
Fuzzing JavaScript Engines with
Aspect-preserving Mutation

Soyeon Park Wen Xu Insu Yun Daehee Jang Taesoo Kim

Georgia Institute of Technology
{spark720, wen.xu, insu, daehee87, taesoo} @ gatech.edu

Abstract—Fuzzing is a practical, widely-deployed technique
to find bugs in complex, real-world programs like JavaScript
engines. We observed, however, that existing fuzzing approaches,
either generative or mutational, fall short in fully harvesting high-
quality input corpora such as known proof of concept (PoC)
exploits or unit tests. Existing fuzzers tend to destruct subtle
semantics or conditions encoded in the input corpus in order to
generate new test cases because this approach helps in discovering
new code paths of the program. Nevertheless, for JavaScript-like
complex programs, such a conventional design leads to test cases
that tackle only shallow parts of the complex codebase and fails
to reach deep bugs effectively due to the huge input space.

In this paper, we advocate a new technique, called an aspect-
preserving mutation, that stochastically preserves the desirable
properties, called aspects, that we prefer to be maintained across
mutation. We demonstrate the aspect preservation with two
mutation strategies, namely, structure and type preservation, in
our fully-fledged JavaScript fuzzer, called DIE. Our evaluation
shows that DIE’s aspect-preserving mutation is more effective in
discovering new bugs (5.7× more unique crashes) and producing
valid test cases (2.4× fewer runtime errors) than the state-of-
the-art JavaScript fuzzers. DIE newly discovered 48 high-impact
bugs in ChakraCore, JavaScriptCore, and V8 (38 fixed with 12
CVEs assigned as of today). The source code of DIE is publicly
available as an open-source project.1

I. INTRODUCTION

Fuzzing is, arguably, the most preferable approach to

test complex, real-world programs like JavaScript engines.

While conventional unit testing is effective in validating

the expected functional correctness of the implementation,

automated fuzzing is exceptional at discovering unintended

security bugs. According to Google, fuzzers have uncovered

an order of magnitude more bugs than handwritten unit tests

developed over a decade [4, 21, 33, 40]. For example, fuzzers

have discovered over 5000 new bugs in the heavily-tested

Chromium ecosystem [37].

Two classes of fuzzers have been developed to test JavaScript

engines, namely, generative and mutational fuzzers. Generative

approaches build a new test case from the ground up following

pre-defined rules like a context-free grammar of the JavaScript

programming language [17, 39] or reassembling synthesizable

code bricks dissected from the input corpus [19]; mutational

approaches [2, 44] synthesize a test case from existing seed

inputs.

However, we observed that both generative and mutational

approaches are not enough to take advantage of high-quality

1https://github.com/sslab-gatech/DIE

Aspect. In this paper, aspect is used to describe a key feature that guides to
discover new bugs from the PoC of existing bugs. This term is a different
concept from the one in the aspect oriented programming (AOP). Aspect
in AOP represents a specific feature that cross-cuts program’s main logic,
yet it should be parted from the main logic. However, aspect in this paper
describes an embedded feature in the PoC of existing bugs, which is
not explicitly annotated so that we implicitly exploit them by preserving
structure and type. Table VIII gives examples of aspects for bugs found by
DIE.

input corpora such as known proof of concept (PoC) exploits

or existing unit tests. These input corpora are deliberately

designed to deal with particular properties of the program

under testing, yet such properties are not retained during the

fuzzing process. Existing fuzzers [19, 20, 39, 44] are designed

to generate naive test cases based on simple generative rules

without leveraging input corpora or fail to maintain subtle

semantics or conditions encoded in these input corpora when

generating new test cases, as destructing them indeed helps in

discovering more diverse code paths of the program. Such a

design works well for small programs where the input space

is tractable for automatic exploration. When testing JavaScript-

like complex programs, however, such a conventional design

tends to produce test cases that stress shallow parts of the

complex codebase, e.g., a parser or an interpreter but not JIT

optimization algorithms.

In this paper, we advocate a new technique, called aspect-
preserving mutation, that stochastically preserves beneficial

properties and conditions of the original seed input in generat-

ing a new test case. We use the term, aspect to describe such

preferred properties of input corpora that we want to retain

across mutation. We claim that the aspect-preserving mutation is

a stochastic process because aspects are not explicitly annotated

as a part of the input corpus, but are implicitly inferred

and maintained by our lightweight mutation strategies. For

example, in a PoC exploit, control-flow structures like loops

are deliberately chosen to trigger JIT compilation, and certain

types are carefully chosen to abuse a vulnerable optimization

logic. Under aspect-preserving mutation, we ideally want to

maintain with a high chance such aspects in new test cases

while introducing enough variations so that we can discover

similar or new bugs.

To demonstrate the aspect preservation, we incorporate

two new mutation strategies—namely, structure and type
preservation—to our fully-fledged JavaScript fuzzer, called DIE,

that implements all modern features like coverage mapping

and distributed infrastructure. The foundational technique that

enables both mutation strategies is the typed abstract syntax

1628

2020 IEEE Symposium on Security and Privacy

© 2020, Soyeon Park. Under license to IEEE.
DOI 10.1109/SP40000.2020.00067

tree, or typed-AST, which provides a structural view of an input

corpus with the annotated type information of each node. We

develop a lightweight type analysis that statically propagates

the observed type information extracted from dynamic analysis

(§IV-A). Each mutation strategy embodies its own aspect-

persevering elements by utilizing the shared typed-AST, e.g.,

structure-preserving mutation respects structural aspects like

loops or breaches, and type-preserving mutation maintains

types of each syntactic elements across mutation.

We evaluate DIE with three popular JavaScript engines:

ChakraCore in Microsoft Edge, JavaScriptCore in Apple Safari,

and V8 in Google Chrome. Our evaluation shows that DIE’s

aspect-preserving mutation is more effective in discovering new

bugs (5.7× more unique crashes) and producing high-quality

test cases (2.4× fewer runtime errors) than the state-of-the-art

JavaScript fuzzers (see §VI). DIE has newly discovered 48

high-impact security bugs in ChakraCore, JavaScriptCore, and

V8;38 of the bugs have been fixed with 12 CVEs assigned as

of today ($27K as bug bounty prize).

In summary, this paper makes three contributions:

• We advocate a new aspect-preserving mutation approach

that aims to preserve desirable properties and precondi-

tions of a seed input across mutation.

• We develop a fully-fledged JavaScript fuzzer, DIE, that

implements two new mutation strategies—namely, struc-
ture and type preservation—by using a lightweight static

and dynamic type analysis.

• We have reported 48 new bugs and 38 are fixed during

the responsible disclosure process: 28 in ChakraCore, 16

in JavascriptCore, and four in V8.

DIE will be open-sourced upon publication.

II. BACKGROUND

In this section, we summarize the common design of

JavaScript engines, classify existing fuzzing approaches against

them, and analyze a trend of recent JavaScript-related bugs.

A. JavaScript Engines

JavaScript engines are one of the complex components of

modern browsers. Although the design and implementation

of each JavaScript engine are very different, all share two

common properties: 1) serving as a standardized runtime for

JavaScript and 2) providing JIT compilation for performance.

JavaScript. This is a dynamically typed language, meaning

that a variable can have an arbitrary type at any point during

execution. Also, the program can terminate with a syntactic or

semantic error at runtime (e.g., invalid references, unexpected

types in use). The JavaScript engines process it in multiple

phases: a parser first creates an AST, and an interpreter
converts the AST into a first-level intermediate representation

(IR) and then executes it with the help of the JavaScript runtime.

Note that the parser and interpreter of JavaScript engines have

rather simple logics, so no security bugs have been recently

reported in either component [13, 14].

JIT compilation. At runtime, the engine profiles execution

(e.g., types, # of invocations) to find potential hot spots

JS Fuzzer Year I T C S D CVE OS

jsfunfuzz [39] 2007 G � �
LangFuzz [20] 2012 � M �
Skyfire [43] 2017 � M �
Fuzzilli [17] 2018 G � � � � �
CodeAlchemist [19] 2019 � G � � �
Superion [44] 2019 � M � � �
Nautilus [2] 2019 � M � �
DIE 2019 � G/M � � � � �

I: Input corpus, T: Type (G: generative, M: mutational), C: Coverage feedback,
S: Semantic-aware, D: Distributed fuzzing, OS: Open source

TABLE I: Classification of existing JavaScript engine fuzzers.

for optimization. The engine then translates the first-level

IR (i.e., bytecode) into a sequence of lower-level IR (e.g.,

B3 IR in JavaScriptCore) and ultimately to native machine

instructions for faster execution. Modern JavaScript engines

apply advanced optimization techniques, such as function

inlining and redundancy elimination (see Figure 4), during

the compilation process. As part of the machine code, the

JIT compiler inserts various checks (e.g., types) to validate

assumptions made during the optimization, and falls back to

the unoptimized code if the optimized code failed at validation,

called bailing out. Although user-facing interfaces like the

parser and the interpreter are the straight implementation of

the ECMA262 standard, JIT implementation is specific to each

JavaScript engine, e.g., low-level IRs, optimization techniques,

etc. In other words, it is a desirable place for security auditing,

thanks to the diversity of implementation and the complexity

of the optimization logic.

B. Fuzzing JavaScript Engines

There are two popular types of JavaScript engine fuzzer,

namely, generative and mutational (Table I). Generative fuzzers

build new test cases from scratch based on pre-defined grammar

like jsfunfuzz [39] and Fuzzilli [17] or by constructing them

from synthesizable code bricks disassembled from a large

corpus [19]. Mutational fuzzers generate new test cases on the

seed inputs for testing. For example, LangFuzz [20] breaks

programs in a large corpus into small code fragments, re-

combines them with a seed input, and generates new test

cases; Skyfire [43], Nautilus [2] and Superion [44] mutate

each program individually with the segments learned from

other programs in the corpus or with their mutation rule.

Modern fuzzers [2, 17, 19, 43, 44] all leverage code coverage to

accelerate their exploration. However, most advanced generative

or mutational fuzzers fail to effectively explore a JavaScript

engine for deep bugs on the trend (see §II-A) for two reasons:

1) Enormous search space. One major advantage of gener-

ative fuzzers is that they fully control the generation process

of every statement in a testing program. Therefore, building

error-free inputs is straightforward. However, generative fuzzers

build completely new programs by starting from code units.

Meanwhile, a JIT-related bug requires a complicated input with

specific properties to trigger (see §II-A). Hence, the search

space is too large for a generative fuzzer to build such test

cases in a reasonable time.

1629

2016 2017 2018 2019

Year

0

5

10

15

20

25
#

of
B
u
gs

JIT-OOB
JIT-Type confusion
JIT-Memory corruption
Parser/Interpreter

Fig. 1: The trend of the security bugs in ChakraCore from 2016
to 2019. In each column, the right bar shows the number of bugs
in ChakraCore’s parser, interpreter and its JavaScript runtime. The
left bar indicates the number of bugs residing in the JIT compilation
phases. We further classify the JIT compiler bugs by their types and
out-of-bounds (OOB) access and type confusion caused by incorrect
JIT behavior dominate.

2) Insufficient utilization of existing programs. Recent

JavaScript fuzzers select unit test suites and PoCs of known

bugs as their seed inputs. Basically, such a JavaScript program

is carefully designed to have certain properties that particularly

stress one or more working phases in a JavaScript engine.

Therefore, starting with these inputs enables a fuzzer to

quickly approach and explore the deep portion of the engine.

Unfortunately, existing fuzzers fail to fully leverage this

prominent benefit from such programs. For example, the PoC

of a JIT-related bug has its unique control flow and data

dependencies among used variables, which explore the specific

code paths of an optimizer. However, once the PoC is broken

into small normalized segments and mixed with the segments

of other programs in a large corpus, the generative fuzzers like

CodeAlchemist [19] rarely hit the code paths in a reasonable

amount of time. Also, semantic aspects are not respected

when the PoC is mutated by grammar-rule-based mutational

fuzzers like Superion [44] and Nautilus [2]. Different from the

aforementioned fuzzers, DIE creates new JavaScript programs

in a hybrid manner, synthesizing a seed corpus with a unit

generated by generative methods. More importantly, DIE fully

respects the properties of unit-test programs and PoCs. In

particular, DIE mutates an individual program by replacing the

code segments that are unrelated to the properties with new

ones or simply inserting new statements. Meanwhile, the new

segments used for mutation are generated from scratch based

on the context.

C. Trend of Recent Vulnerabilities

We summarize the vulnerabilities (i.e., exploitable bugs with

CVEs assigned) found in ChakraCore from 2016 to 2019 in

Figure 1, which demonstrates the trend of vulnerabilities in

JavaScript engines. We collect the vulnerability information

function opt(arr, obj) {

 arr[0] = 1.1;

 typeof(arr[obj]);

 arr[0] = 2.3023e-320;

}

function main() {

 let arr = [1.1, 2.2, 3.3];

 for (let i = 0; i < 0x10000; i++){

opt(arr, {});

 }

 opt(arr, {toString: () => {

arr[0] = {};

throw 1;

 }});

 print(arr[0]);

}

main();

function opt(arr, obj) {

 arr[0] = 1.1;

 obj.x;

 arr[0] = 2.3023e-320;

}

function main() {

 let arr = [1.1, 2.2, 3.3];

 for (let i = 0; i < 0x10000; i++){

opt(arr, {});

 }

 let get = Map.prototype.get;

 Map.prototype.get = function (key) {

 Map.prototype.get = get;

 arr[0] = {};

 return this.get(key);

 }

 opt(arr, Intl);

 print(arr[0]);

}

main();

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

(type)

(order)

(precondition)

(new code)

(a) CVE-2018-0840 (b) CVE-2018-8288
(e.g., input corpus) (e.g., output test case)

Fig. 2: Two PoC exploits for CVE-2018-0840 and CVE-2018-8288 of
ChakraCore. Given a PoC-(a) as a seed input, PoC-(b) can only be
discovered when three conditions are met (1 – 3) but with enough
variation introduced (4). Note that human hackers are particularly
good at exploring similar types of bugs in this manner—both PoC
exploits are written by the same author [25, 26].

from Google Project Zero issue trackers [14] and the commits

of ChakraCore for security updates [29]. All the vulnerabilities

reside in either the parser and interpreter or the JIT compiler

at the backend. The number of parser and interpreter bugs

has been rapidly decreasing in the period. Meanwhile, the JIT

compiler bugs gradually dominate. The JIT compiler bugs are

mainly caused by incorrect speculation or wrong optimization

based on logic error. We further divide these bugs by their types

and notice that most of the bugs result in out-of-bounds (OOB)

access or type confusion. An ordinary program written in

JavaScript, a typical high-level language, needs sophisticatedly

crafted code to trigger these cases. The goal of DIE is to

effectively generate such programs that are more likely to hit

these deep phases for finding JavaScript bugs in 2019.

III. OVERVIEW

A. Motivation

Human hackers have a particular interest in auditing similar

types of vulnerabilities. This intuitively makes sense, as the

developers likely introduced similar mistakes dispersedly to

the codebase. For example, Figure 2-(a) shows a bug in JIT-

related optimizations [25]: a bailout condition is incorrectly

assumed and checked in the JIT-ed code. Figure 2-(b) shows

a similar bug but with subtle differences: it is incorrectly

assumed to have no side effect in an exception (throw in

toString) if suppressed by typeof in (a), but in (b), a side

effect can be unexpectedly introduced by Map used during

the initialization of Intl (for internationalization support).

Accordingly, both exploits share many common preconditions,

as shown in Figure 2. For example, 1 is required to satisfy

the JIT-able condition by repeatedly invoking opt(), and 3 is

required to trick the optimizer to incorrectly assume the type

of arr in opt() but to allow an optimization condition (i.e., a

redundant check elimination) to be met.

1630

Such an intuitive approach is not well respected when a PoC

exploit is used as a seed input by automatic techniques like

fuzzing. One possible explanation is that the goal of fuzzing by

design promotes exploration of new input spaces, which tends

to encourage the fuzzer’s mutation strategies to destruct the

conditions encoded in the seeding input. This decision is well

made to increase the code coverage in fuzzing small programs.

Nonetheless, the input space for JavaScript-like complex

programs having nearly a million lines of source code is

infeasible to be exhaustively explored. Also, recent trend of

bugs in JavaScript engines is not simple memory corruption

bugs that can be achieved by naive coverage-based testing,

but rather logic errors that need sophisticated conditions to

reach them. In other words, mutation strategies should focus on

producing high-quality test cases instead of merely increasing

code coverage, so that it can reach meaningful, difficult-to-find

bugs. For example, in Figure 2, an ideal strategy for fuzzers

is to preserve certain preconditions: keeping the conditions to

enable JIT in 1 , a type in 2 and an access order in 3 ,

while introducing a new code snippet (4) that can vary the

internal mechanics of JavaScript’s optimization algorithms. If

Figure 2-(a) is used as an input corpus, existing coverage-based

fuzzers likely discard conditions 1 – 3 because they are not

essential in discovering new code paths but are considered

redundant to the existing corpus.

B. Challenges and Approaches

An ideal fuzzer would want to fully harvest the subtle condi-

tions encoded in a high-quality input corpus such as known PoC

exploits [18] or JavaScript unit tests. Thus, the generated test

cases naturally satisfy the necessary preconditions to trigger a

new bug. One possible approach would be to manually encode

such conditions in each input corpus. However, this does not

work for two reasons: 1) the number of input corpora is huge

(14K, see §VI-A), and 2) more critically, it does not provide

fuzzers enough freedom for space exploration, negating the

benefits of the fuzzing-like automated approaches. Another

approach is to automatically infer such preconditions from each

corpus via program analysis (e.g., data-flow analysis). However,

this also negates the true enabler of fuzzers, the performance,

i.e., reducing 10% input spaces for exploration after spending

10% more computing power for additional analysis brings no

benefit to the fuzzer.

Our key approach is to stochastically preserve aspects, the

desirable properties we prefer to be maintained across mutation.

It is a stochastic process because aspects are not explicitly

annotated as part of the corpus, but they are implicitly inferred

and maintained by our lightweight mutation strategies, so-called

aspect-preserving mutation.

In this paper, we realize aspect preservation with two

mutation strategies, namely, structure and type preservation:

Structure-preserving mutation. We observe that maintaining

certain structures (e.g., control flow) of an input corpus tends

to retain their aspects in the generated test cases. For example,

a loop structure in a PoC exploit plays a significant role in

invoking JIT compilation (1 in Figure 2), and certain access

orders in a JIT-ed region are necessary to trigger an optimization

phase (e.g., a redundant check elimination, 3 in Figure 2).

In contrast, widely-deployed blind mutation and generation

strategies tend to destroy these structures, e.g., at an extreme

end, the state-of-the-art JavaScript fuzzer, CodeAlchemist [19],

dissects all seeding inputs and regenerates new test cases for

fuzzing. According to our evaluation, structure-preserving is the

most effective mutation technique to preserve various aspects

(e.g., each JIT optimization phases §VI-D) of input corpora

across mutation, which renders 2× more crashes than without

the technique (Table VII).

Type-preserving mutation. We also observe that respecting

types in an input corpus provides enough room for fuzzers to

generate high-quality test cases while retaining aspects. For

example, an object type (2 in Figure 2) should match with

the assumed argument type of the JIT-ed code ({} of opt() in

Line 9), otherwise the code should be bailed out in the JIT

execution. In other words, if the types of a seed input are not

preserved, the derived test cases end up stressing only a shallow

part of the JavaScript engines (e.g., parser or interpreter). In

addition, preserving types significantly helps in producing

error-free test cases—both syntactic compilation errors and

dynamic runtime errors such as ReferenceError, TypeError,

and RangeError. Note that such error conditions also prevent

test cases from reaching the deep, complex logics of the

JavaScript engines, and so they are considered a necessary

precondition to preserve various types of aspects of the original

seed corpus. In this paper, we leverage a lightweight, type

analysis that statically propagates the observed type information

from dynamic analysis (§IV-A). According to our evaluation,

the type-preserving mutation reduces runtime errors 2× more

than the state-of-the-art fuzzer (Figure 5). Note that our type-

based mutation also aims to be semantic-aware, meaning that

it attempts to avoid the destruction of aspects by respecting

some semantics of a seed input, e.g., avoiding try-catch logic

that thwarts a JIT invocation.

IV. DESIGN

DIE is a mutation-oriented JavaScript fuzzing framework

that respects the high-level aspects of seed inputs, such as

PoC exploits and unit tests, to generate effective test cases. To

achieve this, DIE mutates the AST of a JavaScript input by

preserving with a high probability the code structure that affects

the overall control flows and the original types of the used

variables. Code coverage guidance and a distributed setting

also enable DIE to reach deep bugs in JavaScript engines with

scale.

Workflow. Figure 3 illustrates DIE’s overall design and

workflow. First, DIE pre-processes original seed files to produce

their typed ASTs. Combining dynamic and static type analysis,

DIE infers the node types in an AST with low overhead in 1 .

After type analysis, DIE picks a typed AST of a seed input from

the corpus for mutation (2 in Figure 3). Given the typed AST,

DIE generates a new test case by replacing each node (while

preserving its type), or inserting a new node (while preserving

the overall structure) (3 in Figure 3). By using the typed AST,

1631

Typed-Node
Builder

Mutation
Engine

Instrument
Dynamic
Analysis

Mutated Typed-AST

Mutated
Seeds

Coverage Feedback Crash Report

Type Information

AST

+

Original Seeds

…

Corpus

Instrumented
JS Engines

Mutate
(Aspect-preserving)

Type analysis

Execute

Feedback

while

==

a

[]
0

NUM

NUM ARRAY

1

while

==

a

[]
0

1

NUM

NUM

IMMUTABLE

NUM ARRAY

while

==

a

[]
.

NUM

NUM

IMMUTABLE

a
[]

0

a

“length”

NUM ARRAY

NUM

NUMNUM ARRAY

Typed-AST

Static Analysis

Pre-Processing Seed Generation Execution/Feedback

Input

Distributed
Fuzzing Platform

Pick

Fig. 3: Design overview of DIE. First, DIE pre-processes (e.g.,instrument) all the original seed files to construct a typed AST via dynamic/static
analysis (1). In the main fuzzing loop, DIE selects a test case from the corpus along with its typed AST (2). Next, DIE mutates the typed
AST by modifying/inserting new nodes while maintaining its structure and type information (3). Note that the typed-node builder interacts
with mutation engine supporting aspect-preserving mutation. Afterward, the AST is converted back to a JavaScript file and examined by the
fuzzing platform (4). Finally, DIE measures the runtime coverage for feedback, which determines whether or not the new file will be saved.
If the engine crashes at runtime, DIE records the input (5). DIE can be deployed in a distributed environment where a certain amount of
generated inputs are tested in parallel.

DIE aims to preserve the type during the mutation process,

so-called type-preserving mutation, and aims to preserve the

control-flow structure, so-called structure-preserving mutation,

each of which tends to maintain certain aspects implicitly

embodied in the original corpus across mutation. After mutation,

DIE executes the newly generated test case in 4 and checks

if the execution crashes or terminates without an error. As the

target JavaScript engine is instrumented, DIE can obtain the

runtime coverage after executing the test case, and store it as

a new input corpus in 5 if it visits any new code path. DIE

also supports distributed fuzzing by using multiple machines

to find bugs concurrently.

A. Custom JavaScript Type System

DIE refines the original type system of JavaScript. The

refined type system has two unique properties that are tailored

for fuzzing but are different from other JavaScript fuzzers [17,

19, 39]:

Mixed type. DIE introduces a new type called Mixed for the

syntactic units in a JavaScript program, which captures types

that vary at runtime. Note that since JavaScript is a weak- and

dynamic- typed language, the type of each variable can only be

determined at runtime and even can change during its lifetime.

Mixed is introduced to describe all types that each syntactic

unit can potentially have.

Detailed compound types. DIE inspects the sub-element

type(s) of a JavaScript object to define compound types in a

more fine-grained manner. (1) Array: DIE records the common

type of the elements in an array, which can be Number or

String. An array that has empty slots or elements of various

types is considered an Any array. (2) Object: DIE stores the

shape of an Object instance, which is composed of the types

of its property keys and values. (3) Function: DIE considers

the argument and return type of a Function instance.

DIE’s custom type system is an essential feature to better

support the mutation based on the semantic information

extracted from the given test cases. For instance, being aware

of several Number members of an existing Object, DIE has

more building blocks for creating a valid Number expression

than an existing fuzzer. In addition, DIE introduces fewer

semantic errors from its mutation. For example, with the refined

Array types, DIE prefers the element of a Number array to an

arbitrary array for mutating an array index (e.g., from arr[i]

to arr[int_arr[j]]).

Based on the custom type system, DIE abstracts every

JavaScript operation, including expressions and APIs for built-

in objects into one or more type reduction rules. Each rule

declares the type of the return value when the operation

is invoked with the arguments of particular types. Table II

summarizes how DIE redefines the addition and array indexing
operations. The default return type of an addition in JavaScript

is String unless both of the operands are Numbers. Moreover,

the return value of indexing an array totally depends on the

type of element. Note that DIE relies on these rules to infer

AST node types for typed AST construction (see §IV-B) and

build new AST nodes for a mutation (see §IV-C).

B. Typed ASTs

Basically, DIE mutates the syntactic units (i.e., AST nodes)

of a saved JavaScript file in the corpus so as to generate new

1632

Operation Arg. types Require l-val. Ret. type Ensure l-val.

arg1 + arg2 Num., Num. false, false Num. false
Any, Any false, false Str. false

Num. Arr., Num. false, false Num. true
arg1[arg2] Str. Arr., Num. false, false Str. true

Arr., Num. false, false Any true

arg1++ Num. true Num. false

TABLE II: The examples of typed operation rules described in DIE:
addition and array indexing. The rules are used to statically infer the
type of every AST node of a seed input and also guide the generation
of new typed AST nodes.

inputs for testing. To build new AST nodes for mutation while

keeping the validity of a generated input, DIE retrieves the

type and binding information of every seed file at the first

stage. In particular, for each node of the AST retrieved from a

seed file, DIE extends it with (1) its potential type(s) refined by

DIE (see §IV-A) at runtime and (2) a set of declared variables

available within its scope. We name such an extended AST that

contains the type and binding information for every AST node

as a typed AST. DIE maintains the typed AST for every saved

input in the corpus and mutates the typed AST to generate

new JavaScript files.

As JavaScript is a weak- and dynamic- typed language, DIE

aims to infer all the possible types that an AST node may have

at runtime. DIE achieves this through heterogeneous approaches.

First, DIE dynamically collects the type(s) of every AST node

that represents an identifier, namely, a reference to a particular

variable, in a seed file. After parsing out the AST of a seed,

DIE instruments the seed by adding a trampoline right before

the statement that references an identifier node. The trampoline

jumps to a type profiling function that retrieves the type of the

identifier at the moment. Note that the function traverses an

Array and iterates all the members of an Object for a refined

type enforced by DIE. DIE then runs the instrumented seed

file and deduplicates the record types of an identifier output at

runtime for an eventual type set. With the determined types of

all the leaf nodes (i.e., identifiers and literals), DIE statically

infers the type(s) of other AST nodes from bottom to top in

an unambiguous manner. Particularly, DIE refers to ECMA-

262 [9], which specifies the types of arguments used in a

particular expression or built-in API. In addition, DIE statically

reducts the types of arguments and return value of a custom

Function for its legitimate invokings in newly built AST nodes.

For the sake of completeness, DIE also labels the statement not

having a defined value type with its corresponding descriptive

type, such as if statements, function declarations, etc. DIE

also performs traditional scope analysis for every identifier

node in order to build an available variable set at each code

point in the typed AST.

C. Building Typed AST Nodes

DIE relies on its builder to build new nodes for mutating

the typed AST of an input. Basically, DIE invokes the builder

with a desired type and a context (i.e., the code point of a

typed AST node where node mutation is to occur). The builder

then utilizes the context to construct a new AST whose value

type is compatible with the expected one.

Algorithm 1 Constructing a random typed AST that has a

desired value type.

1: Input: context: the context of a code point (i.e., bindings)

2: lval: true only when expecting a l-value

3: type: the desired value type

4: step: the current AST depth

5: Output: the typed AST of a newly constructed expression

6: function BUILD_EXP(context, lval, type, step = 0)

7: if step == THRESHOLD then
8: if PREFER_VAR() or lval then
9: return BUILD_VAR(context, type)

10: else
11: return BUILD_LIT(context, type)

12: fit_rules ← {}
13: for each rule ∈ RULES do
14: if MATCH(rule.ret_type, type) then
15: if not lval or rule.ret_lval then
16: fit_rules ← fit_rules ∪ {rule}
17: rule ← RANDOM_CHOICE(fit_rules)
18: args ← {}
19: for each arg ∈ rule.args do
20: arg ← BUILD_EXP(context, arg.lval,
21: arg.type, step+ 1)

22: args ← args ∪ {arg}
23: return CONSTRUCT_AST(rule, args, rule.ret_type)

Algorithm 1 presents the algorithm of the builder that returns

the root of a new typed AST. Given a targeted value type, the

builder iterates all the abstract rules of the supported JavaScript

operations such as the ones described in §IV-A (Line 12-16).

The builder randomly selects one that has a matched value

type (Line 17) and ensures a l-value if necessary (Line 15).

After that, the builder recursively builds the argument nodes

required by the operation based on their expected value types

(Line 18-22). During the construction, the builder maintains

the exact value type for every newly created node during the

construction. The builder limits the depth of a new AST and

terminates the construction with leaf nodes, including variables

and literals (Line 7-11). To fully exploit the semantic aspect of

the current seed, the builder tends to reuse the constant values

(e.g., numbers, strings, and regular expressions) that appear in

the file for building literals; also, the builder references existing

variables available within the scope for constructing leaf nodes.

D. Mutating Typed ASTs

Given a selected input, DIE mutates its typed AST in an

aspect-preserving manner in order to utilize its properties that

targetedly test specific code paths in the underlying component

of a JavaScript engine. Generally, the aspects of a test case

largely depend on its structure and type information. Therefore,

during the mutation, DIE particularly avoids removing the entire

if statements, loop statements, custom function definitions

1633

Algorithm 2 Mutating the typed AST of an input file and

testing the mutated input.

1: Input: t_ast: the typed AST of an input file.

2: procedure FUZZ_ONE(t_ast)
3: type ← SELECT_MUTATION_TYPE()

4: if type == Mutation then � Mutating a typed
sub-AST.

5: old ← RANDOM_EXP(t_ast)
6: new ← BUILD_EXP(old.context, old.type)
7: REPLACE_NODE(t_ast, old, new)

8: SAVE_FILE(t_ast.toString())
9: REPLACE_NODE(t_ast, new, old)

10: else
11: ref ← RANDOM_EXP_STMT(t_ast)
12: if type == Insert_Statement then � Inserting

a statement.
13: new ← BUILD_EXP_STMT(ref.context)
14: else � Introducing a new variable.
15: new ← BUILD_VAR_DECL(ref.context)

16: INSERT_BEFORE(t_ast, ref , new)

17: SAVE_FILE(t_ast.toString())
18: REMOVE_NODE(t_ast, new)

and invocations, etc., which determine the structure of an

existing JavaScript program. Also, DIE avoids redefining an

existing variable with a different type. The mutated AST is then

translated into JavaScript code for testing. After processing

the execution result, DIE reverts the changes made to the AST

for the next round of mutation. If a generated JavaScript file

discovers new code paths of the targeted JavaScript engine,

its typed AST is saved along with the code. Algorithm 2

presents how DIE fuzzes an existing JavaScript file through

aspect-preserving mutation.

Particularly, DIE adopts the following approaches to mutate

the typed AST of a JavaScript file, sorted by their priorities:

Mutating a typed sub-AST. DIE randomly selects a sub-

AST that serves no structural purpose (i.e., an expression or a

sub-expression) (Line 4). The sub-AST is then replaced with

a new one built by the builder that has a matched type (Line

5-6).

Inserting a statement. DIE locates a statement block (e.g.,

the body of an if statement, a function or simply the global

region) and randomly selects a code point inside the block

for insertion (Line 10). Next, DIE generates a new expression

statement by using the existing variables declared at the point.

Here, the expression statement is simply an expression of any

value type followed by a semicolon, which can also be built

by the builder. DIE grows the old input by inserting the new

statement at the end (Line 15).

Introducing a new variable. Instead of inserting statements,

DIE also manages to insert the declarations of new variables at

random code points in a typed AST. A new variable is always

initialized by an expression built by the builder with a random

type (Line 14).

In order to fully exploit the existing aspects of a seed, DIE

prefers sub-AST mutation and new statement insertion when

selecting the mutation approach (Line 3). DIE introduces new

variables into the input only if no new code path is discovered

for a long time. The newly generated input through any of the

three approaches is stored (Line 7 and 16) for further execution

by the target JavaScript engine. Then DIE reverts the changes

made to the typed AST that will be reused for further mutation

in the subsequent rounds (Line 8 and 17).

E. Feedback-driven Fuzzing in Distributed Environment

Even with DIE’s aspect-preserving mutation, finding new

bugs in a JavaScript engine is still challenging because (1) input

space is still enormous due to the high dimensions of freedom

in JavaScript and (2) the re-execution cost is too high to be

handled in a single machine. To overcome these issues, DIE

uses coverage-driven fuzzing in a distributed environment. In

particular, DIE uses classical feedback-driven fuzzing inspired

by AFL, but with a refined code coverage that is the same as

Fuzzilli [17]. The original AFL’s code coverage represents

each edge in a byte to record hit counts for finding overflows.

However, hit counts are pointless in JavaScript because they

can be arbitrarily controllable by modifying a range in the for

statement. Thus, DIE records an edge in a bit by discarding hit

counts. As a result, DIE can store eight times more branches

within the same size of memory compared to the original AFL’s

design.

Furthermore, to make multiple machines collaborate in a

distributed environment, DIE develops its own code-coverage

synchronization mechanism. While maintaining its local cov-

erage map, an instance of DIE synchronizes its map with a

global map if it discovers a locally interesting test case; it

introduces a new bit according to the instance’s local map.

Then, the instance uploads the test case if it is still interesting

after the synchronization. This is similar to EnFuzz’s Globally

Asynchronous Locally Synchronous (GALS) mechanism [6],

but is different in two aspects. First, DIE synchronizes code

coverage itself instead of interesting test cases like EnFuzz.

Unlike EnFuzz, which needs to re-evaluate test cases because

of the heterogeneity of fuzzers, DIE can avoid this re-execution,

which is expensive in JavaScript engines, by synchronizing

code coverage directly thanks to identical fuzzers. Second, DIE

can support multiple machines, not just multiple processes in

a single machine.

V. IMPLEMENTATION

Broadly, DIE is implemented as an AFL variant that can

also run in a distributed environment. First, DIE introduces

a pre-processing phase into AFL. Starting with existing test

suites and PoCs, DIE leverages its type analyzer to construct

their typed ASTs and save them along with the source files into

the input corpus. More importantly, DIE replaces the AFL’s

mutator for binary input with its own mutation engine. The

mutation engine uses the typed-AST builder to build random

sub-ASTs for mutating or growing a typed-AST selected from

the corpus. DIE reuses most of the other components of the

1634

Component LoC Language

Fuzzing engine
Type analyzer 3,677 TypeScript

Instrumentation tool 222 Python
Typed-node builder 10,545 TypeScript
Mutation engine 2,333 TypeScript
AFL modification 453 C

Distributed fuzzing harness
Coordinator 205 TypeScript
Local agent 1,419 Python, Shell script
Crash reporter 492 Python

TABLE III: Implementation complexity of DIE including core fuzzing
engine, AFL modification, and necessary harnesses for distributed
fuzzing. Since we reuse a few components (e.g., the fork-server, seed
scheduler, and coverage collector) in the original AFL, we omit their
code sizes.

AFL, including the fork-server, seed scheduler, and coverage

collector. Nevertheless, DIE disables the trimming phase in the

original AFL, which destructs the aspects from a seed input.

Note that DIE heavily utilizes Babel [28], a popular JavaScript

transpiler, to complete all the tasks at the AST level of a

JavaScript file. To support DIE to run in a distributed manner,

we implement several harnesses: (1) a centralized coordinator

that synchronizes discovered test cases across the DIE instances

running on different machines and collects crashes, (2) a local

agent that manages the execution of DIE on a single machine,

and (3) a crash reporter that deduplicates found crashes and

reports the coordinator.

Table III presents the lines of code (LoC) of each component

of DIE. We explain the implementation details of several non-

trivial ones in this section.

Type analyzer. The type analyzer constructs a corresponding

typed-AST for every seed file (see §IV-B). First, it leverages

Babel to get the original AST of a seed file. Note that Babel also

provides the binding information of every variable along with

the AST by scope analysis. Then it instruments the seed file

with the invokings of the typing function on every occurrence

of a variable (i.e., an identifier) with the help of the Babel

APIs for AST manipulation. Then the seed file is executed

and the runtime types of an identifier are collected at runtime

and used for bottom-up type analysis on the AST afterward.

To implement a typed-AST, we simply introduce a new type

field into the original Node structure that represents a node in

the AST implementation of Babel, where the inferred type is

stored.

Mutation engine and typed-node builder. Given an input

typed-AST from the corpus, the mutation engine queries the

typed-AST builder for a randomly built sub-AST. The built

sub-AST is a substitute for an existing subtree or is simply

inserted into the input typed-AST (see §IV-D). Since our typed-

AST is a simple extension of the Babel’s AST, we leverage

various Babel APIs for (1) building new ASTs of JavaScript

expressions and statements in the typed-node builder and (2)

removing existing nodes or adding new nodes in an AST in

the mutation engine. Also, we gather the literals (i.e., numbers,

strings and regular expressions) used in all the seed programs

in our corpus for the builder to choose from when building a

new code segment. The builder also works with the binding

information provided by the original AST in Babel and thereby

only uses declared variables within the scope in order to avoid

ReferenceError.

Integration with AFL. We build a single fuzzing executor

of DIE on the basic infrastructure of AFL [49] (version

2.52b), including the forkserver, coverage feedback routine, and

execution scheduling. Instead of classic byte mutation in AFL,

we integrate our fuzzing engine for mutation with AFL and let

it communicate with the AFL infrastructure. After generating

input by the core engine, AFL executes a target engine with

the generated input. Libraries, including wrapper functions to

resolve compatibility issues (see §VI-A), are executed together

with the generated input. To build an instrumented binary for

code coverage, we directly reuse AFL-Clang as a compiler

and slightly modify the LLVM pass to use the custom code

coverage described in §IV-E.

Distributed fuzzing engine. To launch our fuzzing executor in

a distributed environment, we implement harnesses, including

executor written in Python and Shell script, coordinator, and

crash reporter. To execute the shell command in a distributed

environment, we use fabric [10], which is a Python library

supporting the execution of shell commands remotely. The

harness includes functionalities such as installing dependencies

and deploying, launching, and terminating the AFL instances.

After launching them in a distributed environment, diverse

intermediate data such as seed corpora should be synchronized.

For fast and reliable data access in a distributed environment,

we use a well-known open source and in-memory database,

redis [35]. The coordinator communicates with the redis server

and synchronizes and distributes intermediate data (e.g., code

coverage and input introduced new paths) among the distributed

AFL instances. We also implement crash reporter to report the

found crashes and filter them to eliminate duplicates. Once

the crash reporter gets crashes from the database, it tests them

with the JavaScript engine and notifies the user if it finds a

new unique crash.

VI. EVALUATION

In this section, we evaluate the effectiveness of DIE regarding

its ability to find new bugs in the latest JavaScript engines using

aspect-preserving mutation. Moreover, we compare DIE with

existing JavaScript engine fuzzers based on diverse metrics to

present various advantages of DIE.

Q1 Can DIE find new bugs in real-world JavaScript engines?

(§VI-B)

Q2 Do the preserved aspects from the corpus play a key role

in triggering the bugs found by DIE? (§VI-C)

Q3 Does DIE fully preserve the aspects presented by the

corpus? (§VI-D)

Q4 Can DIE generate correct JavaScript code, both syntacti-

cally and semantically? (§VI-E)

Q5 How does DIE perform in terms of code coverage and bug

finding ability against state-of-the-art fuzzers? (§VI-F)

1635

§VI-A explains the environment for the experiments. §VI-B

describes the bugs, including security vulnerabilities found

by DIE. §VI-C evaluates the effectiveness of utilizing the

aspects of the seed corpus by analyzing the results of DIE.

§VI-D evaluates whether the aspects of the seed corpus are

well maintained in the test cases generated by DIE. §VI-E

evaluates the validity of the generated input by DIE based

on syntactic and semantic errors raised by JavaScript engines.

§VI-F compares the performance of DIE with other state-of-

the-art fuzzers.

A. Experimental Setup

Environment. We evaluate DIE on Intel Xeon E7-4820 (64

cores) with 132 GB memory for the experiments in §VI-D

and §VI-F, and Intel Xeon Gold 5115 (40 cores) with 196 GB

memory for the ones in §VI-E. Both machines run Ubuntu

16.04. Note that when compared with other fuzzers that do

not natively support distributed fuzzing, we only use a single

machine in the evaluation for fairness.

Targeted engines. We evaluate the bug-finding ability

with three widely used JavaScript engines: ChakraCore [29],

JavaScriptCore [1], and V8 [16]. Note that these engines

currently operate for Microsoft Edge, Apple Safari, and Google

Chrome, which all have a large user base and are security-

critical so that they are heavily tested by OSS-Fuzz [15] and

security researchers. Also, we choose the youngest engine,

ChakraCore, as a representative in the other experiments

(i.e., evaluating aspect preserving, input validity, and code

coverage). With a design similar to other engines, ChakraCore

involves abundant complicated compiler techniques for code

optimization and also provides fine-grained debug messages in

each working phase.

Collecting valid seed inputs. As DIE mutates based on the

aspects of existing test suites and PoCs, the quality and validity

of seed corpora largely affect DIE’s performance. To build the

corpus of DIE, we collect JavaScript files from two public

sources: (1) regression tests from the source repositories of

four JavaScript engines: ChakraCore, JavaScriptCore, V8, and

SpiderMonkey, and (2) js-vuln-db [18], a public repository

that collects PoCs of JavaScript engine CVEs. To alleviate

compatibility issues among different JavaScript engines, we

clarified the engine-specific functions (e.g., Windows Script

Host (WScript) in ChakraCore) and then implemented wrapper

functions that perform the equivalent actions in the other

engines or eliminated them as possible to suppress unexpected

ReferenceError. Moreover, to fully utilize the seed corpus,

we further removed all the assertions from the collected files

to prevent early termination of the new inputs generated by

DIE. We eventually accumulated 14,708 unique JavaScript

files, including 158 JavaScript files from js-vuln-db used in

the following experiments 2.

2We use complete set of files from these repositories to avoid cherry-picking
or biased selection.

JS Engine Version # Lines Running Time Resource

ChakraCore 1.11.5 780,954 3 days N: 22, C: 839
ChakraCore 1.11.5* 797,872 3 days N: 22, C: 839
ChakraCore 1.11.9 781,397 1 week N: 22, C: 839
ChakraCore 1.11.9* 797,782 1 week N: 22, C: 839
JavaScriptCore 2.24.2 443,692 1 week N: 22, C: 839
V8 8.0.0* 995,299 1 week N: 13, C: 388

N: # of nodes, C: # of cores
*Canary version

TABLE IV: Targeted JavaScript engines, their versions and the
running time DIE runs against them.

Preserved aspect Bug Crash

Structure & Type 14/28 (50.00%) 40/84 (47.62%)
Structure-only 12/28 (42.86%) 32/84 (42.86%)

Total 22/28 (92.86%) 72/84 (90.48%)

TABLE V: The ratio of the crashes and bugs found by DIE in
ChakraCore that exactly borrow the aspects, indicated by both structure
and type information, or only the control flow structure, from the
seed files in the starting corpus.

B. Identified Bugs Including Security Vulnerabilities

To evaluate the ability of DIE in finding new vulnerabilities,

we comprehensively ran DIE in a distributed environment,

including one master node to store and synchronize intermediate

data (e.g., coverage map) and multiple slave nodes. Table IV

describes the targeted engines, period, and used resource DIE

ran for.

As a result, DIE found 28 bugs in ChakraCore, 16 bugs in

JavaScriptCore, and four bugs in V8 for a total of 48 bugs.

Table VIII shows the unique bugs found and their description.

We counted these bugs using the following criteria: (1) found

but fixed issues before we reported to the vendors, (2) semantic

bugs that have different behavior from spec and other JavaScript

engines, (3) memory corruption bugs except assertions in

release build, and (4) security bugs acknowledged by vendors.

Actually, assertion in release build can be considered a

type of bug for some vendors. For example, the vendor of

JavaScriptCore accepts reports related to assertions in release

build and was willing to fix them, although they are not security-

related bugs. On the other hand, the vendor of ChakraCore

does not accept reports about assertion in release build. Thus,

we eliminated the number of assertions in release build to

conservatively count the number of bugs found.

To identify all bugs by unique root cause, we manually

analyzed every found crash, and identified 48 distinct bugs.

Among the distinct bugs, we found that 16 are related to

security based on their similarity to existing bugs previously

known as security-related bugs. Of the number of security-

related bugs, we gained 12 CVEs acknowledged by vendors

and 27K USD as bug bounty rewards. In addition, 13 of the

bugs are likely security-related, including memory corruption

bugs. Interestingly, we could identify six semantic bugs in

ChakraCore because ChakraCore provides a more detailed

debugging message than the others for misbehaved situations

including semantic bugs, so DIE could reach them.

1636

1 function opt(arr, start, end) {
2 for (let i = start; i < end; i++) {
3 if (i === 10) {
4 i += 0;
5 }
6 + start++;
7 + ++start;
8 + --start;
9 arr[i] = 2.3023e-320;

10 }
11 + arr[start] = 2.3023e-320;
12 }
13 function main() {
14 let arr = new Array(100);
15 arr.fill(1.1);
16

17 for (let i = 0; i < 1000; i++) {
18 - opt(arr, 0, 3);
19 + opt(arr, 0, i);
20 }
21 opt(arr, 0, 100000);
22 }
23 main();

Listing 1: The difference between the PoC of CVE-2019-0990 found
by DIE and that of CVE-2018-0777 contained in the corpus. The
PoC is almost seemingly identical, yet patching these bugs requires
different measure as their root cause differs from each other.

C. Effectiveness of Leveraging Aspect

As described in §III-B, DIE leverages the aspects from

existing test cases to explore a broad input space more effi-

ciently and effectively. To evaluate whether aspect-preserving

mutation enables us to reach bugs, we manually investigated

the relationship between the generated crashing inputs in §VI-B

and their corresponding seed files. First, we minimized every

crashing input into a minimal PoC that can trigger the crash.

We then inspect whether the structure or type information of

the PoC that result in the crash correspond to that of the seed

file indeed. We checked the inputs for 84 distinct crashes and

28 reasoned bugs found by DIE in ChakraCore (see §VI-B).

Table V presents the number of inputs that leverage only

structure information or both structure and type information

of the original seed file. The result shows that the aspects

borrowed from the starting corpus contribute to 90.48% of the

crashes and 92.86% of the bugs found by DIE. In particular,

47.62% of the crashes and half of the bugs share both structure

and type information with the corpus. The detailed aspects of

the found bugs are described in Table VIII.

Listing 1 presents a code difference between a bug found by

DIE (i.e., CVE-2019-0990) and its seed file (i.e., CVE-2018-

0777) to show an example of shared aspects. The original seed

corpus leads to an out-of-bounds array access (Line 9), as the

JavaScript engine fails to compute the correct bounds of the

array (i.e., arr), so a bound check for the array is incorrectly

eliminated by redundancy elimination for optimization. This is

because the array index created as an induction variable (i.e.,

i) is wrongly optimized (Line 4). Similar to the seed, the bug

found by DIE leads to an out-of-bounds array access (Line 11)

due to a wrong bound check elimination for the array. It also

uses an induction variable (i.e., start) as an array index and it is

wrongly calculated 3, so it leads to a miscalculated array bound

3Patch: https://bit.ly/2MEahCK

DIE DIEt Superion CodeAlchemist

Preserved aspect 65.39% 34.26% 58.26% 40.67%
of bytecode† 412 1,422 -119 -984

† The corpus totally emits 2,551 unique bytecode statements after
normalization.

TABLE VI: The preserved aspect rate of generated input and the
difference between the number of normalized statements in the
bytecode of the seed programs and the generated inputs by DIE,
DIEt, Superion, and CodeAlchemist.

that affects the wrong array-bound elimination. This example

shows the benefit of DIE in terms of borrowing existing aspects,

wrongly calculated induction variable, and using it as an array

index to invoke a wrong redundancy elimination. The structure-

preserving supported by DIE helps to keep the environment,

which leads to a wrong redundancy elimination (e.g., for and if
statement on Line 2-5), and type-preserving mutation (e.g., i on

Line 19) helps it to iterate over the loop enough times to lead to

wrong induction variable calculation. Note that the bug is not

reproducible if the if statement (Line 3-5) is eliminated, which

means a negligible code change affects the optimization phase

in JIT sensitively, which leads to the bug. Besides, although the

difference between the two PoCs seems trivial, their root cause

differs; thus, patching these two bugs requires independent

effort. The root cause of the previous bug (CVE-2018-0777)

stems from erroneous constant folding, whereas the new bug

brings its wrong behavior due to the improper array bounds

profiling.

D. Evaluation of Aspect Preserving

To demonstrate that preserving a structure and type in-

formation are effective to maintain interesting aspects and

compare the performance regarding aspect preserving with

existing fuzzers, we evaluate DIE, DIE without structure-

preserving, Superion, and CodeAlchemist with a seed corpus

that only contains the JavaScript programs that triggers JIT

compilation. Note that the approach of DIE without structure-

preserving (notated as DIEt for convenience) mutates any

node in a typed AST regardless of the node’s structural

meaning. DIEt still respects the type information during

its mutation. First, we measure the rate of generated input

invoking the JIT compilation, which is considered a criterion

to show aspect-preserving. Next, we compare the number of

unique (normalized) statements in the emitted bytecode of

the generated input with the number in the seed corpus to

further demonstrate the power of aspect-preserving mutation in

exploiting existing test cases and covering deep code paths in a

JavaScript engine. When counting statements in the bytecode,

we normalize the operands (e.g., literal and register name in

arguments of bytecode) that are false noises that hinder the true

uniqueness. Last, in order to show a more fine-grained effect

of preserving a structure and type information for utilizing the

aspects of an existing test case, we evaluate the ratio difference

of JIT-optimization invocations between the set of generated

inputs and the starting corpus. Note that we choose Superion

and CodeAlchemist for comparison, as they are one of the

1637

Die Diet Superion CodeAlchemist
0

25

50

75

100

125

150

175

200
O
p
ti
m
iz
a
ti
o
n
In
v
o
ca
ti
o
n
R
a
te

(%
)

Forward
FGPeeps
FGBuild
Backward
CaptureByteCodeRegUse
BackEnd
DeadStore
GlobOpt
Etc

Fig. 4: The ratio difference of JIT-optimization invocations between
the generated inputs and seed files. The y-axis represents the
absolute difference between the rate, which means the number of
invoked optimization phases per JIT invocation. Based on the same
seed corpus, DIE is the least distant from the corpus regarding
optimization invocations. The eight most notable optimization phases
are highlighted.

state-of-the-art JavaScript fuzzers that found JavaScript bugs

that are acknowledged as CVEs and uses the corpus for input

mutation and generation.

Aspect preserving presented as JIT invocations. We observe

in Table VI that DIE generates 1.12× and 1.61× more inputs

than Superion and CodeAlchemist that invokes JIT compilation.

The result shows that Superion also tends to maintain aspect

through mutation, but DIE is better than Superion because our

approach is aware of not only grammar but also semantics

for mutation. In addition, the approach of CodeAlchemist is

far from leveraging aspects because it breaks useful aspects

in the seed corpus while breaking corpora into code bricks.

Furthermore, comparison between DIE and DIEt shows the

importance of maintaining the structure in regard to aspect

preserving. Specifically, DIE invokes JIT compilation 1.9×
more times in the experiment.

Aspect preserving presented as optimization invocation. To

demonstrate the approach that DIE helps to preserve aspect

in a more fine-grained way, we measured the number of

invoked optimization phases and compared it with the one

invoked by the files in the seed corpus. Figure 4 shows

that DIE modifies the fewest aspects in the seed against

DIEt, Superion, and CodeAlchemist. DIE maintains the same

optimization invocation 1.53× and 4.29× more than DIEt

and CodeAlchemist, respectively. In particular, CodeAlchemist

makes the biggest difference for every optimization phase,

which means reassembling code bricks can totally break

the existing aspects in the seed corpus. Superion shows the

negligible difference from DIE because Superion fuzzes code

Van
illa Diec Die

Sup
erio

n

Cod
eAl

chem
ist
jsfu

nfuz
z

0

10

20

30

40

E
rr
o
r
R
a
te

(%
)

SyntaxError
ReferenceError
TypeError
RangeError

Fig. 5: The error rate of seed files and inputs generated by DIE without
coverage feedback (i.e., DIEc), DIE, Superion, CodeAlchemist, and
jsfunfuzz against ChakraCore for 12 hours. The y-axis represents the
rate of the generated inputs yielding runtime errors. Based on the
same seed corpus, both Superion and CodeAlchemist generate 2.31×
more runtime errors than DIE. In the meantime, jsfunfuzz generates
2.42× more runtime errors than DIE.

in a dumb manner, which is proven as it generates less diverse

bytecodes (see Table V) and higher syntax error (see Figure 5).

However, the dumb manner leaves JIT-affected code in the seed

corpus intact in many cases, so it does not hurt the optimization

invocation a lot.

Unique bytecode generation. DIE generates more diverse

bytecodes than the ones emitted by the seed corpus whether the

structure is preserved or not (see Table V). In contrast to DIE,

Superion and CodeAlchemist produce less diverse bytecodes

than the ones of the seed corpus, which indicates that both

fuzzers cannot fully utilize existing test cases. Also, the result

shows that DIE tends to explore the input space in a more

diverse way than the others.

E. Validity of Generated Input

As §III-B described, generating valid highly-structured input

is difficult but important because early termination by invalid

input will hinder further exploring the input space, which

may include defects. To answer Q4, we measured the runtime

error rates while executing generated input by Superion [44],

CodeAlchemist [19], jsfunfuzz [39], and DIE. We slightly

modified the fuzzers to check the standard error streams of

executing the generated input with the JavaScript engine to

compare DIE against existing fuzzers.

3To confirm the fairness of comparison, we conducted manual inspection of
root causes of high error rate generated by CodeAlchemist. We observed that
high error rate majorly stems from incorrect variable handling (i.e., redeclare
existing variables and redefine them with wrong types) between assembled
code bricks.

1638

0h 5h 10h 15h 20h

Time (h)

15

16

17

18

19

20

21

22

23
C
ov
er
ed

P
a
th

R
a
te

(%
)

Die
Diet
Superion
CodeAlchemist

Fig. 6: The overall covered path rate of running DIE, DIE without
structure-preserving (i.e., DIEt), Superion, and CodeAlchemist against
ChakraCore for 24 hours. The solid lines represent mean and the
shades around lines are confidence intervals for five runs. In the
process, DIE visits unique paths up to 1.16× more than Superion and
up to 1.29× more than CodeAlchemist. The unique paths visited by
DIEt slightly exceed the original DIE up to 1.01×.

JavaScript Engine DIE DIEt Superion CodeAlchemist

ChakraCore 1.11.10 17 7 0 3
JavaScriptCore 2.24.2 2 0 0 0
V8 7.7.100 2 1 1 0

TABLE VII: The number of unique crashes found by DIE, Superion
and CodeAlchemist for 24 hours on the latest engines of June, 2019.
All of the crashes were manually inspected to confirm its uniqueness.

Figure 5 presents the error rate of generated input by DIE and

existing fuzzers. First, we measured the error rate of the intact

seed files (i.e., vanilla) for comparison. The set of seed files

originally generated an 11.20% error rate when we performed

a dry-run. With the seed set, the newly created inputs by DIE

produced an 18.88% error rate with coverage feedback. In

addition, Superion and CodeAlchemist generated a 43.54%

and 43.58% error rate with the same seed set, and jsfunfuzz

generated a 45.62% error rate, which means that the generated

inputs by both Superion and CodeAlchemist yield 2.31× more

runtime error 4and generated inputs by jsfunfuzz yield 2.42×
more runtime error than DIE. This result demonstrates the

effectiveness of DIE against existing JavaScript fuzzers with

regard to generating valid input, which is an important factor to

a fuzz structured target. Furthermore, we measured DIE without

coverage feedback to show the ability of DIE to construct valid

code. Without coverage feedback, DIE generated an 8.65%

error rate, which is less than the error rate of the original

seed set. The result indicates that DIE analyzes type correctly,

builds a valid typed AST node based on our type system, and

replaces the error-yielding AST node with the valid AST node.

F. Performance Comparison with Other Fuzzers

To compare performance in terms of exploring input space

and reaching crashes against state-of-the-art fuzzers, we first ran

DIE, DIEt, Superion, and CodeAlchemist on the instrumented

JavaScript engine to measure code coverage. In addition, we

ran them in the same environment (see §VI-A) against the

latest versions of three major JavaScript engines and counted

the number of crashes they found. Both experiments lasted for

24 hours.

Exploring input space. Figure 6 illustrates that DIE explores

unique code paths up to 1.16× more than Superion and 1.29×
more than CodeAlchemist. Interestingly, DIEt visits slightly

more paths than the original DIE. This is because DIEt has

more chances to mutate diverse nodes in a more diverse manner,

which matches the result in Table V that it produces more

unique bytecodes.

Reaching crashes. Table VII summarizes the number of

unique crashes each fuzzer found. Note that DIE found the

most unique crashes 5 on the JavaScript engine, while Superion

and CodeAlchemist found fewer crashes. In particular, DIE

found 5.7× more than CodeAlchemist on the latest version of

ChakraCore, and Superion could not find any crash over the

same period.

From the result, we observe that most code paths were

introduced within the first two hours, which shows that

leveraging aspects in the seed helps to boost exploring diverse

paths. More importantly, we conclude that code coverage tends

to show the ability of input-space searching, but it cannot be

the absolute metric to judge the ability of a JavaScript engine

fuzzer to find bugs: (1) DIEt introduced more code coverage

than DIE, but found fewer crashes, and (2) 71.79% of the

crashes found by DIE in ChakraCore are generated after the

first two hours.

VII. DISCUSSION

We have demonstrated that DIE effectively leverages the

aspects to discover bugs in the latest JavaScript engines. In

this section, we discuss the limitations of DIE and our future

directions.

Seed prioritization. The mutation approach of DIE highly

relies on the seed files, which means the quality of the starting

corpus is an important factor that determines the result. DIE

currently does not prioritize seeds for mutation, which may

make DIE waste time on mutating the seed files that do not have

valuable aspects and discourage DIE from exploring faceted

ones. We believe DIE benefits from the state-of-the-art seed

selection algorithms [34, 43].

Generative rule-based builder. DIE generates typed nodes

based on the language rules. In particular, DIE includes most

operations allowed in JavaScript to generate diverse code

segments. However, DIE uniformly selects the generation rules

to build new nodes. Researchers can prioritize certain rules to

heavily test specific routines in JavaScript engines. Moreover,

5All crashes are manually inspected, suggested by [22], to confirm their
distinctness instead of AFL’s coverage measure.

1639

DIE can integrate several existing approaches to generate new

code such as utilizing code fragments [19, 20] or IR-based

generation [17].

Aspect annotation. Practically, DIE considers that the struc-

ture and type information of a test case form its aspects when

fuzzing JavaScript files. Basically, this information is feasible

and largely affects how a JavaScript engine JIT-compiles and

further optimizes a program. Nevertheless, one is free to

annotate the aspects of a seed file [30, 32] with different

semantic information and explore more specific code paths.

Aspect-preserving mutation beyond JavaScript. Although

DIE only focuses on fuzzing JavaScript engines now, the

concept of aspect-preserving mutation is generic enough to be

applied against any target. First, the core idea of DIE can be

ported to other language compilers or interpreters for other

contexts.

For example, Equivalence Modulo Inputs (EMI) [23, 24]

is proposed to validate optimizing compilers for differential

testing. Similar to DIE, it utilizes existing input corpora to

construct valid test programs. In addition, it selectively mutates

unexecuted code to fully exploit the existing semantics that

can correspond to the aspect of DIE. We believe that the

mutation algorithm of these works can benefit from DIE by

cooperating with its type-preserving mutation based on structure

preserving. This is technically doable in C context with a

mutation skeleton [5]. Also, [45] proposes a marking algorithm,

which has a similar effect to preserve structure in DIE, to fuzz

an ActionScript virtual machine. Instead of marking only the

identifier, our type-preserving mutation can help to improve

the marking algorithm in that context as well.

Furthermore, we can adopt the concept of aspects for

applications that receive binary input by identifying the aspects

of a seed file. For instance, using taint analysis can deprioritize

the modification of certain bytes of the file based upon the

analysis results. The notable bytes contribute to the aspects.

VIII. RELATED WORK

Syntax-aware fuzzing. The earliest fuzzers for structured

inputs worked for being aware of their syntax [3, 11, 41, 46–

48]. In JavaScript fuzzing, jsfunfuzz [39], and LangFuzz [20]

are frontiers in this line of work. jsfunfuzz generates various

JavaScript programs from scratch based on its pre-defined

rules, while LangFuzz modifies existing test cases by randomly

combining their code fragments. Unlike these approaches, DIE

considers not only syntax but also semantics to generate test

cases with fewer runtime errors.

Semantic-aware fuzzing. After proposing a line of syntax-

aware JavaScript engine fuzzers, researchers have started

to build semantic-aware ones [19, 31, 42, 43] for better

performance. Skyfire [43] is one of the earliest research efforts

that tackles the semantic problem in language fuzzing. Skyfire

learns the semantics of a language from existing test cases in the

form of probabilistic context-sensitive grammar (PCSG), which

is further used for fuzzing. Unlike Skyfire, CodeAlchemist [19]

focuses more on correctly using variables in the generated code

based on their types so as to create more semantically valid

inputs. Machine learning is also applied to master sophisticated

semantic rules from numerous seed files [8, 12], which are

used for generating more test cases. Not only aimed at building

semantically correct inputs like these works, DIE targetedly

stresses specific components in a JavaScript engine by fully

utilizing the overall semantic properties of each existing test

case (i.e., aspects).

Coverage-guided fuzzers. Starting from AFL [49], coverage-

guided fuzzing became very popular among general-purpose

fuzzers [7, 27, 36, 38] and also for JavaScript fuzzing [2, 44].

Superion [44] extends AFL to support additional muta-

tion strategies for grammar-based inputs such as XML and

JavaScript. As a result, Superion benefits from coverage

feedback by better preserving the structure of a JavaScript

program. Similarly, Nautilus [2] leverages coverage feedback

with context-free-grammar-based input generation. Fuzzilli [17],

a recently introduced generative JavaScript fuzzer, also relies

on coverage feedback. Based on a specially designed Inter-

mediate Representation (IR), Fuzzilli builds syntactically and

semantically correct test cases from scratch. Different from

these approaches that arbitrarily modify test cases only for

maximizing code coverage, DIE limits its mutation for aspects

to meet the complex conditions of modern JavaScript bugs.

IX. CONCLUSION

In this paper, we propose DIE, a JavaScript engine fuzzer

that preserves the aspects of a pre-mutated test case, which are

the essential conditions for its original purpose. To this end,

DIE deliberately handles the structure of a given test case and

keeps its type information intact using our novel type analysis

in a static and dynamic manner. Our evaluation shows that DIE

can maintain 1.61× more aspects than state-of-the-art fuzzers,

including Superion and CodeAlchemist, resulting in 5.7× more

unique crashes. More importantly, DIE found 48 new bugs in

real-world JavaScript engines with 12 CVEs assigned.

X. ACKNOWLEDGMENT

We thank the anonymous reviewers, and Frank Piessens

especially, for their helpful feedback. This research was

supported, in part, by the NSF award CNS-1563848, CNS-

1704701, CRI-1629851 and CNS-1749711 ONR under grant

N00014-18-1-2662, N00014-15-1-2162, N00014-17-1-2895,

DARPA AIMEE, and ETRI IITP/KEIT[2014-3-00035], and

gifts from Facebook, Mozilla, Intel, VMware and Google.

REFERENCES

[1] Apple. JavaScriptCore, The built-in JavaScript engine for WebKit, 2019.
https://trac.webkit.org/wiki/JavaScriptCore.

[2] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and
D. Teuchert. Nautilus: Fishing for deep bugs with grammars. In NDSS,
2019.

[3] O. Bastani, R. Sharma, A. Aiken, and P. Liang. Synthesizing program
input grammars. In ACM SIGPLAN Notices, volume 52, pages 95–110.
ACM, 2017.

[4] O. Chang, A. Arya, and J. Armour. OSS-Fuzz: Five Months Later, and
Rewarding Projects, 2018. https://security.googleblog.com/2017/05/oss-
fuzz-five-months-later-and.html.

1640

[5] J. Chen, J. Han, P. Sun, L. Zhang, D. Hao, and L. Zhang. Compiler bug
isolation via effective witness test program generation. In Proceedings
of the 27th ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE), Tallinn, Estonia, Aug. 2019.

[6] Y. Chen, Y. Jiang, F. Ma, J. Liang, M. Wang, C. Zhou, Z. Su, and
X. Jiao. Enfuzz: Ensemble fuzzing with seed synchronization among
diverse fuzzers. In Proceedings of the 28th USENIX Security Symposium
(Security), Santa Clara, CA, USA, Aug. 2019.

[7] N. Coppik, O. Schwahn, and N. Suri. Memfuzz: Using memory accesses
to guide fuzzing. In 2019 12th IEEE Conference on Software Testing,
Validation and Verification (ICST), pages 48–58. IEEE, 2019.

[8] C. Cummins, P. Petoumenos, A. Murray, and H. Leather. Compiler
fuzzing through deep learning. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), Amsterdam,
Netherlands, July 2018.

[9] ECMA. Standard ECMA-262. https://www.ecma-international.org/
publications/standards/Ecma-262.htm, 2019.

[10] J. Forcier. Fabric, High level python library designed to execute shell
commands remotely over SSH, 2019. http://www.fabfile.org/.

[11] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based whitebox
fuzzing. In Proceedings of the 2008 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), Tucson,
Arizona, June 2007.

[12] P. Godefroid, H. Peleg, and R. Singh. Learn&fuzz: Machine learning for
input fuzzing. In Proceedings of the 32nd IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), Urbana-Champaign,
Illinois, USA, Nov. 2017.

[13] Google. Chrome Releases. https://chromereleases.googleblog.com, 2019.

[14] Google. project-zero. https://bugs.chromium.org/p/project-zero/issues/list,
2019.

[15] Google. Continuous fuzzing of open source software, 2019. https:
//opensource.google/projects/oss-fuzz.

[16] Google. V8, Open source JavaScript and WebAssembly engine for
Chrome and Node.js, 2019. https://v8.dev/.

[17] S. Groß. Fuzzil: Coverage guided fuzzing for javascript engines. Master’s
thesis, TU Braunschweig, 2018.

[18] C. Han. js-vuln-db, A collection of JavaScript engine CVEs with PoCs,
2019. https://github.com/tunz/js-vuln-db.

[19] H. Han, D. Oh, and S. K. Cha. Codealchemist: Semantics-aware code
generation to find vulnerabilities in javascript engines. In Proceedings of
the 2017 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2019.

[20] C. Holler, K. Herzig, and A. Zeller. Fuzzing with code fragments. In
Proceedings of the 21st USENIX Security Symposium (Security), Bellevue,
WA, Aug. 2012.

[21] Honggfuzz. Honggfuzz Found Bugs, 2018. https://github.com/google/
honggfuzz#trophies.

[22] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks. Evaluating fuzz
testing. In Proceedings of the 25th ACM Conference on Computer and
Communications Security (CCS), Toronto, Canada, Oct. 2018.

[23] V. Le, M. Afshari, and Z. Su. Compiler validation via equivalence
modulo inputs. In Proceedings of the 2013 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), Edinburgh,
United Kingdom, June 2014.

[24] V. Le, C. Sun, and Z. Su. Finding deep compiler bugs via guided
stochastic program mutation. In Proceedings of the 26th Annual ACM
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), Pittsburgh, PA, Oct. 2015.

[25] J. Lee. Issue 1438: Microsoft Edge: Chakra: JIT: ImplicitCallFlags checks
bypass. https://bugs.chromium.org/p/project-zero/issues/detail?id=1438,
2018.

[26] J. Lee. Issue 1565: Microsoft Edge: Chakra: JIT: ImplicitCallFlags check
bypass with Intl. https://bugs.chromium.org/p/project-zero/issues/detail?
id=1565, 2018.

[27] C. Lemieux and K. Sen. Fairfuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering,

pages 475–485. ACM, 2018.

[28] S. McKenzie. Babel, Javascript compiler, 2019. https://babeljs.io/.

[29] Microsoft. ChakraCore, The core part of the Chakra JavaScript engine that
powers Microsoft Edge, 2019. https://github.com/microsoft/ChakraCore.

[30] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. Le Traon. Semantic
fuzzing with zest. In Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA), Beijing, China, July 2019.

[31] J. Patra and M. Pradel. Learning to fuzz: Application-independent fuzz
testing with probabilistic, generative models of input data. TU Darmstadt,
Department of Computer Science, Tech. Rep. TUD-CS-2016-14664, 2016.

[32] M. Rajpal, W. Blum, and R. Singh. Not all bytes are equal: Neural byte
sieve for fuzzing. arXiv preprint arXiv:1711.04596, 2017.

[33] M. Rash. A Collection of Vulnerabilities Discovered by the AFL Fuzzer,
2017. https://github.com/mrash/afl-cve.

[34] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco, and
D. Brumley. Optimizing seed selection for fuzzing. In Proceedings of
the 23rd USENIX Security Symposium (Security), San Diego, CA, Aug.
2014.

[35] S. Sanfilippo. Redis, Open source in-memory database, cache and
message broker, 2019. https://redis.io/.

[36] K. Serebryany. libfuzzer a library for coverage-guided fuzz testing. LLVM
project, 2015.

[37] K. Serebryany. Sanitize, Fuzz, and Harden Your C++ Code. In
Proceedings of the 1st USENIX ENIGMA, San Francisco, CA, Jan. 2016.

[38] R. Swiecki. Honggfuzz. Available online a t: http://code. google.
com/p/honggfuzz, 2016.

[39] W. Syndder and M. Shaver. Building and Breaking the Browser. In
Black Hat USA Briefings (Black Hat USA), Las Vegas, NV, Aug. 2007.

[40] Syzkaller. Syzkaller Found Bugs - Linux Kernel, 2018. https://github.
com/google/syzkaller/blob/master/docs/linux/found_bugs.md.

[41] B. Turner. Random c program generator. Retrieved from, 2007.

[42] S. Veggalam, S. Rawat, I. Haller, and H. Bos. Ifuzzer: An evolutionary
interpreter fuzzer using genetic programming. In Proceedings of the 21th
European Symposium on Research in Computer Security (ESORICS),
Crete, Greece, Sept. 2016.

[43] J. Wang, B. Chen, L. Wei, and Y. Liu. Skyfire: Data-driven seed
generation for fuzzing. In Proceedings of the 38th IEEE Symposium on
Security and Privacy (Oakland), San Jose, CA, May 2017.

[44] J. Wang, B. Chen, L. Wei, and Y. Liu. Superion: grammar-aware greybox
fuzzing. In Proceedings of the 41st International Conference on Software
Engineering (ICSE), Montréal, Canada, May 2019.

[45] G. Wen, Y. Zhang, Q. Liu, and D. Yang. Fuzzing the actionscript virtual
machine. In Proceedings of the 8th ACM Symposium on Information,
Computer and Communications Security (ASIACCS), Hangzhou, China,
May 2013.

[46] D. Yang, Y. Zhang, and Q. Liu. Blendfuzz: A model-based framework
for fuzz testing programs with grammatical inputs. In 2012 IEEE 11th
International Conference on Trust, Security and Privacy in Computing
and Communications, pages 1070–1076. IEEE, 2012.

[47] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding bugs
in c compilers. In Proceedings of the 2011 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), San
Jose, CA, June 2011.

[48] H. Yoo and T. Shon. Grammar-based adaptive fuzzing: Evaluation on
scada modbus protocol. In 2016 IEEE International Conference on Smart
Grid Communications (SmartGridComm), pages 557–563. IEEE, 2016.

[49] M. Zalewski. american fuzzy lop, 2019. http://lcamtuf.coredump.cx/afl/.

APPENDIX

A. JavaScript engine bugs found by DIE

Table VIII lists the bugs discovered by DIE in three known JavaScript
engines (i.e., ChakraCore in Microsoft Edge, JavaScriptCore in Apple Webkit
and V8 in Google Chrome) with their aspect description.

1641

JS Engine Type Security Status Aspect

1 Ch 1.11.5 Incorrect regular expression parsing Fixed Non-ascii regex
2 Ch 1.11.5 Incorrect regular expression parsing Fixed Non-ascii regex
3 Ch 1.11.5 Use-after-free due to scope escaping � CVE-2019-0609 A gigantic object literal in a nested function
4 Ch 1.11.7 Incorrect profiling during JIT compilation Fixed Infinite recursion with exception handling
5 Ch 1.11.7 Memory corruption in JavascriptArray � Fixed Sorting large arrays w/ custom comparison
6 Ch 1.11.7* Incorrect profiled state during JIT optimization Fixed Circular function references
7 Ch 1.11.7* Inconsistent behavior between negative NaN and positive NaN Fixed Hashing NaN in Set
8 Ch 1.11.7* Breaking assumption related to the size of inline segment � Fixed -
9 Ch 1.11.8* Inconsistency in helper label annotation during JIT compilation Fixed new F() in F()
10 Ch 1.11.9 Writability of read-only property in class Reported Overwriting fields of super
11 Ch 1.11.9 Writability of constant variable Reported Deleting constant fields
12 Ch 1.11.9 Incorrect behavior when overwriting previously deleted variable Reported Manipulating fields of built-in objects
13 Ch 1.11.9 Incorrect behavior when calling getter of previously deleted variable Reported Manipulating fields of built-in objects
14 Ch 1.11.9 Type confusion between integer and double � Reported JIT - Referencing outer vars in a nested function
15 Ch 1.11.9 Inconsistency between cached value and real value � Reported JIT - Object property binding
16 Ch 1.11.9 Memory corruption while building bytecode � Reported -
17 Ch 1.11.9 Memory corruption while parsing JS code � Reported eval() giant statements
18 Ch 1.11.9 Memory corruption in JavascriptArray � Reported Array.prototype.push()

19 Ch 1.11.9 Null dereference due to wrong scope analysis � Fixed with on outer variables
20 Ch 1.11.9 Breaking assumption related to the size of inline segment � Fixed JIT - Local variable escape
21 Ch 1.11.9* Incorrect internal state due to misbehavior of the engine Fixed† JIT - Indexing statically declared arrays variably
22 Ch 1.11.9* Wrong no-return annotation for a function which has return Reported Error handling in proxy handlers
23 Ch 1.11.9* OOB write due to wrong JIT optimization � Fixed JIT - Defining small compound objects
24 Ch 1.11.9* Incorrect emitted IR from JIT compilation � CVE-2019-1023 JIT - Inlining small functions
25 Ch 1.11.9* Use-after-free during JIT � CVE-2019-1300 JIT - Indexing and redefining TypedArrays
26 Ch 1.11.9* OOB read/write due to accessing uninitialized variable during JIT � CVE-2019-0990 JIT - Incorrect induction variable used for array index
27 Ch 1.11.9* OOB read/write due to wrong JIT optimization � CVE-2019-1092 JIT - Indexing and redefining TypedArrays
28 Ch 1.11.9* OOB read/write due to wrong inlining during JIT � Fixed JIT - Defining and manipulating small objects

29 JSC 2.24.0 Wrong profiling during JIT optimization � WebKit 195991 JIT - Control flow analysis
30 JSC 2.24.1 Invalid indices stored in TypedArrays WebKit 197353 JIT - Indexing in TypedArrays
31 JSC 2.24.1 Type confusion of induction variable during JIT � WebKit 197569 JIT - Type speculation
32 JSC 2.24.2 Incorrect assumption while compiling JIT IR Fixed JIT - Compiling a built-in function
33 JSC 2.24.2 Incorrect type speculation during JIT Fixed JIT - Type speculation
34 JSC 2.24.2 Wrongly yielded exception while handling another exception Fixed A gigantic string that causes out-of-memory
35 JSC 2.24.2 Inconsistent behavior of garbage collector from JIT profiling Fixed JIT - Compiling a built-in function
36 JSC 2.24.2 Invalid state while handling character Fixed JIT - switch case statement
37 JSC 2.24.2 Memory corruption while parsing function � Fixed eval() gigantic functions
38 JSC 2.24.2 Memory corruption while handling slow path in JIT code � Fixed Triggering Yarr that JIT compiles regexps
39 JSC 2.25.1 Type confusion due to accessing uninitialized memory region � CVE-2019-8676 JIT - Call context analysis
40 JSC 2.25.1 Use-after-free due to wrong garbage collection � CVE-2019-8673 JIT - Garbage collection
41 JSC 2.25.1 Memory corruption while handling regular expression � CVE-2019-8811 Back reference in regex
42 JSC 2.25.1 Memory corruption while creating regular expression � CVE-2019-8816 Non-ascii regex
43 JSC 2.25.1 Null dereference while accessing HashMap � Fixed A gigantic string that cause out-of-memory
44 JSC 2.25.1 Memory corruption due to race condition in concurrent JIT � Fixed asm.js - Storing an object into a number array

45 V8 8.0.0* Type confusion between heap and internal object in JIT code � CVE-2019-13730 JIT - Switch case statement
46 V8 8.0.0* Incorrect loop optimization for JIT IR � CVE-2019-13764 JIT - controllable loop bound
47 V8 8.0.0* Integer overflow while handling regular expression Fixed -
48 V8 8.0.0* Incorrect redundancy elimination in JIT � CVE-2020-6382 JIT - indexing arrays

Ch: ChakraCore, JSC: JavaScriptCore
*Canary version † This bug was reported by us but it is still reachable by DIE due to incomplete fix.
� The bug is a memory corruption which results in a crash. �The bug is confirmed to be exploitable for remote code execution or information leakage.

TABLE VIII: New bugs found by DIE in ChakraCore, JavaScriptCore, and V8. The latest version affected by each bug is specified. In the
Status column, Fixed means the bug was also noticed and patched by developers before we reported the bug.

1642

