Details of Malware Analysis Result

Cuckoo Habo Padawan Cuckoo++ X-Force PMP

Avg. 41.65 38.88 53.15 53.28 67.40 133.36

1134

ID
M

D
5

C
u

ck
o

o
H

ab
o

P
ad

aw
an

C
u

ck
o

o
+

+
X

-F
o

rc
e

P
M

P

0
0

1
0

0
0

5
6

ad
fd

6
9

8
2

4
9

8
c1

8
4

f4
2

9
d

7
af

6
1

d
4

2
9

2
2

2
8

3
1

4
2

9
2

0
0

2
0

0
5

4
4

9
f2

6
b

b
0

0
3

3
c8

b
a5

cf
b

b
5

c2
c6

f6
b

1
5

1
5

2
5

2
7

3
4

7
4

0
0

3
0

1
9

1
6

4
2

af
ca

b
b

6
cb

2
e9

4
4

9
8

2
2

ea
1

0
d

3
7

7
0

6
5

6
9

9
8

1
2

6
1

2
8

0
0

4
0

3
cf

e7
6

8
a8

b
4

ff
b

e0
b

b
0

fd
ef

9
8

6
3

8
9

d
c

2
7

2
9

2
8

2
7

3
2

2
1

6

0
0

5
0

4
5

1
3

6
4

3
0

ed
ac

1
2

4
ea

1
3

4
b

f2
a3

2
a4

a6
0

1
5

1
5

2
6

1
5

1
6

3
3

0
0

6
0

5
7

8
5

7
3

0
2

4
9

0
5

2
1

b
d

5
2

d
2

5
a1

4
1

b
b

b
d

fb
1

4
1

4
2

7
2

7
3

4
5

9
1

0
0

7
0

6
8

6
a7

4
5

9
1

5
2

1
7

4
f8

2
1

c8
c6

3
5

cf
b

d
a8

a
4

7
5

3
4

7
4

9
6

7
9

0

0
0

8
0

8
af

b
6

1
1

1
b

6
b

3
d

5
7

4
0

3
6

cf
1

0
fe

7
8

7
0

6
3

1
4

1
4

2
5

2
7

3
3

4
5

0
0

9
0

9
e4

b
2

6
d

f6
b

4
9

9
a8

1
4

5
3

7
6

6
c1

7
2

2
6

1
0

6
2

2
3

2
2

7
3

7
4

6
8

0

0
1

0
0

b
8

5
5

d
8

d
6

a3
c3

ac
8

d
5

fd
6

9
3

1
5

7
0

e0
2

ae
4

8
5

3
4

8
5

5
6

9
9

2

0
1

1
0

b
c2

cb
b

5
b

e3
e6

5
1

3
5

5
a5

0
c0

7
8

8
5

4
6

4
b

f
1

5
1

5
2

6
2

9
1

7
3

3

0
1

2
0

c0
d

2
ed

3
3

3
1

6
d

c5
a9

2
a2

7
8

5
0

0
7

d
b

cb
5

0
7

1
0

1
7

1
9

2
5

2
7

0
1

3
0

c1
aa

9
1

e8
ca

e4
3

5
2

eb
1

6
d

9
3

f1
7

c0
d

a2
b

1
5

1
5

2
5

2
3

3
4

7
4

0
1

4
0

cf
e8

9
8

5
c5

6
d

a5
a8

2
1

ff
9

b
f3

5
aa

3
d

b
d

4
2

2
3

5
3

0
3

5
4

4
5

8

0
1

5
0

d
1

8
6

cc
f5

8
2

9
d

d
5

b
ff

d
c2

af
f9

4
4

fe
2

f6
2

3
2

1
3

4
3

7
4

5
6

1

0
1

6
1

0
c4

7
1

9
1

9
2

2
ee

fc
fa

e3
9

b
f5

b
e5

4
0

b
d

4
4

1
5

1
6

2
3

2
7

3
5

3
5

0
1

7
1

0
f5

b
ea

c2
5

7
a9

2
6

6
5

8
6

6
cd

c9
9

5
5

0
b

7
b

b
2

0
1

7
1

9
2

5
3

1
3

4
7

0
1

8
1

1
3

c0
7

9
4

6
4

6
3

9
b

4
a1

2
8

2
6

b
4

2
c1

d
9

6
ac

7
2

4
2

2
3

5
3

5
4

6
7

1

0
1

9
1

1
c4

8
9

d
d

ea
8

5
8

0
3

0
b

2
3

f7
ac

1
8

4
9

9
4

4
3

9
4

8
5

4
4

7
5

5
6

9
8

7

0
2

0
1

2
2

6
e4

3
6

e5
e8

3
0

c9
fb

e5
8

0
4

3
fa

4
f9

f3
b

4
3

4
0

4
2

5
9

7
6

8
3

0
2

1
1

3
2

1
b

d
1

2
e1

6
4

aa
7

c8
b

7
e3

9
af

e7
b

c8
a6

2
2

0
1

8
3

1
2

7
4

2
5

6

0
2

2
1

3
2

3
9

7
a7

e7
9

3
fb

4
0

5
2

f8
d

4
4

6
3

4
a1

5
5

8
2

3
6

4
0

3
6

5
0

6
3

7
3

0
2

3
1

3
7

c1
5

2
0

b
3

7
d

fc
3

ce
5

0
7

2
b

e7
9

9
5

c9
6

fc
1

4
1

4
2

4
2

6
3

3
4

5

0
2

4
1

3
f2

b
b

2
af

1
6

f5
1

3
b

4
a3

5
a2

6
c6

f8
f5

cb
c

4
0

4
1

4
2

4
0

5
8

6
4

0
2

5
1

7
5

7
9

3
1

3
f1

4
9

9
5

e2
b

fa
7

5
a7

0
3

5
6

2
d

eb
f

1
7

1
8

2
7

2
6

4
0

5
6

0
2

6
1

7
9

c7
6

4
8

b
b

6
0

7
1

4
7

9
7

3
c2

fc
cb

cc
0

e5
3

0
2

1
2

5
3

1
3

4
4

3
4

3

0
2

7
1

9
9

c8
ff

c2
4

8
a3

5
d

9
9

e1
f2

6
ff

7
9

b
d

9
3

9
8

1
4

2
0

1
4

1
4

1
8

3
2

0
2

8
1

a7
e8

d
d

c3
1

7
8

0
6

d
b

0
5

3
c4

7
2

e1
2

9
9

fe
3

3
1

5
1

5
2

5
2

6
3

4
7

4

0
2

9
1

b
5

0
5

4
9

3
9

ee
6

0
1

d
8

9
fd

aa
4

4
c1

0
9

9
4

3
cf

2
9

2
2

2
8

2
9

4
2

9
1

0
3

0
1

b
7

4
e8

a7
4

9
9

4
8

d
2

fb
f2

f9
0

4
8

6
ce

6
3

fc
f

1
7

1
8

2
7

3
0

4
0

5
5

0
3

1
1

e1
9

b
8

5
7

a5
f5

a9
6

8
0

5
5

5
fa

9
6

2
3

a8
8

e9
9

1
2

1
7

1
2

1
2

2
8

3
3

0
1

0
3

2
2

0
7

7
1

6
6

b
2

1
e9

7
1

7
d

f7
0

6
ca

8
9

7
e5

b
fc

9
4

1
4

1
4

2
4

1
4

1
5

4
4

0
3

3
2

1
0

e4
2

4
3

c8
ed

c8
7

4
9

9
ce

7
ca

a4
0

7
6

d
4

3
3

2
2

4
5

4
1

4
0

6
0

6
9

0
3

4
2

2
d

c1
d

b
1

a8
7

6
7

2
1

7
2

7
cc

a3
7

c2
1

d
3

1
6

5
5

5
8

5
7

1
7

1
3

5

0
3

5
2

3
c4

2
7

6
0

5
3

2
2

7
0

1
1

3
d

e5
7

b
9

7
3

4
6

ed
ff

0
2

0
1

8
3

0
3

0
4

2
5

6

0
3

6
2

4
b

f1
2

7
9

b
c8

ff
e0

c8
3

8
0

6
7

5
cb

8
c1

b
9

4
a

1
7

1
7

2
7

3
0

3
9

4
0

0
3

7
2

5
c3

6
4

af
9

d
8

0
2

5
d

ca
a8

f6
ac

1
0

c8
2

8
3

af
1

7
1

8
2

8
3

2
4

0
5

5

0
3

8
2

8
2

5
5

eb
4

c2
9

ef
0

4
2

0
5

7
2

1
2

6
d

8
b

c0
e4

8
1

2
0

1
8

3
0

3
0

4
2

5
4

0
3

9
2

8
c8

6
6

8
4

3
a9

4
6

2
1

1
3

eb
2

6
ae

f1
0

2
4

d
b

0
8

1
7

1
7

2
8

2
9

3
6

5
5

0
4

0
2

8
fe

d
8

5
4

ee
ad

d
3

2
ab

fd
9

4
6

e0
6

9
2

c9
ae

4
2

1
1

9
3

2
3

3
4

2
4

2

0
4

1
2

ad
2

8
d

9
9

4
0

8
3

eb
8

8
d

5
6

ed
ed

3
6

1
d

7
e3

8
1

2
2

4
5

4
0

4
1

5
3

8
0

0
4

2
2

d
6

6
f6

2
9

e0
0

0
4

2
d

e8
6

6
2

b
3

8
4

b
3

c7
c3

b
b

2
0

3
0

2
5

2
4

4
3

4
6

0
4

3
2

e6
4

5
3

a7
ea

c4
0

7
d

b
e4

7
b

7
0

b
7

2
0

8
2

4
9

0
c

2
0

1
8

3
0

3
3

4
2

5
6

0
4

4
3

1
c5

5
1

4
1

1
2

9
1

5
1

ee
4

7
2

8
a4

0
6

1
3

b
9

3
ec

a
2

1
1

7
2

1
2

1
3

1
5

5

0
4

5
3

5
4

4
c1

e6
8

2
d

9
7

d
c5

e5
d

b
ef

6
8

9
8

f1
7

fc
f

1
7

1
8

2
8

3
2

4
0

5
5

0
4

6
3

6
2

6
3

d
9

1
d

7
2

6
d

cd
b

9
3

b
9

7
ea

0
5

ae
8

6
5

6
a

3
6

4
0

3
6

3
6

6
3

6
9

0
4

7
3

6
a3

3
2

f5
a8

d
c0

5
8

fd
f4

3
7

fa
6

7
ec

c0
6

cf
3

9
3

6
3

8
4

0
5

8
7

4

0
4

8
3

9
d

4
6

a0
cd

6
0

3
9

3
e5

5
7

1
b

7
2

0
c9

1
5

d
b

3
0

d
4

8
5

4
4

7
5

4
6

9
9

3

0
4

9
3

ad
6

f8
a2

5
7

cf
a2

d
1

1
2

9
2

cb
6

4
2

0
ed

8
8

4
a

1
8

1
9

2
8

2
6

4
1

5
7

0
5

0
3

b
0

d
9

2
3

cf
1

7
9

2
1

5
1

e6
5

4
0

ca
3

8
b

3
d

6
d

1
9

2
0

1
7

1
9

2
0

3
2

7
4

ID
M

D
5

C
u

ck
o

o
H

ab
o

P
ad

aw
an

C
u

ck
o

o
+

+
X

-F
o

rc
e

P
M

P

0
5

1
3

d
ec

f1
b

4
e5

e8
2

1
c1

5
9

e0
5

1
a0

4
fb

f0
4

5
2

7
7

2
0

1
9

2
7

2
7

0
5

2
3

e2
1

a6
0

8
b

6
4

3
4

1
e9

7
a7

3
8

6
1

fa
0

b
2

4
ec

2
2

0
1

8
3

2
4

9
6

1
7

5

0
5

3
3

f1
9

3
2

8
6

7
6

7
c2

6
9

b
7

8
6

e1
1

7
c4

3
8

0
7

f7
b

1
7

1
8

2
7

3
2

4
0

5
5

0
5

4
3

fb
8

5
7

1
7

3
6

0
2

6
5

3
8

6
1

b
4

d
0

5
4

7
a4

9
b

3
9

5
1

4
1

4
2

7
2

7
3

4
4

8
7

0
5

5
4

0
8

4
5

a4
a9

0
2

4
e1

a4
4

b
f2

4
5

3
c1

1
d

c4
0

0
3

1
8

1
8

2
9

2
8

4
1

5
5

0
5

6
4

0
8

7
3

7
6

ef
7

2
1

7
0

f2
4

8
eb

2
f0

6
6

5
a2

6
7

9
6

2
2

1
9

2
2

2
5

3
3

4
0

0
5

7
4

2
4

f9
4

d
0

7
b

4
5

ea
b

1
b

d
3

2
4

9
4

cd
eb

4
d

6
7

b
2

2
4

5
4

0
3

5
2

2
6

6

0
5

8
4

6
ea

f3
f0

7
c2

a5
9

e0
b

b
2

8
4

a7
aa

cb
4

1
d

c4
4

0
3

7
3

9
4

4
6

2
1

3
6

0
5

9
4

8
3

b
3

2
2

b
4

2
8

3
5

2
2

7
d

9
8

f5
2

3
f9

d
f5

c6
fc

3
0

7
2

6
3

0
4

3
5

1

0
6

0
4

9
c1

7
8

9
7

6
c5

0
cf

7
7

d
b

3
f6

2
3

4
ef

ce
5

ee
b

1
7

1
8

2
7

2
5

4
0

4
0

0
6

1
4

b
1

e9
e8

cc
f9

1
9

9
8

3
9

3
5

0
9

2
9

0
d

4
3

6
ed

e3
6

0
6

1
5

9
6

0
7

7
2

2
4

0
6

2
4

e5
9

3
af

1
ab

2
5

8
7

3
6

8
1

c6
2

ca
4

f4
9

e3
1

e3
2

1
1

9
3

1
3

5
4

3
4

3

0
6

3
4

f5
d

0
ed

1
0

2
d

e7
c1

7
1

d
1

d
f4

9
8

9
c4

cd
cd

0
1

5
1

6
2

5
2

9
3

6
5

5

0
6

4
4

fa
4

2
6

9
b

7
ce

4
4

b
fc

e5
ef

5
7

4
e6

a3
7

c3
8

f
2

5
1

6
2

1
2

5
3

7
7

9

0
6

5
5

0
2

a9
0

ed
7

a8
5

1
b

0
1

b
3

4
0

ad
ed

8
2

2
c4

d
e0

2
8

2
2

2
7

3
3

4
1

1
1

9

0
6

6
5

2
4

2
8

7
d

d
a3

d
6

d
8

e5
9

eb
e2

4
9

4
7

6
ed

8
1

8
1

2
7

2
3

2
6

3
2

4
2

7
4

0
6

7
5

3
ad

9
4

3
fe

0
7

b
e3

1
5

d
9

0
8

c6
b

8
fe

3
0

5
a0

8
2

4
2

2
3

5
4

0
4

6
6

9

0
6

8
5

4
b

0
f1

4
0

d
a4

0
e5

7
1

3
3

7
7

f4
d

4
a8

f1
4

3
ad

2
4

1
7

2
5

2
6

3
4

1
5

9

0
6

9
5

5
9

1
6

9
cd

8
1

6
7

d
cb

aa
f0

6
5

d
6

a1
2

2
a2

8
9

d
2

0
4

3
3

8
3

3
4

0
5

7

0
7

0
5

5
e0

a8
7

3
7

b
0

9
1

d
a7

b
d

a7
0

6
0

b
7

5
b

2
e1

1
9

6
0

6
1

6
2

6
0

1
0

1
2

2
7

0
7

1
5

6
cb

1
c4

e7
8

8
e6

3
3

2
5

b
b

b
5

3
1

d
a1

8
7

e6
0

9
3

1
2

7
5

9
6

4
7

0
9

6

0
7

2
5

7
b

1
ff

9
1

b
5

9
aa

d
a9

a1
c5

6
6

9
4

0
d

b
4

d
4

6
a

2
7

2
9

2
8

2
7

4
9

9
0

0
7

3
5

7
b

4
d

2
1

0
8

0
5

1
d

b
e4

3
d

7
b

3
5

7
7

7
b

a7
6

d
4

0
1

5
1

5
2

6
2

7
3

4
7

8

0
7

4
5

8
2

f4
7

ec
9

7
5

b
0

b
a8

ca
fe

5
a3

9
cc

cb
d

5
5

2
2

4
2

2
3

4
3

6
4

6
7

1

0
7

5
5

8
af

3
3

b
af

6
8

fe
b

6
3

7
b

5
9

a2
0

b
a4

ea
0

c0
3

2
6

5
3

4
8

5
1

6
5

9
6

0
7

6
5

a6
fd

6
3

f4
ff

c6
0

3
7

d
c1

9
2

b
6

c3
f4

5
6

e8
7

5
5

3
2

5
8

5
8

7
6

1
2

3

0
7

7
5

b
3

6
ae

b
ed

5
0

4
b

7
3

1
2

3
e1

0
d

e2
1

5
2

9
b

6
3

8
2

1
1

9
3

1
3

4
4

3
4

3

0
7

8
5

c1
d

d
2

0
f7

4
d

ac
8

2
3

0
6

8
6

4
a4

1
1

f9
6

1
7

1
c

1
4

0
1

4
9

8
7

1
4

0
1

5
7

1
8

3

0
7

9
5

c4
7

f0
9

a3
7

3
7

6
d

9
b

6
a4

e9
7

5
1

8
c4

3
5

d
c9

1
7

1
8

2
7

2
7

3
9

3
9

0
8

0
5

cf
6

1
1

0
f2

1
b

8
0

1
2

3
f5

7
7

e8
5

b
f8

1
af

8
2

f
2

2
4

5
4

0
4

7
6

0
9

3

0
8

1
5

d
6

aa
6

7
ce

3
4

2
7

0
3

f6
7

3
5

9
2

5
d

3
5

9
c3

0
4

9
4

3
4

0
4

2
4

3
7

7
8

3

0
8

2
5

e8
9

0
cb

3
f6

cb
a8

1
6

8
d

0
7

8
fd

ed
e0

9
0

9
9

6
2

9
2

5
2

8
2

9
4

4
7

6

0
8

3
5

f1
3

3
2

6
e2

c9
0

b
7

0
5

9
3

b
6

4
5

5
4

0
f2

5
2

1
3

f
1

7
1

8
2

8
3

2
4

0
5

5

0
8

4
5

fb
5

6
5

ee
e5

3
3

6
c0

b
3

0
4

5
1

a0
a0

2
3

0
3

6
b

8
1

1
5

2
0

2
0

2
9

3
0

0
8

5
5

fd
2

ed
4

f4
2

f0
cc

e7
0

1
4

8
2

fb
d

b
7

8
a0

0
b

1
3

6
7

3
6

3
7

3
9

7
6

0
8

6
5

fe
aa

8
5

c6
2

d
1

1
1

7
a7

9
3

1
d

f0
b

f8
b

6
2

d
d

3
2

1
2

4
3

1
3

3
4

3
8

2

0
8

7
6

0
2

5
e1

4
c0

4
a7

c3
5

e8
a0

4
9

8
8

5
f0

3
5

b
9

7
b

1
5

1
5

2
3

2
5

3
2

3
2

0
8

8
6

1
3

9
6

5
7

d
b

0
8

c3
e9

d
5

d
2

3
9

9
2

5
9

e8
ea

aa
0

2
8

2
4

2
7

3
3

4
3

7
4

0
8

9
6

2
c2

d
2

9
6

0
6

0
d

1
4

0
6

1
f5

c5
4

f3
1

6
6

2
d

ac
9

3
1

2
7

5
7

6
1

8
8

1
0

5

0
9

0
6

3
5

5
f0

ea
6

c1
9

0
9

0
e0

b
ae

d
c5

7
0

1
6

b
eb

6
c

1
9

2
0

1
9

1
9

3
1

3
1

0
9

1
6

6
4

3
7

8
d

1
0

f6
1

0
5

5
2

d
1

7
e9

7
cc

0
6

ad
e1

3
9

2
0

4
3

4
8

3
9

4
8

5
7

0
9

2
6

b
0

b
d

9
5

9
9

7
7

9
c3

a4
8

9
9

a6
ee

9
fd

2
ee

e0
3

2
8

2
4

2
8

3
5

4
5

6
8

0
9

3
6

d
c1

f5
5

7
ea

c7
0

9
3

ee
9

e5
8

0
7

3
8

5
d

b
cb

0
5

1
5

1
5

2
6

2
2

3
4

7
4

0
9

4
7

0
5

d
f7

b
c1

3
a3

fc
1

b
b

fc
7

9
7

3
5

4
5

5
fd

a6
8

2
4

2
1

2
5

2
8

3
4

4
5

0
9

5
7

0
ad

6
b

0
a9

4
a0

ef
3

ff
9

7
4

8
3

3
d

d
7

2
9

6
b

8
d

2
9

2
5

2
8

2
9

4
5

1
7

3

0
9

6
7

1
7

d
fa

0
4

6
8

3
3

d
ac

6
0

8
b

6
f1

a2
7

4
a4

7
9

3
8

8
7

2
3

2
3

2
9

4
4

4

0
9

7
7

2
af

cc
b

4
5

5
fa

a4
b

c1
e5

f1
6

ee
6

7
c6

f9
1

5
3

6
2

3
6

2
2

9
1

3
6

2
4

2
3

5
0

5

0
9

8
7

4
1

2
4

d
ae

8
fd

b
b

9
0

3
b

ec
e5

7
d

5
b

e3
1

2
4

6
b

3
6

4
0

3
6

3
8

4
0

8
4

0
9

9
7

4
f0

ec
7

5
b

6
b

ce
d

0
b

e2
ed

e4
5

4
5

5
fc

9
0

a5
4

1
7

4
0

4
1

4
4

5
8

1
0

0
7

5
e0

4
ad

8
2

8
3

5
9

d
2

d
2

5
7

1
8

4
3

0
b

c5
f3

d
d

3
1

4
1

4
2

4
2

6
3

3
5

4

1135

ID
M

D
5

C
u

ck
o

o
H

ab
o

P
ad

aw
an

C
u

ck
o

o
+

+
X

-F
o

rc
e

P
M

P

1
0

1
7

7
0

7
5

6
fd

ae
d

2
3

e4
ef

3
c0

a1
7

f2
6

b
c2

2
b

6
1

7
1

7
2

8
2

8
3

5
5

6

1
0

2
7

d
ad

0
1

f2
6

f0
1

9
9

2
d

2
4

d
0

f8
e6

d
0

8
d

0
4

2
e

1
7

1
8

2
8

2
4

4
0

5
5

1
0

3
8

1
b

6
ee

2
1

6
e1

0
e1

7
1

0
4

7
0

6
5

3
6

c2
1

a4
7

9
a

3
9

3
6

3
9

4
8

5
9

1
5

7

1
0

4
8

1
ea

3
7

9
c2

3
7

7
2

4
2

4
9

c1
3

7
fc

8
3

ef
2

1
e9

a
6

9
6

6
1

9
3

5

1
0

5
8

5
0

1
7

7
1

5
6

d
5

a0
1

0
2

5
4

b
b

a5
7

4
6

6
6

4
a3

c7
1

5
1

5
2

6
2

7
3

4
3

4

1
0

6
8

6
2

cf
a9

2
8

c8
ed

fd
5

0
ed

2
2

e0
8

b
b

b
1

4
c6

1
1

7
1

8
2

7
2

5
4

0
5

6

1
0

7
8

9
8

d
d

e6
af

b
3

1
4

2
e6

0
7

5
2

8
3

5
9

b
0

9
3

5
e9

e
4

8
5

4
4

7
4

8
6

9
8

8

1
0

8
8

b
d

0
c5

f3
6

9
8

7
2

1
8

a9
5

d
c5

6
6

7
7

c4
0

f8
8

0
1

7
1

7
2

7
2

9
3

6
5

7

1
0

9
8

b
fe

d
4

ef
1

0
6

7
ca

1
1

9
d

4
d

7
1

a6
6

a8
4

e0
6

e
8

7
2

5
2

3
2

9
2

9

1
1

0
8

c5
c1

e6
2

d
7

3
7

ff
d

0
d

c3
6

b
2

c1
2

5
2

d
d

d
7

5
3

7
4

0
3

8
5

0
6

3
2

6
6

1
1

1
8

d
b

a0
7

3
8

9
1

0
ef

3
4

5
9

0
ce

a8
7

a3
c1

ac
5

3
8

2
7

3
2

4
8

5
1

7
4

7
4

1
1

2
8

d
f9

ec
7

cd
1

d
e7

8
9

5
7

ea
8

0
0

fd
6

3
d

6
6

0
5

1
3

9
3

6
3

9
3

9
5

8
1

3
2

1
1

3
8

f1
9

4
8

4
7

3
8

7
1

8
6

8
9

9
cc

8
d

9
f9

ca
9

0
3

e0
7

1
0

3
1

1
2

1
3

9
1

4
3

1
4

7
1

9
0

1
1

4
9

0
1

cb
ff

4
0

7
8

4
ee

4
0

5
1

8
fd

a6
4

7
1

e7
0

b
aa

1
5

1
4

2
6

2
6

3
3

7
0

1
1

5
9

1
2

b
ca

5
9

4
7

9
4

4
fd

cd
0

9
e9

6
2

0
d

7
aa

8
c4

a
1

5
1

5
2

5
2

6
3

4
8

3

1
1

6
9

3
5

3
a0

6
0

cc
5

fc
8

f2
6

ce
8

a0
1

0
5

d
fa

c4
8

f
1

5
1

4
2

6
2

4
3

2
3

4

1
1

7
9

3
6

1
a4

d
5

b
4

b
f3

0
4

1
7

5
9

b
d

4
f7

2
7

9
2

0
d

f2
1

4
1

4
2

8
3

3
3

4
5

8
7

1
1

8
9

3
c2

f1
ca

9
9

4
9

4
3

5
cf

fe
8

1
5

7
2

d
3

d
2

1
d

5
e

1
5

1
5

2
5

2
7

3
4

3
4

1
1

9
9

4
2

ea
0

c4
cb

7
2

9
d

4
8

7
8

eb
5

b
8

9
9

8
9

8
1

2
2

8
4

8
5

4
4

8
5

4
6

9
9

2

1
2

0
9

6
8

0
4

1
5

6
3

9
6

b
ce

2
5

d
4

9
c4

ea
4

f0
5

8
d

5
6

9
4

7
5

3
4

8
4

7
5

9
8

3

1
2

1
9

6
d

e2
9

8
2

9
7

8
ea

8
9

9
b

a4
a9

7
ff

7
3

e7
f4

6
6

1
5

1
5

2
6

2
7

3
4

7
6

1
2

2
9

7
b

a4
8

a2
5

6
2

e8
5

6
d

8
ee

f1
5

e1
c9

f6
5

8
5

e
1

7
1

8
2

8
2

5
4

2
5

7

1
2

3
9

9
4

1
3

6
a3

c1
8

3
9

9
9

0
0

f7
3

d
0

8
5

b
f4

2
a3

3
0

9
7

9
4

4
0

1
0

9
1

3
8

1
4

2

1
2

4
9

d
2

b
5

0
7

2
1

2
c1

9
a9

d
cf

9
5

1
6

8
7

4
5

e7
9

3
ea

3
9

3
6

3
8

3
9

5
9

1
4

5

1
2

5
a2

5
4

7
0

a5
b

3
0

5
fc

5
e7

c8
0

b
6

8
8

1
0

e1
3

2
b

2
4

3
4

0
4

2
4

6
7

6
8

3

1
2

6
a2

7
8

9
6

3
8

8
f0

f0
d

ad
4

9
3

e7
d

7
8

6
e4

8
ea

ab
1

4
1

4
2

3
2

1
1

5
9

5

1
2

7
a3

ab
4

d
fb

3
e3

b
1

6
0

fe
d

1
4

d
9

2
3

d
b

2
9

d
ae

c
2

0
3

0
2

5
2

3
4

2
5

3

1
2

8
a4

4
0

4
b

e6
7

a4
1

f1
4

4
ea

8
6

a7
8

3
8

f3
5

7
c2

6
4

7
4

3
4

6
5

5
6

9
8

2

1
2

9
a4

9
4

4
2

3
0

d
6

2
0

8
3

0
1

9
d

1
3

af
8

6
1

b
4

7
6

f3
3

1
4

1
5

2
4

2
5

3
5

5
4

1
3

0
a4

ee
cf

7
6

f4
c9

0
fb

8
0

6
5

8
0

0
d

4
ca

d
3

9
1

d
f

2
9

4
0

5
9

5
6

7
8

3
0

3

1
3

1
a5

8
fb

8
3

b
e4

0
9

8
7

4
2

7
1

fa
0

4
7

0
9

0
1

2
b

5
ad

1
9

1
7

2
9

3
2

4
1

5
5

1
3

2
a6

2
f2

b
ca

5
c0

a5
d

2
3

9
c6

a3
7

3
2

a2
f4

2
4

ab
2

2
8

2
2

9
3

5
9

3
5

5
4

0
8

6
2

1

1
3

3
a6

6
1

7
c5

cb
5

9
1

3
5

e0
5

7
9

9
4

9
8

d
2

6
4

5
6

4
c7

7
5

7
1

7
2

7
5

9
5

1
2

9

1
3

4
a6

6
4

d
f7

2
a3

4
b

8
6

3
fc

0
a6

e0
4

c9
6

8
6

6
d

4
c

1
7

1
8

2
8

3
3

3
9

1
7

2

1
3

5
a7

1
0

7
9

1
0

2
c6

f7
0

5
3

a9
4

0
2

f7
2

ce
c7

9
8

2
5

2
2

1
8

2
1

2
2

2
2

3
3

1
3

6
a8

cd
6

3
8

e1
3

b
1

8
4

8
f3

4
7

fc
7

2
4

e9
3

8
6

ea
8

1
5

1
5

2
3

2
5

3
3

7
9

1
3

7
a8

f7
8

2
4

1
b

d
7

b
7

ca
d

5
0

e0
5

4
b

cb
4

d
fa

0
1

b
2

7
3

2
4

8
4

7
7

4
7

4

1
3

8
a9

6
fc

6
e0

1
8

d
7

7
1

9
3

2
b

7
0

aa
f9

eb
8

b
7

4
8

4
3

4
7

3
5

3
3

5
9

4
1

5
5

2
3

7
1

3

1
3

9
ab

2
b

9
3

6
e9

5
d

a4
9

1
7

8
9

ca
a8

0
2

ec
4

9
4

8
cf

2
2

1
9

2
1

2
6

3
4

6
5

1
4

0
ab

4
0

b
ea

4
3

8
fb

f8
0

9
b

5
7

8
6

d
5

2
b

3
8

ea
3

1
8

3
9

3
6

3
9

3
9

5
9

1
4

4

1
4

1
ab

b
f0

5
2

d
0

c9
d

8
4

c5
a3

0
b

f7
3

4
8

e2
2

5
b

3
1

1
8

1
9

2
8

3
1

4
0

4
1

1
4

2
ac

2
c9

ce
2

b
3

ed
f0

7
0

4
5

0
2

4
d

6
0

f9
b

4
e5

3
e

2
7

3
2

4
8

6
0

7
5

7
5

1
4

3
ad

7
6

e4
b

7
4

7
0

d
f9

3
6

8
3

8
0

b
2

b
5

3
7

5
4

1
0

b
4

4
0

3
7

3
9

4
9

6
2

1
4

8

1
4

4
ae

c2
d

f8
a6

cb
3

5
aa

5
b

0
1

b
0

d
9

f1
f8

7
9

aa
1

2
0

3
0

2
5

2
3

4
2

4
9

1
4

5
b

4
0

8
8

d
ae

b
3

1
1

c2
4

d
8

f9
a2

0
b

5
ec

2
2

3
b

c9
2

1
1

7
2

0
2

4
3

1
5

5

1
4

6
b

7
5

4
6

2
2

e8
1

6
fb

2
2

8
1

4
0

2
b

8
6

f7
5

fa
9

cc
f

2
6

2
2

2
5

2
6

4
2

3
3

7

1
4

7
b

8
f6

cd
b

7
3

6
0

d
d

2
4

1
1

fc
b

ed
8

6
cf

7
7

b
7

7
5

1
5

1
4

2
5

2
2

3
4

3
4

1
4

8
b

9
1

fe
d

8
1

7
5

0
0

f9
c3

7
7

ca
9

c7
9

9
e9

8
7

c7
4

2
7

3
2

4
8

6
0

7
4

7
4

1
4

9
b

e0
d

b
9

1
3

0
1

1
e5

1
e3

4
2

4
b

e7
8

4
1

b
1

3
fd

0
5

1
5

1
5

2
6

2
6

3
4

7
7

1
5

0
b

f8
2

8
7

8
0

5
af

d
fc

7
2

ca
6

b
7

c6
e7

6
d

5
b

0
4

a
3

4
7

3
5

5
3

5
2

3
5

1
5

2
1

7
1

6

ID
M

D
5

C
u

ck
o

o
H

ab
o

P
ad

aw
an

C
u

ck
o

o
+

+
X

-F
o

rc
e

P
M

P

1
5

1
c2

7
6

4
8

6
1

ca
cf

7
3

cd
a2

2
2

7
b

fe
b

6
7

f7
0

7
d

8
8

7
1

0
1

3
1

2
9

1
5

2
c2

a5
b

7
5

c7
2

7
3

b
3

b
4

d
4

b
f0

a2
3

4
ee

a3
5

f2
2

8
2

4
2

7
2

9
4

3
6

4

1
5

3
c3

2
a5

d
9

b
0

c7
8

b
3

3
5

af
5

1
9

7
d

3
8

3
1

9
6

6
a9

4
1

4
2

4
1

4
1

5
0

6
1

1
5

4
c3

6
6

2
5

3
8

9
cb

4
7

3
9

5
1

8
4

7
2

d
e4

2
9

8
5

3
6

fb
5

4
3

2
5

8
6

0
7

5
1

2
0

1
5

5
c3

8
d

0
8

b
9

0
4

d
5

e1
c7

c7
9

8
e8

4
0

f1
d

8
f1

ee
8

2
8

4
8

7
8

6
1

1
0

1
3

7

1
5

6
c5

3
3

1
4

2
1

8
0

3
3

7
d

0
2

f5
e2

a6
ee

2
b

f9
e0

9
9

1
4

1
4

2
7

2
7

3
4

5
8

7

1
5

7
c6

3
ce

f0
4

d
9

3
1

d
8

1
7

1
d

0
c4

0
b

7
5

2
1

8
5

5
e9

1
5

1
5

2
6

3
1

3
4

7
9

1
5

8
c6

4
9

1
9

c9
7

2
3

6
d

ce
f4

e9
7

1
4

0
c1

1
5

3
b

2
7

4
1

4
7

3
5

3
1

4
6

3
2

7

1
5

9
c8

0
b

8
f2

a2
d

6
a9

e1
5

0
0

b
fa

5
2

f8
6

4
ea

4
6

d
1

7
1

8
2

8
3

1
4

0
5

5

1
6

0
c8

3
b

5
e8

b
4

7
8

2
4

3
9

2
0

8
2

c8
4

2
4

0
b

f2
f8

b
4

1
7

1
8

2
7

3
1

4
0

5
5

1
6

1
c8

c1
f2

d
a5

1
fb

d
0

ae
a6

0
e1

1
a8

1
2

3
6

c9
d

c
2

9
2

2
2

8
2

9
4

1
9

1

1
6

2
c9

7
ac

d
1

fa
d

0
5

a0
b

0
a7

8
2

5
f5

6
4

7
d

4
2

4
4

a
1

7
1

8
2

8
3

2
4

0
5

5

1
6

3
cb

0
4

7
7

4
4

5
fe

f9
c5

f1
a5

b
6

6
8

9
b

b
fb

9
4

1
e

7
0

6
6

7
0

9
9

1
2

5
1

2
7

1
6

4
cb

3
d

9
3

f6
5

c6
4

e4
8

ef
8

1
2

7
4

a4
9

a7
4

8
ce

7
2

9
2

5
2

8
3

6
4

5
1

1
6

1
6

5
cc

2
9

a2
2

4
e3

2
7

4
1

2
e0

d
b

7
f3

ce
5

c4
f4

e0
0

6
8

6
1

4
1

8
3

5

1
6

6
cd

6
0

f7
4

2
fc

7
1

f9
8

b
3

4
a2

6
4

c5
f3

e5
5

a4
2

1
4

1
4

2
9

2
5

3
4

3
4

1
6

7
cf

cd
5

1
5

3
e7

3
9

4
0

6
b

aa
7

b
3

5
4

d
d

5
b

2
8

e0
4

1
7

1
8

2
8

3
1

4
0

5
5

1
6

8
d

0
4

c4
9

2
a5

b
7

8
5

1
6

a7
a3

6
cc

2
e1

e8
b

f5
2

1
7

0
6

6
6

9
9

9
1

2
5

1
2

7

1
6

9
d

0
8

7
4

b
a3

4
cf

b
d

f7
1

4
fc

f2
c0

a1
1

7
cc

8
e2

3
8

3
5

3
7

3
8

5
8

1
3

5

1
7

0
d

0
b

9
d

5
8

f3
a4

5
4

ad
6

d
f2

e4
d

0
5

5
8

5
8

c1
e5

6
9

6
1

4
1

8
3

3

1
7

1
d

1
a1

9
e8

3
4

ef
3

a4
f7

ec
fc

d
8

af
0

4
c6

eb
e4

1
4

1
4

2
8

2
3

3
4

5
8

7

1
7

2
d

2
1

fb
7

ed
5

2
b

a1
3

2
9

4
2

4
0

3
5

4
c1

f5
2

8
d

2
f

3
5

3
1

0
1

3
2

6
9

1
7

3
d

2
cd

4
8

2
b

a8
2

e5
9

2
c1

d
c5

d
ed

7
d

b
7

9
ec

7
0

1
5

1
5

2
5

2
4

3
4

7
4

1
7

4
d

3
a8

9
4

f6
0

5
2

ec
ee

1
ca

8
7

b
6

9
e6

1
9

ca
0

cb
3

1
2

7
3

0
3

1
4

9
1

2
2

1
7

5
d

4
9

3
af

7
4

5
d

e3
1

5
c6

9
8

9
3

5
5

a4
9

d
2

1
b

2
a3

2
0

1
8

3
1

3
1

4
2

5
6

1
7

6
d

7
2

1
e7

ef
b

5
d

6
3

ea
f8

5
5

4
0

7
4

8
9

4
2

f3
0

1
d

4
2

4
2

4
3

4
2

4
8

5
2

1
7

7
d

7
d

7
3

0
6

2
d

2
d

ef
e1

1
1

b
6

b
a3

b
d

cf
5

e4
e1

8
1

7
1

7
2

8
3

3
3

6
5

5

1
7

8
d

9
7

9
d

2
d

ce
9

7
9

7
8

8
c0

ce
9

cc
c7

2
b

4
4

5
6

1
7

2
7

3
2

4
8

6
0

7
4

7
4

1
7

9
d

ae
9

fd
1

c1
6

b
6

fe
e7

1
3

f5
3

1
8

2
cb

2
d

4
e1

0
1

7
6

2
8

3
1

4
0

4
0

1
8

0
d

b
1

6
7

6
5

a0
2

ef
b

e7
5

ae
5

6
9

c5
9

0
1

7
4

4
c1

9
3

4
6

3
5

8
4

6
0

4
6

5
5

2
2

7
1

2

1
8

1
d

c4
d

b
3

8
f6

d
3

c1
e7

5
1

d
cf

0
6

b
ea

0
7

2
b

a9
c

1
5

1
5

2
6

2
9

3
4

7
5

1
8

2
d

d
7

7
f7

4
4

4
5

d
6

1
c8

d
8

0
3

3
5

b
1

5
d

4
3

2
c2

7
b

1
3

7
2

1
2

6
3

3
1

1
0

1
8

3
d

e2
e4

1
0

4
8

e3
a5

4
ac

1
e6

b
b

ae
9

1
ae

9
9

9
ab

2
0

4
3

3
9

4
2

3
0

5
9

1
8

4
d

e5
7

9
8

b
6

9
d

f9
2

1
6

3
cd

d
2

5
f3

6
2

5
6

5
c5

2
1

2
7

3
2

4
9

4
4

7
4

7
4

1
8

5
d

ff
0

9
a1

a3
1

fa
d

ad
5

1
8

a6
7

6
0

c3
cf

b
d

c1
7

2
8

4
6

4
2

5
1

6
4

1
7

0

1
8

6
e3

7
ff

9
a3

fc
8

9
b

f2
9

ea
9

6
3

3
3

f3
aa

7
f2

9
6

4
0

3
7

4
0

4
0

6
0

1
3

5

1
8

7
e3

d
8

0
f2

cd
1

d
e0

2
c7

4
f1

9
8

1
8

9
ab

a3
3

0
5

2
2

9
2

2
2

8
2

9
4

2
9

1

1
8

8
e6

ff
a0

2
a6

3
c9

5
1

e4
e8

a1
3

1
e4

3
d

9
fe

a6
a

1
5

1
5

2
5

2
0

3
4

7
6

1
8

9
ec

3
d

e1
3

5
5

a2
0

5
6

a7
eb

5
e7

9
9

b
5

e9
8

9
d

0
b

2
4

4
7

4
4

4
9

6
3

9
2

1
9

0
ec

6
7

3
fe

d
d

5
2

8
2

3
d

a1
eb

ae
7

0
1

9
e0

4
2

3
8

2
2

1
1

9
3

1
2

8
4

2
8

2

1
9

1
ed

6
2

ce
1

a4
0

6
b

2
a0

b
9

d
6

d
7

9
ca

4
e3

5
7

2
b

6
1

8
1

8
2

8
3

3
3

7
5

9

1
9

2
ee

1
1

c2
3

3
7

7
f5

3
6

3
1

9
3

b
2

6
d

b
a5

6
6

b
9

f5
c

3
1

2
7

5
7

4
3

5
5

8
7

1
9

3
f2

7
7

5
1

af
2

9
2

f2
5

2
f1

cc
5

5
f9

0
f1

5
b

d
3

0
b

1
4

2
2

2
8

4
1

6
2

2
0

3
4

2
3

1
9

4
f2

b
0

0
b

2
7

e6
e8

d
1

0
d

3
c2

7
5

2
5

ec
d

9
af

1
2

0
4

7
5

3
4

8
5

3
6

9
9

2

1
9

5
f3

e8
a5

0
f0

c1
c3

a5
1

0
f8

8
2

d
0

fd
b

1
2

1
9

6
0

1
4

1
4

2
4

2
6

3
3

3
3

1
9

6
f8

cf
c2

b
7

f0
1

c3
a2

6
f0

a9
d

b
3

2
b

8
c5

f5
1

c
1

7
1

6
2

7
2

7
3

6
3

6

1
9

7
fa

6
8

eb
4

5
4

b
3

7
4

0
1

b
b

0
4

7
6

4
2

8
a3

ae
8

4
a5

2
0

1
7

1
9

2
4

3
1

6
5

1
9

8
fa

7
a3

c2
5

7
4

2
8

b
4

c7
fd

a9
f6

ac
6

7
3

1
1

ed
a

2
4

1
4

2
0

2
7

3
4

1
5

9

1
9

9
fd

7
5

a8
7

2
9

3
ca

3
2

1
5

f3
c0

3
3

f6
4

fe
ef

d
0

f
1

8
1

7
2

9
3

0
3

7
5

8

2
0

0
ff

0
2

a1
6

4
2

7
e3

2
0

0
5

2
6

2
2

0
3

5
0

fa
8

c9
b

4
f

3
0

2
6

3
0

3
5

4
4

5
5

1136

ID
M

D
5

C
u

ck
o

o
H

ab
o

P
ad

aw
an

C
u

ck
o

o
+

+
X

-F
o

rc
e

P
M

P

2
0

1
0

1
1

b
b

6
1

5
d

e5
8

2
6

3
b

4
8

3
c8

fb
0

4
d

0
4

5
2

5
c

2
0

1
6

1
9

2
3

3
0

5
1

9

2
0

2
0

2
7

aa
ab

9
a6

c3
a3

d
9

4
d

7
8

8
5

8
8

2
1

5
5

5
a8

b
3

1
2

6
3

0
3

1
3

6
1

0
7

2
0

3
0

2
fc

2
3

1
5

2
1

1
0

d
b

7
3

7
6

3
d

5
0

fa
2

c9
b

f8
f9

1
5

1
4

4
2

4
3

3
4

7
0

2
0

4
0

3
5

6
1

d
d

3
5

4
0

6
b

4
0

3
d

8
5

4
0

2
9

7
9

b
9

d
0

5
a2

4
3

3
9

4
2

4
3

7
6

8
2

2
0

5
0

3
b

2
5

9
7

8
7

3
b

a0
f0

e2
8

e3
d

c7
8

3
4

3
d

d
9

6
8

1
7

1
6

2
8

2
8

3
5

5
2

2
0

6
0

3
ed

7
7

d
8

a3
4

2
4

7
3

b
ee

1
0

0
8

5
0

e4
2

cd
1

1
c

7
1

5
2

8
2

0
2

6
1

3
9

2
0

7
0

4
9

d
7

1
3

e7
8

3
3

ac
6

fa
0

cd
f1

b
6

3
2

d
ce

1
d

d
1

5
1

4
2

6
2

7
3

3
7

0

2
0

8
0

5
2

6
6

ec
1

f4
c9

9
8

1
e7

0
2

7
6

8
1

5
6

3
fc

8
8

6
7

5
9

5
5

8
5

9
6

2
1

1
2

2
0

9
0

6
3

2
ef

9
8

ee
1

2
a4

7
5

4
e7

c9
1

4
2

8
5

6
2

5
ab

0
2

1
6

1
7

8
2

9
9

2
1

6
2

6
9

3
4

4

2
1

0
0

6
7

3
2

9
4

3
0

5
8

9
b

3
7

4
c3

5
e1

b
6

9
6

ad
a3

4
f9

2
1

2
3

3
1

2
1

2
7

7
8

2
1

1
0

6
a3

5
d

d
4

6
b

ae
2

7
3

b
b

4
2

8
5

0
5

6
3

c9
f5

1
fe

3
8

3
4

3
7

4
5

5
6

1
3

8

2
1

2
0

7
ce

3
c6

3
2

e2
3

9
9

c1
b

3
2

1
8

a7
7

5
9

9
ea

7
7

1
7

0
3

9
9

9
1

0
2

9
0

2
6

0

2
1

3
0

7
f5

b
b

c7
f4

1
4

b
cb

2
5

b
b

b
8

0
1

4
2

4
0

e8
c0

f
2

8
2

4
2

7
2

8
4

4
5

6

2
1

4
0

8
d

b
fa

ce
e7

a4
a7

7
f2

5
f1

5
9

b
c8

6
6

6
a9

7
4

2
0

1
6

1
9

2
3

3
0

5
6

3

2
1

5
0

a4
4

d
7

0
7

8
b

c1
c5

f1
2

1
7

ff
5

0
3

f2
f3

eb
c8

8
7

2
0

1
7

2
8

6
5

2
1

6
0

b
2

6
0

0
5

c7
1

ce
a1

4
2

c8
7

f8
e9

7
6

cf
7

0
4

e0
7

2
6

7
8

9
7

2
9

0
2

2
2

2
1

7
0

b
9

8
3

5
fd

9
4

b
8

a9
6

7
4

9
7

8
3

5
cb

1
3

e2
1

2
b

1
2

6
1

7
2

6
2

6
3

3
3

4

2
1

8
0

d
4

d
e5

0
a2

8
c4

2
9

4
5

7
6

aa
8

3
4

f1
3

d
4

f9
5

9
1

5
2

0
2

5
1

5
1

6
7

0

2
1

9
1

0
8

0
7

9
cc

f8
8

5
5

6
2

a9
2

cb
3

6
3

ad
d

b
4

1
8

2
c

7
1

0
1

7
7

7
1

3
8

2
2

0
1

1
f6

f1
b

b
8

1
a8

3
7

fa
b

5
b

5
7

8
3

5
2

1
5

0
a7

b
e

1
8

1
8

2
8

1
8

2
3

5
6

2
2

1
1

2
5

d
ca

5
8

b
8

1
5

6
1

fa
fe

5
6

7
9

7
2

5
2

d
0

a3
9

e
6

8
6

3
7

0
7

3
7

1
7

2

2
2

2
1

3
5

fb
8

3
a2

a1
fa

d
9

9
4

ac
2

9
8

d
aa

9
a4

2
7

b
d

2
8

2
3

2
7

2
8

4
2

5
5

2
2

3
1

3
e0

6
4

5
b

a4
2

c3
2

b
b

0
4

9
4

1
9

b
8

3
f2

d
c8

0
4

1
7

1
8

2
8

3
0

3
9

5
7

2
2

4
1

4
0

8
f7

7
9

af
2

a5
ed

4
e7

3
6

af
1

0
7

d
a2

9
ec

8
2

0
1

7
1

9
2

4
3

0
4

6

2
2

5
1

4
b

7
8

8
d

4
c5

5
5

6
fe

9
8

b
d

7
6

7
cd

1
0

ac
5

3
ca

4
9

4
9

1
6

6
1

6
5

1
8

3
2

2
0

2
2

6
1

5
b

0
9

3
6

1
3

8
0

3
8

0
d

3
b

d
cf

ec
7

d
3

1
6

b
6

9
5

1
3

0
6

3
0

6
3

3
7

3
4

0
3

5
0

4
5

7

2
2

7
1

9
6

3
6

0
a0

6
b

b
ef

8
0

d
5

a9
aa

e1
1

f5
8

9
4

a3
4

2
0

1
6

1
9

2
3

3
0

6
3

2
2

8
1

a7
1

3
d

a3
3

6
0

a3
4

5
1

6
ad

8
2

b
1

5
2

3
ab

f6
d

1
1

7
1

7
2

8
2

6
4

0
6

4

2
2

9
1

d
2

1
a6

d
8

8
e5

0
e3

7
1

e8
b

d
e9

9
3

d
7

3
3

3
d

8
9

4
8

4
6

4
7

4
9

8
4

8
6

2
3

0
1

d
5

4
1

6
ae

2
4

7
4

ae
d

fd
6

8
f7

9
e4

aa
cd

1
b

1
4

2
0

1
7

3
1

2
7

4
1

7
0

2
3

1
1

d
b

fb
9

d
e8

d
d

d
9

4
8

0
3

9
6

9
3

0
5

4
fe

8
3

4
5

9
c

7
8

8
9

9
1

8
3

1
0

4
2

2
7

2
3

2
1

ed
9

7
c5

d
e8

1
a7

a9
0

3
7

7
2

7
c6

3
9

fa
f9

b
fe

2
3

2
0

2
2

2
7

3
4

5
4

2
3

3
1

f7
9

6
3

2
b

b
6

2
b

3
4

9
7

4
9

2
ec

6
fa

3
6

6
d

9
8

fc
3

4
9

4
0

7
4

2
2

4
1

9
4

9
5

6
5

5

2
3

4
2

1
c7

5
0

1
9

e9
6

5
cf

a6
ca

3
4

a6
7

0
c2

3
8

c3
7

9
1

3
7

2
2

2
7

3
4

1
4

7

2
3

5
2

3
6

1
6

0
5

b
9

5
af

a6
5

1
4

d
d

8
5

6
b

2
1

8
5

4
d

d
2

6
4

8
4

5
4

7
5

2
8

4
8

6

2
3

6
2

3
7

0
ef

9
d

b
f4

8
3

c2
0

f4
8

b
4

d
1

a2
a6

ab
3

b
2

3
4

6
2

0
8

3
5

4
3

4
6

3
6

0
5

8
2

2
3

7
2

5
6

ad
8

6
b

8
ce

a1
7

b
5

1
4

2
3

0
4

9
7

d
6

2
b

8
9

0
7

1
5

1
5

2
6

2
6

2
3

7
1

2
3

8
2

5
a5

2
8

4
b

cd
9

9
e2

4
6

5
6

6
e0

a9
2

7
fd

a2
7

fa
1

7
1

8
2

8
3

1
3

9
5

7

2
3

9
2

9
2

d
1

2
4

aa
5

8
5

7
9

e1
8

2
3

9
9

5
1

f6
3

c3
8

d
a7

1
4

4
1

2
9

2
0

5
1

6
6

2
0

8
3

0
0

2
4

0
2

9
5

3
7

0
e5

a3
af

d
b

8
f6

b
ab

d
ff

f7
4

8
3

7
f0

b
4

9
4

5
5

3
6

6
8

4
8

5

2
4

1
2

9
9

5
5

7
4

af
0

3
0

2
3

ed
9

1
9

9
b

d
c5

4
d

e3
4

d
f0

1
3

1
2

2
4

2
6

1
4

3
8

2
4

2
2

9
f5

1
8

d
6

fe
7

d
e8

d
f6

7
9

1
d

1
1

0
6

6
8

b
9

1
2

d
2

9
4

4
6

6
6

9
4

3
1

9
9

2
4

3
2

b
7

9
e3

8
8

9
6

6
b

b
7

8
3

b
a8

1
e5

6
b

4
9

0
f3

b
9

3
5

2
4

7
5

8
6

5
8

1
1

4
1

2
4

4
2

e9
4

0
ae

9
6

5
d

9
ff

6
4

a0
b

2
2

5
7

1
8

e7
6

5
2

9
0

2
1

1
8

3
2

3
3

4
3

5
4

2
4

5
3

2
3

7
0

b
3

1
ab

6
b

2
e2

3
e9

ab
4

ad
d

4
f2

8
1

9
aa

8
8

2
0

2
1

2
7

6
4

2
4

6
3

3
1

b
1

cc
a7

9
f0

4
e3

b
a0

c9
0

7
b

cf
0

7
2

2
4

d
1

3
8

3
1

3
8

4
0

4
6

6
8

2
4

7
3

3
af

2
9

cb
0

d
ee

e7
ee

2
2

f9
9

4
f4

a4
d

2
3

a7
4

2
0

1
6

1
9

2
4

3
1

5
2

2
4

8
3

4
9

8
ca

6
5

7
6

a3
ec

2
1

cf
2

8
8

4
0

ff
d

4
d

b
5

e7
1

7
1

7
2

8
3

0
3

5
5

2

2
4

9
3

4
a4

c3
3

b
a5

e4
4

5
1

c5
7

9
6

b
b

4
4

7
6

7
2

4
d

6
a

1
5

1
5

2
6

1
5

1
6

7
2

2
5

0
3

5
1

8
cd

0
ce

b
ef

5
0

7
9

8
ac

d
a3

3
8

f2
4

3
f1

6
c

4
1

3
1

5
1

5
2

0
1

1
1

ID
M

D
5

C
u

ck
o

o
H

ab
o

P
ad

aw
an

C
u

ck
o

o
+

+
X

-F
o

rc
e

P
M

P

2
5

1
3

5
6

ce
2

6
4

ae
0

8
6

7
f6

0
f3

4
cd

7
8

a2
f9

3
ff

0
3

9
3

5
3

9
4

1
5

3
6

3

2
5

2
3

5
b

c0
e9

6
d

ec
5

d
3

6
f5

5
3

3
2

ea
6

4
9

c3
7

3
d

6
1

4
1

3
2

1
2

2
1

5
7

8

2
5

3
3

6
4

ff
4

5
4

d
cf

0
0

4
2

0
cf

f1
3

a5
7

b
cb

7
8

4
6

7
3

1
4

1
5

2
3

6
2

3
1

4
3

4
1

3
8

5

2
5

4
3

8
c9

4
0

d
0

3
7

d
6

5
3

2
7

5
b

7
2

c9
d

e1
b

6
4

2
7

2
7

1
0

3
6

0
1

1
6

1
1

9
1

6
1

1
7

4

2
5

5
3

ec
8

6
6

1
8

0
f9

ca
c1

b
cb

1
d

6
0

3
7

d
2

8
4

6
5

6
7

3
1

9
3

1
3

3
1

7
3

1
9

4
1

3
4

1
7

2
5

6
3

f0
3

7
e9

d
d

4
4

b
7

4
b

1
3

d
6

7
9

1
c6

a2
d

6
9

f1
0

2
9

2
5

2
8

3
5

4
4

5
3

2
5

7
4

2
7

2
8

9
af

2
2

c4
6

1
7

4
ec

af
9

8
7

d
2

1
7

8
6

2
6

d
2

0
1

6
1

9
2

4
3

0
5

3
7

2
5

8
4

5
4

7
6

0
fe

8
1

8
0

c3
c3

b
b

0
6

2
f8

fc
4

aa
1

b
7

b
3

5
0

1
9

1
4

2
1

4
0

6
4

9
7

6
5

3

2
5

9
4

5
5

ca
6

3
2

0
6

d
5

8
8

d
a6

8
c0

7
d

7
b

c2
a6

ee
eb

3
9

3
5

3
8

4
5

5
8

1
4

3

2
6

0
4

5
8

fe
2

4
3

9
5

2
5

b
3

f6
b

4
7

ed
4

b
a9

d
5

6
f2

8
e

1
5

1
5

2
3

1
5

1
6

5
9

2
6

1
4

5
a0

2
fb

9
2

7
2

e3
ac

b
5

c9
a6

c6
5

b
f4

1
d

7
6

8
1

7
1

6
2

7
3

2
3

5
5

2

2
6

2
4

5
a9

4
3

ce
9

4
b

8
9

d
e2

6
ec

9
2

3
d

d
7

9
b

6
7

c6
2

4
9

4
6

4
9

6
7

8
4

8
5

2
6

3
4

8
1

d
0

b
aa

9
8

0
4

9
3

7
9

ab
7

7
1

3
8

2
7

3
9

3
d

c3
1

7
1

4
1

7
2

1
2

7
1

3
9

2
6

4
4

8
7

b
b

6
1

b
3

ee
ec

b
3

9
8

8
b

b
1

d
9

6
2

b
3

9
1

4
7

0
2

1
1

9
2

0
2

1
3

5
4

4

2
6

5
4

9
9

6
9

f4
4

8
4

3
9

3
af

c1
e1

f4
1

1
5

1
5

1
2

e1
b

4
1

9
1

6
1

8
1

9
2

9
4

3

2
6

6
4

c7
8

c0
b

1
5

0
4

8
a6

5
7

2
1

3
6

9
ec

3
b

0
7

6
a4

d
3

2
6

2
4

3
2

3
4

4
4

5
6

2
6

7
4

f4
6

3
5

5
e3

b
5

2
5

3
4

0
d

b
a5

4
aa

ef
3

7
5

1
3

b
9

6
0

5
9

6
5

7
1

8
9

1
5

4

2
6

8
5

1
b

b
a8

0
9

f6
6

c8
d

8
d

f3
7

1
f2

c5
ec

6
9

0
d

6
8

1
4

1
1

3
0

3
0

3
7

4
8

6

2
6

9
5

1
f5

1
6

f9
1

d
0

6
a0

ea
2

2
b

1
6

a1
4

9
9

0
1

9
7

8
4

1
7

1
7

2
7

1
7

2
2

6
3

2
7

0
5

2
8

d
d

ed
1

1
3

8
5

d
5

f6
f0

f2
cd

1
ae

d
7

6
7

6
1

2
1

7
1

8
2

8
3

3
2

2
5

4

2
7

1
5

5
1

2
7

fe
3

3
6

1
c8

5
8

f7
9

2
c1

ed
2

9
3

9
7

9
4

0
5

1
8

1
6

2
8

2
8

3
6

8
5

2
7

2
5

5
8

8
9

b
b

a8
c3

8
0

3
7

b
6

4
3

5
3

6
6

4
e7

1
e4

d
e2

1
9

1
5

1
8

2
2

2
9

4
2

2
7

3
5

5
a4

1
0

4
8

7
b

1
b

3
3

3
2

0
d

b
1

8
9

c7
3

3
0

d
1

d
2

7
1

6
8

2
6

2
3

3
5

7
4

2
7

4
5

8
3

5
a6

8
f0

a6
ac

a4
6

2
1

9
e2

c3
d

d
6

7
b

b
0

8
b

8
5

5
3

4
2

5
2

1
3

0

2
7

5
5

a8
2

8
5

4
f4

c1
7

fd
eb

9
6

d
7

5
7

3
7

7
5

d
5

c1
f7

2
6

2
5

4
7

3
6

4
5

5
5

2
7

6
5

d
5

c6
8

9
6

1
6

6
3

5
c7

f1
f7

0
e1

1
f5

6
0

cd
7

a9
1

5
1

4
2

7
2

7
3

4
4

7

2
7

7
6

1
c3

8
2

9
b

7
1

b
e5

3
cf

5
3

1
3

5
9

f1
1

7
9

2
7

8
f8

4
3

4
0

4
2

6
0

7
6

8
2

2
7

8
6

2
e8

fa
e3

2
6

7
ca

4
7

7
b

5
b

cf
6

e2
0

b
0

8
d

b
5

c
7

0
5

6
9

9
7

0
2

7
0

5
8

1
8

8
2

0

2
7

9
6

7
e2

7
8

1
ab

7
6

e0
fd

f9
0

e1
6

fe
d

a6
f9

b
b

9
2

1
8

1
7

2
8

2
8

3
6

5
8

2
8

0
6

b
d

b
f2

3
ce

f6
6

b
6

8
7

d
8

7
7

0
cd

b
b

9
7

5
1

5
2

a
5

1
6

5
6

9
8

8
1

1
3

1
1

4

2
8

1
6

d
b

5
0

8
7

3
5

6
5

9
4

6
6

8
8

ad
b

c2
9

5
b

7
1

d
f7

9
2

1
7

1
7

3
0

3
0

3
9

5
5

2
8

2
6

f0
1

8
2

8
b

ff
7

4
8

9
d

7
5

4
3

0
9

2
2

d
8

8
2

8
0

2
ac

7
1

9
2

1
2

3
3

0
1

1
9

2
8

3
7

0
5

8
a6

ff
2

6
3

e3
3

7
c2

8
d

0
2

5
5

5
d

4
d

5
d

8
4

0
1

9
3

1
5

0
2

6
6

1
9

4
2

4
3

3
2

3

2
8

4
7

0
6

c0
b

4
8

c8
9

0
8

8
fa

b
5

8
cb

1
ea

a5
cc

8
4

8
1

2
8

2
3

2
7

3
3

4
2

6
6

2
8

5
7

0
d

a5
6

d
8

1
aa

cf
d

d
9

8
3

0
3

2
d

e8
d

1
5

3
b

1
3

4
1

9
1

5
1

8
2

3
2

9
4

1

2
8

6
7

1
9

1
1

c8
7

0
3

3
1

7
d

8
5

5
5

0
fb

2
c8

4
3

4
cb

a2
e

1
1

5
2

0
1

6
2

9
1

1
8

2
8

7
7

1
9

b
1

b
9

f6
9

1
4

5
8

af
3

b
0

d
a9

7
4

6
4

9
f4

2
b

f
8

7
2

4
2

2
2

8
4

8
6

2
8

8
7

1
f0

1
6

5
f8

f3
2

3
fa

b
ea

b
b

6
e7

8
9

9
b

d
8

2
d

9
1

8
1

8
2

9
3

1
4

0
5

6

2
8

9
7

3
e2

2
cb

f6
9

3
1

3
2

f1
8

ef
d

7
d

e3
7

0
b

2
c6

4
9

1
4

1
5

2
8

4
1

6
2

2
0

3
4

3
4

2
9

0
7

6
f0

a6
e2

e2
b

0
0

4
1

eb
9

9
fd

3
8

b
e1

a1
0

d
3

0
1

8
1

7
2

9
2

5
2

0
5

2

2
9

1
7

7
0

5
b

3
2

ac
7

9
4

8
3

9
8

5
2

8
4

4
b

b
9

9
d

4
9

4
7

9
7

2
1

5
1

8
0

2
8

2
2

8
5

2
6

6
3

4
0

2
9

2
7

7
3

1
b

ca
7

a2
9

3
3

6
6

0
7

3
a9

6
b

b
ef

f4
6

ef
1

e
2

6
2

2
2

5
2

6
4

3
5

9

2
9

3
7

8
b

3
5

7
3

a0
b

1
c4

8
e1

ce
7

6
8

1
5

9
0

7
2

9
b

9
3

3
3

4
3

6
4

1
4

6
5

4
6

9

2
9

4
7

8
fa

cb
6

fe
d

4
9

3
a2

1
4

9
3

1
b

3
8

d
a7

1
7

e0
c7

1
7

1
7

2
8

3
2

2
2

6
4

2
9

5
7

9
7

c5
c0

0
ed

d
1

b
9

1
cc

9
7

cc
3

7
d

d
c0

ef
d

4
a

2
9

2
1

2
5

2
9

3
3

4
9

2
9

6
7

b
1

1
9

2
1

e9
6

2
d

d
5

8
a2

a0
d

9
1

c1
3

f3
5

8
e6

f
2

1
1

8
3

1
3

5
4

3
8

2

2
9

7
8

0
ea

5
4

e6
b

0
9

a8
7

9
a0

0
4

9
6

1
1

3
1

4
6

b
9

fe
4

1
7

1
7

2
7

2
7

3
5

5
2

2
9

8
8

2
6

c9
9

1
fc

5
7

cb
3

ca
5

9
3

8
5

4
c2

6
b

0
e9

0
d

9
3

0
2

5
3

3
3

1
4

4
2

8
0

2
9

9
8

3
c5

7
d

b
7

8
a4

1
1

4
3

f9
9

5
2

f4
d

fa
0

b
e4

e8
0

1
2

2
6

2
1

4
1

1
4

8
1

8
6

2
6

5

3
0

0
8

4
1

6
c4

a8
4

f4
9

5
fe

4
7

f5
cd

d
ec

e8
af

b
b

7
4

1
7

1
6

2
8

2
4

3
5

5
1

1137

ID
M

D
5

C
u

ck
o

o
H

ab
o

P
ad

aw
an

C
u

ck
o

o
+

+
X

-F
o

rc
e

P
M

P

3
0

1
8

5
c7

e2
4

b
1

c6
1

0
e9

5
a0

0
e6

7
d

e4
5

3
0

6
4

7
5

2
1

1
8

3
2

3
2

4
2

7
4

3
0

2
8

6
7

ac
4

5
5

ee
2

7
fb

d
7

8
7

2
d

3
ae

fa
c7

2
9

b
f3

7
7

7
1

7
8

7
7

1
3

9
2

3
6

3
0

3
8

7
1

1
3

c5
5

c5
3

9
8

c6
5

c8
aa

7
1

5
7

b
5

b
6

4
f1

a
8

5
5

3
3

2
4

1
7

7

3
0

4
8

8
ec

b
9

1
7

2
1

cf
a6

2
e7

2
4

3
1

7
aa

0
0

2
9

3
2

7
8

8
9

3
2

9
8

9
4

1
1

0
2

5
2

3
0

5
8

9
3

2
b

d
0

3
ae

af
8

1
b

1
b

6
d

6
a7

c9
7

ea
2

d
a1

a
8

7
2

4
1

5
2

0
1

6
8

3
0

6
8

9
3

b
1

ed
d

fc
d

3
9

0
b

2
6

b
8

d
d

d
a3

ac
7

2
5

fc
6

5
1

4
7

5
0

5
5

9
0

9
7

3
0

7
8

a4
d

ab
ee

f4
e8

8
7

4
9

a6
ab

e1
d

2
7

2
0

0
3

d
1

5
7

2
6

7
7

3
7

7
1

2
5

1
2

6

3
0

8
8

a8
2

4
8

3
ea

3
4

fd
1

5
6

0
1

0
d

9
ea

8
a8

2
3

4
a4

9
4

3
3

9
4

2
6

1
7

5
8

1

3
0

9
8

ab
6

6
2

4
3

8
5

a7
5

0
4

e1
3

8
7

6
8

3
b

0
4

c5
f9

7
a

1
5

3
1

6
9

2
9

2
2

2
1

2
7

4
7

0
5

3
1

0
8

d
3

ea
7

5
f1

6
0

fd
d

9
ff

8
ef

ed
ab

7
e4

3
6

8
5

1
5

1
4

8
5

0
7

1
8

9
9

5

3
1

1
8

d
6

8
e2

8
6

eb
ca

f2
a3

e7
6

e7
8

1
4

b
c4

0
8

4
fd

1
8

1
9

2
9

1
8

2
3

5
5

3
1

2
8

f1
8

4
c2

e0
9

d
6

e5
c1

9
e1

ed
ea

5
0

8
5

0
c3

4
7

4
2

4
7

6
2

5
7

6
2

8
3

3
1

3
9

1
8

8
f0

ff
6

0
7

0
eb

2
8

b
6

5
aa

1
c3

9
6

d
8

9
8

3
5

3
5

3
5

3
5

4
1

5
3

7
8

3
1

4
9

1
f5

d
4

5
b

7
a2

4
d

6
9

e9
d

2
d

0
b

8
8

8
7

0
c8

c4
0

2
7

2
3

2
6

2
7

4
0

9
8

3
1

5
9

3
3

0
d

7
d

3
1

1
4

fc
7

b
fa

2
ee

8
d

0
5

ad
6

8
8

2
ec

1
7

1
7

2
7

3
1

2
9

5
4

3
1

6
9

3
7

e2
5

c1
c0

5
9

1
5

0
d

ab
0

ec
9

5
a3

a7
1

5
2

6
2

2
1

2
5

3
1

2
1

2
7

7
5

3
1

7
9

6
1

c8
2

4
f2

0
8

d
b

d
5

7
c2

c4
8

9
9

5
5

8
3

0
b

1
9

5
3

0
2

5
2

9
3

0
4

5
5

6

3
1

8
9

6
9

d
d

7
0

e0
d

b
a7

d
f0

4
fc

9
3

5
4

8
2

2
4

b
a8

a2
1

7
1

7
2

8
3

3
3

9
5

5

3
1

9
9

8
4

a0
5

2
4

e3
3

3
0

6
0

a3
3

7
c5

a6
ce

ae
0

6
b

4
2

1
8

1
8

2
8

3
2

4
1

6
4

3
2

0
9

8
5

7
9

b
2

8
8

5
8

1
d

0
2

d
cb

2
e6

5
8

1
f9

b
e5

a2
f

6
8

6
3

6
9

7
0

7
2

7
4

3
2

1
9

b
0

ee
3

b
f1

fa
0

a2
b

5
e3

d
0

7
c0

b
5

2
d

ab
1

a6
4

3
4

0
4

2
4

3
7

5
8

1

3
2

2
9

b
6

ac
c3

0
fc

9
e2

2
4

fe
a7

4
5

9
0

6
ed

8
f8

8
8

9
2

3
2

1
3

3
3

5
4

4
5

8

3
2

3
9

b
7

f5
a1

2
2

8
fa

6
6

cb
d

3
5

e7
5

fb
7

7
4

fd
c8

e
1

5
3

2
0

3
2

4
6

1
6

1
1

9
9

6
5

5

3
2

4
9

b
b

3
2

c8
1

1
5

e3
c6

4
3

ee
5

5
d

c4
1

e7
5

4
d

a7
3

7
1

0
1

7
1

2
2

5
1

3
9

3
2

5
a2

1
e5

2
6

0
b

e7
8

4
af

b
d

0
1

b
9

3
b

2
0

9
3

2
ce

8
c

1
8

1
8

2
8

2
7

2
3

5
6

3
2

6
a2

7
3

8
3

a4
6

4
4

c8
f2

5
d

b
5

d
fb

d
6

4
9

6
ab

5
d

7
1

7
1

7
2

7
3

0
3

9
5

5

3
2

7
a2

7
ee

2
b

8
f2

1
4

d
fb

b
5

e1
5

7
4

1
7

5
1

c0
9

b
f7

1
4

4
1

2
9

1
6

6
1

4
4

1
7

7
2

8
5

3
2

8
a4

d
4

b
5

a8
4

2
6

8
2

2
a6

e2
6

1
4

1
f0

a9
9

7
8

1
a4

1
4

1
4

2
5

2
5

3
2

4
5

3
2

9
a8

c8
6

a5
0

e5
6

1
3

d
2

2
8

4
c7

e1
a0

f1
8

e5
b

f2
1

5
1

5
2

5
2

2
3

3
7

3

3
3

0
a9

7
6

d
eb

5
1

d
2

9
5

8
3

4
b

0
3

3
6

0
9

f9
d

5
5

4
4

ff
2

8
2

3
2

7
2

8
4

2
6

1

3
3

1
a9

b
6

a5
e7

0
4

4
ee

9
7

5
d

b
d

b
d

e9
0

2
4

5
f3

9
3

8
1

8
1

9
2

9
1

8
2

3
5

6

3
3

2
aa

5
b

eb
b

8
4

c2
b

aa
e8

2
4

7
8

2
a8

5
e2

b
d

e1
5

a
5

8
5

2
6

0
5

8
7

7
2

5
8

3
3

3
aa

6
4

6
e4

1
5

8
b

c4
8

ec
f4

c7
4

5
ef

3
6

6
6

4
f1

c
2

6
2

2
2

5
2

6
4

2
1

3
1

3
3

4
ab

2
7

fa
9

c2
b

7
9

7
ed

ac
fb

e9
6

1
ae

0
1

3
7

2
ad

2
8

2
4

2
7

2
8

4
3

6
3

3
3

5
ac

6
d

0
4

9
8

3
0

d
b

2
f6

8
b

a0
1

4
2

5
b

e8
b

6
d

1
4

1
8

7
8

3
8

6
8

7
1

4
6

1
4

7

3
3

6
b

0
3

c3
2

3
3

0
ed

d
8

3
d

1
0

f2
3

c9
4

1
ce

1
1

4
1

2
f

2
0

1
7

1
9

2
3

3
0

4
1

3
3

7
b

0
4

ab
2

9
c9

a7
a4

fb
9

9
c1

a8
e6

0
ae

b
c5

f3
8

1
7

1
7

2
8

2
6

2
2

5
4

3
3

8
b

0
c2

3
4

9
2

0
4

8
f6

cd
5

5
9

5
cf

8
4

7
3

8
1

fd
5

b
2

2
0

1
7

1
9

2
0

3
0

5
4

4

3
3

9
b

1
5

9
8

c6
f6

e9
5

5
2

b
8

c0
7

7
6

1
6

3
7

9
3

b
5

2
9

e
1

8
1

8
2

8
3

1
4

0
5

6

3
4

0
b

2
7

d
6

fa
3

1
2

b
3

1
4

d
4

9
a7

e4
ea

7
e8

5
fc

6
8

5
1

5
1

4
2

5
2

0
3

3
7

0

3
4

1
b

2
cd

9
8

a0
b

6
f6

ac
9

d
e9

2
c9

2
a7

0
2

ee
5

f7
6

8
8

2
1

2
0

2
7

6
2

3
4

2
b

4
b

c9
b

6
f1

c6
8

9
8

1
b

ad
1

cb
4

0
e8

cf
7

1
e9

7
4

6
1

5
1

7
2

2
1

1
2

3
4

3
b

5
8

f0
4

3
3

6
7

e6
0

5
7

c9
c7

9
4

1
8

d
3

3
2

e3
8

c8
1

4
1

6
2

8
4

1
6

2
2

0
4

4
2

0

3
4

4
b

8
0

5
3

ad
0

8
4

7
8

3
0

c6
9

8
b

0
b

d
c3

5
0

2
0

f0
d

8
1

7
1

8
2

7
3

0
3

9
5

7

3
4

5
b

8
5

5
2

0
d

d
2

d
6

4
d

6
d

0
5

fe
7

5
b

6
1

1
2

2
5

3
fc

e
1

4
1

3
2

6
2

5
3

2
4

8
0

3
4

6
b

9
3

1
7

4
8

4
5

8
cf

b
2

2
6

1
cf

7
c1

4
fb

0
4

4
1

d
9

5
2

4
2

0
2

3
2

7
3

4
4

5

3
4

7
b

ac
ee

6
5

f8
1

6
1

5
1

2
8

3
4

5
9

8
2

0
5

1
c4

a6
0

5
f

1
5

1
4

2
6

1
5

1
6

7
0

3
4

8
b

c2
2

5
b

cb
b

8
0

b
ef

9
c0

b
0

d
0

1
4

3
0

5
a9

5
4

3
d

5
5

5
4

5
4

7
2

9
2

1
0

0

3
4

9
b

f2
d

e6
0

d
4

d
d

d
f4

3
b

4
3

1
3

6
6

8
ad

0
4

cc
af

b
3

8
3

5
3

7
3

8
5

6
1

3
9

3
5

0
b

fe
f6

9
6

1
7

8
5

9
6

e2
b

8
0

1
b

3
9

6
f8

ec
4

c2
0

3
1

4
1

3
2

6
1

4
1

5
4

4

ID
M

D
5

C
u

ck
o

o
H

ab
o

P
ad

aw
an

C
u

ck
o

o
+

+
X

-F
o

rc
e

P
M

P

3
5

1
c3

9
c0

3
e2

7
6

ac
9

b
f6

4
a5

0
2

aa
9

7
f4

1
8

7
a9

2
1

1
8

3
5

3
4

2
7

8
9

3
5

2
c4

2
5

5
4

ae
f9

5
7

0
2

8
5

5
ec

c2
c0

1
f0

1
d

5
cb

9
7

2
6

5
6

7
9

9
1

2
4

1
2

5

3
5

3
c5

0
5

0
2

9
f2

3
4

2
e0

4
5

2
ee

d
1

0
d

7
7

0
5

5
9

2
fb

5
1

4
7

5
0

5
1

8
9

9
5

3
5

4
c6

1
8

8
0

e6
9

9
6

4
0

af
b

b
b

a3
e0

b
a7

a8
4

9
8

b
4

1
7

1
8

2
8

2
6

2
2

5
4

3
5

5
c8

3
8

4
a4

b
1

9
5

1
5

3
5

4
4

8
fe

3
4

3
3

7
4

e3
8

6
2

9
2

9
2

5
2

8
3

3
4

5
8

3

3
5

6
c8

7
f1

4
5

5
ce

2
a5

d
3

b
6

8
ce

4
b

d
4

b
b

0
f2

ff
b

1
7

1
8

2
6

2
9

2
2

5
4

3
5

7
c8

d
2

fb
ac

6
0

2
fa

2
6

1
aa

5
8

2
7

6
a2

fd
1

c1
d

9
2

2
2

9
4

6
5

1
4

2
7

4

3
5

8
cb

a0
9

4
3

d
3

3
2

1
3

4
7

d
2

8
b

2
9

3
c1

4
e2

d
3

5
2

f
8

8
2

3
2

2
2

8
1

6
8

3
5

9
cc

ac
b

9
6

7
5

2
4

b
8

8
ec

3
7

f9
7

7
9

e8
2

6
b

8
9

ea
2

4
2

0
2

5
2

7
3

4
4

5

3
6

0
cd

3
f8

3
5

f1
ef

7
2

f9
d

c4
8

b
e1

ea
7

f9
1

2
d

ee
1

7
1

7
2

7
1

7
2

2
6

3

3
6

1
cd

9
d

b
4

3
5

4
7

8
2

ac
9

a2
6

d
9

2
7

7
d

2
d

1
1

9
ec

6
1

3
3

1
3

3
1

6
8

1
6

7
1

3
8

4
4

9

3
6

2
ce

cd
4

9
8

8
e0

2
3

f5
b

e0
2

ae
9

fb
8

d
b

fd
8

0
c3

1
8

1
8

2
8

3
2

4
0

5
7

3
6

3
cf

f2
2

e3
7

3
7

8
d

b
c2

8
0

0
7

2
c7

5
1

cd
1

3
c6

1
2

7
5

7
1

7
4

1
0

3
1

3
0

1
3

1

3
6

4
d

7
3

fa
ce

1
d

b
d

4
5

3
8

3
e7

4
3

8
9

a1
b

b
3

a2
7

9
0

1
5

1
5

2
5

2
6

3
3

7
2

3
6

5
d

7
6

6
b

0
4

5
d

1
3

0
c0

ab
c5

d
6

5
b

e9
2

5
4

8
6

6
d

2
2

0
1

6
1

9
2

3
3

0
5

2
4

3
6

6
d

b
5

d
4

7
8

b
d

d
8

c5
0

ee
4

4
2

5
c3

b
7

aa
7

a0
3

4
2

1
9

1
2

2
0

2
2

2
9

2
6

3

3
6

7
d

b
d

1
c1

eb
7

6
7

a4
5

8
9

4
0

a9
1

6
a5

5
e5

0
7

8
3

b
2

8
2

4
2

7
2

8
4

2
6

1

3
6

8
d

c1
1

9
0

5
d

b
6

d
7

b
8

8
5

d
0

6
7

2
8

3
6

6
9

0
b

0
7

8
9

1
7

1
7

2
7

2
2

3
9

5
5

3
6

9
d

ce
d

3
5

b
a2

9
ce

e8
6

5
0

4
0

6
4

b
f4

5
c1

fd
d

3
4

8
8

2
4

2
2

2
9

4
9

0

3
7

0
d

d
1

e0
1

9
1

d
b

b
0

d
9

e6
c3

0
f6

a1
7

b
9

6
8

6
5

7
e

3
9

3
5

3
9

3
9

5
3

6
3

3
7

1
d

e9
1

ad
7

7
1

b
5

4
f7

3
a9

2
4

ac
2

4
a8

3
0

c7
b

d
9

1
7

1
6

2
8

1
7

1
8

5
3

3
7

2
e4

1
f7

9
6

5
cb

a7
e0

2
9

c9
c8

0
3

2
7

4
a9

2
8

ef
4

6
7

8
6

1
0

8
8

2
1

0
2

1
9

8

3
7

3
e4

b
eb

0
ca

ef
1

2
0

a3
1

7
c7

3
fc

5
6

4
0

ef
2

8
4

b
1

5
1

4
2

5
2

6
3

3
7

1

3
7

4
e5

c6
6

d
5

1
4

2
1

e6
f9

0
b

8
b

7
0

9
5

d
6

8
f2

c9
fa

1
4

1
1

2
9

2
9

3
7

4
9

2

3
7

5
e7

1
3

0
e2

ca
5

0
4

9
b

e3
ac

d
b

4
fe

0
1

3
0

6
f9

5
0

1
7

1
8

2
7

2
5

1
7

6
3

3
7

6
e8

b
5

9
7

ed
d

5
d

4
1

b
ce

9
0

4
b

6
d

4
1

7
6

5
8

c4
b

f
2

8
2

3
2

7
2

8
4

3
6

3

3
7

7
ea

d
4

5
3

a0
6

3
1

5
b

fc
7

0
2

ad
3

0
2

8
2

1
3

3
7

fc
2

2
0

3
3

4
9

4
5

6
5

7
0

3
7

8
ea

d
fb

2
b

0
1

7
0

2
d

2
2

f2
3

e1
af

4
2

5
f2

6
1

3
e9

1
7

1
8

2
4

1
7

2
2

6
5

3
7

9
eb

d
8

7
9

0
e9

7
fb

1
4

0
3

f7
2

2
2

4
4

2
9

d
6

f8
9

e4
4

3
3

9
4

2
4

3
7

6
8

3

3
8

0
ec

5
2

6
6

3
c2

e8
3

6
fa

b
9

4
4

8
2

c3
4

5
aa

b
9

c5
e

2
4

1
8

2
4

2
9

3
1

4
6

3
8

1
ed

6
9

2
ad

cc
9

5
7

fb
5

4
a2

4
fe

6
e0

c0
7

7
c1

3
2

6
7

6
2

6
6

6
7

1
1

7
1

1
8

3
8

2
ee

1
4

c8
b

9
fc

8
5

7
8

f3
2

1
8

cd
1

d
a1

b
a4

6
9

4
0

2
0

2
3

3
1

3
2

4
1

5
6

3
8

3
ee

9
2

d
8

5
9

3
3

b
0

2
4

e8
d

8
2

e0
3

ed
6

ac
b

aa
f6

2
8

2
3

2
7

2
8

4
4

5
6

3
8

4
f0

b
8

2
0

b
9

6
6

0
2

eb
7

c6
3

8
2

1
d

f7
ce

fe
4

cc
d

3
8

3
4

3
7

3
8

5
6

1
3

5

3
8

5
f3

3
5

f5
8

5
7

f2
d

3
0

d
0

d
8

1
1

e1
b

7
3

2
f0

8
9

0
a

1
5

1
4

2
5

1
5

1
6

6
9

3
8

6
f3

c7
8

5
5

a2
b

c3
0

b
9

d
0

2
b

aa
8

9
6

0
a1

1
f2

ca
5

0
4

4
5

2
5

0
6

6
2

6
1

3
8

7
f3

ff
9

4
1

5
d

e6
b

ab
4

f4
c5

5
d

8
6

e9
4

ea
1

e8
5

3
1

9
3

1
5

3
1

7
3

2
7

4
1

2
4

1
6

3
8

8
f7

0
d

1
8

2
ac

7
b

b
3

d
3

9
8

ae
4

7
d

3
8

8
9

3
d

c1
e2

2
0

1
1

8
8

2
0

3
2

0
5

2
5

8
2

6
8

3
8

9
f7

e9
e3

3
1

0
8

3
7

3
f9

2
5

2
7

c3
af

d
8

a1
0

7
af

f
2

3
1

9
2

2
2

9
3

7
4

8

3
9

0
f8

b
4

2
1

9
4

ec
1

9
f3

f5
a7

d
7

ca
ed

fb
4

1
8

8
d

b
8

7
2

3
2

2
2

8
1

6
8

3
9

1
fa

5
c5

2
6

4
f4

6
6

8
f7

a4
0

f7
5

7
6

a2
7

cf
e7

8
b

1
7

1
7

2
5

3
1

3
9

6
8

3
9

2
fb

9
c4

9
2

cd
aa

f4
a6

b
e7

0
3

2
9

1
9

c1
f3

a8
d

f
2

0
1

6
1

9
2

3
3

0
5

5
0

3
9

3
fc

b
7

1
8

4
9

6
0

4
4

9
a6

1
6

3
2

1
c1

4
4

0
9

0
b

3
aa

2
2

2
1

9
2

1
2

5
3

2
5

4

3
9

4
fc

b
fb

2
3

4
b

9
1

2
c8

4
e0

5
2

a4
a3

9
3

c5
1

6
c7

8
2

6
3

3
5

2
8

3
2

6
3

2
8

5
2

9
8

3
9

5
fd

b
5

9
4

0
0

9
e2

aa
9

f7
a7

0
f5

e3
c0

b
7

8
cb

8
6

1
8

1
8

2
8

3
2

4
0

5
6

3
9

6
fe

6
8

1
8

4
4

0
8

4
1

7
7

d
1

4
a0

a2
e5

d
9

ce
9

8
9

3
e

7
7

8
8

8
9

9
4

1
0

4
2

2
8

3
9

7
fe

7
4

2
5

7
9

b
fb

d
d

8
8

5
a8

1
fa

1
6

c5
7

f7
d

cf
7

1
5

1
4

2
6

3
0

3
3

7
3

3
9

8
fe

b
ea

f9
8

1
ab

cf
7

9
0

fb
2

f7
7

d
6

c6
7

ce
d

7
b

8
8

2
1

2
4

3
0

6
6

3
9

9
ff

0
c5

9
7

9
0

3
c6

6
d

6
c5

5
7

7
c8

6
ca

cd
e0

b
af

3
6

2
1

3
5

4
0

5
2

6
2

4
0

0
ff

3
ab

2
0

4
3

c7
a9

c8
d

8
4

ad
7

8
5

b
b

9
3

0
1

f8
3

1
5

1
4

2
5

2
6

1
5

6
9

1138

