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Abstract—Dynamic frequency and voltage scaling features
have been introduced to manage ever-growing heat and power
consumption in modern processors. Design restrictions ensure
frequency and voltage are adjusted as a pair, based on the
current load, because for each frequency there is only a certain
voltage range where the processor can operate correctly. For
this purpose, many processors (including the widespread Intel
Core series) expose privileged software interfaces to dynamically
regulate processor frequency and operating voltage.

In this paper, we demonstrate that these privileged interfaces
can be reliably exploited to undermine the system’s security. We
present the Plundervolt attack, in which a privileged software
adversary abuses an undocumented Intel Core voltage scaling in-
terface to corrupt the integrity of Intel SGX enclave computations.
Plundervolt carefully controls the processor’s supply voltage
during an enclave computation, inducing predictable faults within
the processor package. Consequently, even Intel SGX’s mem-
ory encryption/authentication technology cannot protect against
Plundervolt. In multiple case studies, we show how the induced
faults in enclave computations can be leveraged in real-world
attacks to recover keys from cryptographic algorithms (including
the AES-NI instruction set extension) or to induce memory safety
vulnerabilities into bug-free enclave code. We finally discuss why
mitigating Plundervolt is not trivial, requiring trusted computing
base recovery through microcode updates or hardware changes.

I. INTRODUCTION

The security of modern systems builds on abstractions of

the underlying hardware. However, hardware is subject to

physical effects and is increasingly optimized to meet the ever-

growing need for performance and efficiency. Modern CPUs

are highly optimized such that performance and efficiency

are maximized while maintaining functional correctness under

specified working conditions.

In fact, many modern processors cannot permanently run at

their maximum clock frequencies because it would consume

significant power that, in turn, produces too much heat (e.g.,

in a data center). Additionally, in mobile devices, high power

consumption drains the battery quickly.

This voltage and frequency dependency of the (dynamic)

power consumption Pdyn of a CMOS circuit is expressed as:

Pdyn ∝ f · V 2, i.e., the dynamic power consumption is

proportional to the clock frequency f and to the square of the

supply voltage V

Because of this relationship (and other factors), modern

processors keep the clock frequency and supply voltage as

low as possible—only dynamically scaling up when necessary.

Higher frequencies require higher voltages for the proces-

sor to function correctly, so they should not be changed

independently. Additionally, there are other types of power

consumption that influence the best choice of a frequency/

voltage pair for specific situations.

Lowering the supply voltage was also important in the

development of the last generations of DRAM. The sup-

ply voltage has been gradually reduced, resulting in smaller

charges in the actual capacitors storing the single bits—this

led to the well-known Rowhammer [41] effect. Exploiting

this, a long line of research has mounted practical attacks,

e.g., for privilege escalation [60, 22, 77, 74], injecting faults

into cryptographic primitives [55, 6], or reading otherwise

inaccessible memory locations [44]. While fault attacks have

been extensively studied for adversaries with physical access

to embedded devices [7, 62, 2, 26], Rowhammer remains, to

date, the only known purely software-based fault attack on

x86-based systems. Hence, both the scientific community and

industry have put significant effort in developing Rowhammer

mitigations [41, 37, 27, 3, 23, 53, 12, 79, 13, 74, 22, 10].

This has reached a point where Intel ultimately considers main

memory as an untrusted storage facility and fully encrypts

and authenticates all memory within the Intel SGX enclave

security architecture [24]. But is authentication and encryption

of memory enough to safeguard the integrity of general-

purpose computations?

To answer this question, we investigate interfaces for supply

voltage optimizations on x86 Intel Core CPUs. With shrink-

ing process technology, the processor supply voltages have

gradually been reduced to make systems more efficient. At

the same time, voltage margins (the stable voltage ranges

for each frequency) have shrunk. The actual voltage margin

is strongly influenced by imperfections in the manufacturing

process and also the specific system setup, including the

voltage regulator on the main board. Since these dynamic

voltage and frequency scaling features are undocumented and

only exposed to privileged system software, they have been

scarcely studied from a security perspective. However, this is
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very relevant in the context of SGX. Intel SGX enclaves are

currently considered immune to fault attacks. In particular,

Rowhammer, the only software-based fault attack known to

work on x86 processors, simply causes the integrity check of

the Memory Encryption Engine (MEE) to fail [21, 38], halting

the entire system.

A. Related Work on Software-based Fault Attacks

A fault attack manipulates the computations of a device

with the purpose of bypassing its security mechanisms or

leaking its secrets. With this aim, the attacker manipulates

the environment to influence the target device’s computations.

Typically such fault-inducing environments are at the border

of (or beyond) the specified operational range of the target

device. Different environment manipulations have been inves-

tigated [26], such as: exposure to voltage and clock glitch-

ing [2, 62], extreme temperatures [29] or laser/UV light [63].

Software-based fault attacks shift the threat model from a

local attacker (with physical access to the target device) to a

potentially remote attacker with only local code execution.

Initially, these attacks were interesting in scenarios where

the attacker is unprivileged or even sandboxed. However,

with secure execution technologies, such as: Intel SGX, ARM

TrustZone and AMD SEV, privileged attackers must also be

considered as they are part of the corresponding threat models.

In 2017, Tang et al. [65] discovered a software-based fault

attack, dubbed CLKscrew. They discovered that ARM pro-

cessors allow configuration of the dynamic frequency scaling

feature, i.e., overclocking, by system software. Tang et al.

show that overclocking features may be abused to jeopardize

the integrity of computations for privileged adversaries in a

Trusted Execution Environment (TEE). Based on this obser-

vation, they were able to attack cryptographic code running in

TrustZone. They used their attack to extract cryptographic keys

from a custom AES software implementation and to overcome

RSA signature checks and subsequently execute their own

program in the TrustZone of the System-on-Chip (SoC) on

a Nexus 6 device.

However, their attack is specific to TrustZone on a certain

ARM SoC and not directly applicable to SGX on Intel proces-

sors. In fact, it is unclear whether similar effects exist on x86-

based computers, whether they are exploitable, and whether

the processor package or SGX has protections against this

type of attack, e.g., machine-check errors on the system level,

or data integrity validation in SGX enclaves. Furthermore,

CLKscrew is based on changing the frequency, while in this

paper we focus on voltage manipulations. Finally, the question

arises whether faults are limited to software implementations

of cryptographic algorithms (as in CLKscrew), or can also be

used to exploit hardware implementations (like AES-NI) or

generic (non-crypto) code.

B. Our Contribution

In this paper, we present Plundervolt, a novel attack against

Intel SGX to reliably corrupt enclave computations by abusing

privileged dynamic voltage scaling interfaces. Our work builds

on reverse engineering efforts that revealed which Model-

Specific Registers (MSRs) are used to control the dynamic

voltage scaling from software [64, 57, 49]. The respective

MSRs exist on all Intel Core processors. Using this interface

to very briefly decrease the CPU voltage during a computation

in a victim SGX enclave, we show that a privileged adversary

is able to inject faults into protected enclave computations.

Crucially, since the faults happen within the processor pack-

age, i.e., before the results are committed to memory, Intel

SGX’s memory integrity protection fails to defend against our

attacks. To the best of our knowledge, we are the first to

practically showcase an attack that directly breaches SGX’s

integrity guarantees.

In summary, our main contributions are:

1) We present Plundervolt, a novel software-based fault

attack on Intel Core x86 processors. For the first time,

we bypass Intel SGX’s integrity guarantees by directly

injecting faults within the processor package.

2) We demonstrate the effectiveness of our attacks by inject-

ing faults into Intel’s RSA-CRT and AES-NI implementa-

tions running in an SGX enclave, and we reconstruct full

cryptographic keys with negligible computational efforts.

3) We explore the use of Plundervolt to induce memory

safety errors into bug-free enclave code. Through various

case studies, we show how in-enclave pointers can be

redirected into untrusted memory and how Plundervolt

may cause heap overflows in widespread SGX runtimes.

4) Finally, we discuss countermeasures and why fully miti-

gating Plundervolt may be challenging in practice.

C. Responsible Disclosure

We have responsibly disclosed our findings to Intel on June

7, 2019. Intel has reproduced and confirmed the vulnerabili-

ties which they are tracking under CVE-2019-11157. Intel’s

mitigation is provided in Section VII-C.

Our current results indicate that the Plundervolt attack

affects all SGX-enabled Intel Core processors from Skylake

onward. We have also experimentally confirmed the existence

of the undervolting interface on pre-SGX Intel Core proces-

sors. However, for such non-SGX processors, Plundervolt does

not currently represent a security threat in our assessment,

because the interface is exclusively available to privileged

users. Furthermore, in virtualized environments, hypervisors

should never allow untrusted guest VMs to read from or write

to undocumented MSRs.

We have made our PoC attack code available at: https://

github.com/KitMurdock/plundervolt.

D. Structure of the Paper

Section II presents the attacker model, our experimental

setup and the tested CPUs. In Section III, we present the basic

working principle of the Plundervolt attack when targeting

multiplications, with a detailed analysis of the fault character-

istics in Section III-A. Section IV shows how Plundervolt can

be used to recover cryptographic keys from RSA and AES-NI

implementations running inside an SGX enclave. In Section V,
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Fig. 1. Layout of the undocumented undervolting MSR with address 0x150.

we discuss how Plundervolt can be used to induce memory

safety vulnerabilities into bug-free code. In Section VI, we

discuss the Plundervolt attack w.r.t. related work, while Sec-

tion VII considers different mitigation strategies. Section VIII

concludes this paper.

II. EXPERIMENTAL SETUP

A. Attacker Model

We assume the standard Intel SGX adversary model where

the attacker has full control over all software running outside

the enclave (including privileged system software such as op-

erating system and BIOS). Crucial for our attacks is the ability

for a root adversary to read/write MSRs, e.g., through a mali-

cious ring 0 kernel module or an attack framework like SGX-

Step [71]. Since we only exploit software-accessible interfaces,

our attacks can be mounted by remote adversaries who gained

arbitrary kernel code execution, but without physical access to

the target machine. At the hardware level, we assume a recent

Intel Core processor with (i) Intel SGX enclave technology,

and (ii) dynamic voltage scaling technology. In practice, we

found these requirements to be fulfilled by all Intel Core

processors we tested from Skylake onward (cf. Table I).

B. Voltage Scaling on Intel Core Processors

We build on the reverse engineering efforts of [64, 49, 57]

that revealed the existence of an undocumented MSR to adjust

operating voltage on Intel Core CPUs. To ensure reproducibil-

ity of our findings, we document this concealed interface in

detail. All results were experimentally confirmed on our test

platforms (cf. Table I).

Figure 1 shows how the 64-bit value in MSR 0x150 can be

decomposed into a plane index and a voltage offset. Firstly, by

specifying a valid plane index, system software can select to

which CPU components the under- or overvolting should be

applied. The CPU core and cache share the same voltage plane

on all machines we tested and the higher voltage of both will

be applied to the shared plane. Secondly, the requested voltage

scaling offset is encoded as an 11-bit signed integer relative

to the core’s base operating voltage. This value is expressed

in units of 1/1024 V (about 1 mV), thus allowing a maximum

voltage offset of ±1V.

After software has successfully submitted a voltage scaling

request, it takes some time before the actual voltage transition

is physically applied. The current operating voltage can be

queried from the documented MSR 0x198 (IA32_PERF_STA

TUS). We experimentally verified that all physical CPUs share

the same voltage plane (i.e., scaling voltage on one core also

adjusts all the other physical CPU cores).

From Skylake onwards, the voltage regulator is external to

the CPU as a separate chip on the main board. The CPU

requests a supply voltage change, which is then transferred

to and executed by the regulator chip. In Intel systems, this

is implemented as follows (based on datasheets for respective

voltage regulator chips [30] and older, public Intel documen-

tation [31]):

1) The CPU outputs an 8-bit value “VID”, encoding the

currently requested voltage, to the voltage regulator on

the mainboard. Based on CPU datasheets (Table 6-11

in [33]), it appears this value is transferred over a three-

wire serial link called “Serial VID” or “SVID”, comprised

of the pins VIDSOUT, VIDSCK, and VIDALERT#. Pre-

sumably, the offset in MSR 0x150 is subtracted from the

base value within the CPU logic before outputting a VID

code; however it is unclear why MSR 0x150 is in steps

of 1/1024 V, while the 8-bit VID allegedly uses steps of

5 mV [30].

2) Based on the VID, the voltage regulator chip adjusts the

voltage supplied via the core voltage pins (VCC) to the

CPU. Note that there are configuration options for the

slew rate i.e., the time taken for a specific voltage change

to occur (fastest rate in [30] is given as 80 mV/μs), as well

as limits on overshoot and undershoot.

C. Configuring Voltage and Frequency

In order to reliably find a faulty frequency/voltage pair, we

configured the CPU to run at a fixed frequency. This step can

be easily executed using documented Intel frequency scaling

interfaces, e.g., through the script given in Appendix A.

The undervolting is applied by writing to the concealed

MSR 0x150 (e.g., using the msr Linux kernel module) just

before entering the victim enclave through an ECALL in the

untrusted host program. After returning from the enclave, the

host program immediately reverts to a stable operating voltage.

Note that, apart from the msr kernel module, attackers can also

rely on more precise methods to control undervolting, e.g.,

if configuration latency should be minimized. For this, we

have extended the SGX-Step [71] enclave execution control

framework with x86 interrupt and call gate functionality so

as to be able to execute the privileged rdmsr and wrmsr

instructions directly before entering a victim enclave.

One challenge for a successful Plundervolt attack is to

establish the correct undervolting parameter such that the

processor produces incorrect results for certain instructions,

while still allowing the remaining code base to function

normally. That is, undervolting too far leads to system crashes

and freezes, while undervolting too little does not produce any

faults. Finding the right undervolting value therefore requires

some experimentation by carefully reducing the core voltage

in small decrements (e.g., by 1 mV per step) until a fault

occurs, but before the system crashes. In practice, we found
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that it suffices to undervolt for short periods of time by -100

to -260 mV, depending on the specific CPU, frequency and

temperature (see Section III-A for a more precise analysis).

D. Undervolting Decline Micro-benchmark

To study how quickly writes to MSR 0x150 manifest in

actual changes to the core voltage, we performed a micro-

benchmark where we continuously read the reported current

CPU voltage from MSR 0x198 (IA32_PERF_STATUS). We

executed the micro-benchmark code by means of a privileged

x86 interrupt gate that first applies -100 mV undervolting and

then immediately executes a tight loop of 300 iterations to

collect pairs of measurements of the current processor voltage

and the associated Time Stamp Counter (TSC) value.

Fig. 2. Voltage decline over time for Intel i3-7100U-C, repeating a -100 mV
undervolting seven times and measuring actual voltage in MSR 0x198.

Figure 2 displays the measurement results for seven rep-

etitions of a -100 mV drop. It is immediately evident that

there is a substantial delay (between 500k and 1M TSC

ticks) between the MSR change and the actual undervolting

being applied. While some of this delay might be due to the

software-based measurement via MSR 0x198, our benchmark

primarily reveals that voltage changes incur a non-negligible

overhead. We will come back to this point in Section VII

when devising countermeasures because this delay means

returning to normal voltage when entering enclave mode may

incur substantial overhead. Furthermore, when comparing the

repetitions, it becomes apparent that voltage scaling behaves

non-deterministically, i.e., the actual voltage drop occurs at

different times after writing to MSR 0x150. However, from

an attacker’s perspective, our micro-benchmark also shows that

it is possible to precisely delay entry into a victim enclave

by continuously measuring current operating voltage until the

desired threshold is reached.

E. Tested Processors

For our experiments, we used different SGX-enabled pro-

cessors from Skylake onwards, cf. Table I. We also had access

to multiple CPUs with the same model numbers in some

cases. Because we found that different chips with the same

model number can behave differently when undervolted (cf.

Section III-A), we list those separately and refer to them with

a letter appended to the model number, e.g., i3-7100U-A, i3-

7100U-B, etc. We carried out all experiments using Ubuntu

16.04 or 18.04 with stock Linux v4.15 and v4.18 kernels.

We attempted to undervolt a Xeon processor (Broadwell-EP

E5-1630V4), however, found that in this case the MSR 0x150

does not seem to affect the core voltage.

TABLE I
PROCESSORS USED FOR THE EXPERIMENTS IN THIS PAPER. WHEN

MULTIPLE CPUS WITH THE SAME MODEL NUMBER WERE TESTED, WE

APPEND UPPERCASE LETTERS (-A, -B ETC).

Code name Model no. Microcode Frequency Vulnerable SGX

Broadwell E5-1630V4 0xb000036 N/A � �
Skylake i7-6700K 0xcc 2 GHz � �
Kaby Lake i7-7700HQ 0x48 2.0 GHz � �

i3-7100U-A 0xb4 1.0 GHz � �
i3-7100U-B 0xb4 2.0 GHz � �
i3-7100U-C 0xb4 2.0 GHz � �

Kaby Lake-R i7-8650U-A 0xb4 1.9 GHz � �
i7-8650U-B 0xb4 1.9 GHz � �
i7-8550U 0x96 2.6 GHz � �

Coffee Lake-R i9-9900U 0xa0 3.6 GHz � �

F. Implications for Older Processors

We verified that software-controlled undervolting is possible

on older CPUs, e.g., on the Haswell i5-4590, Haswell i7-4790

and the Core 2 Duo T9550. In fact, it has been possible

for system software to undervolt the processor from the

first generation of Intel Core processors [51]. However, to

the best of our understanding, this has no direct impact on

security because SGX is not available and the attacker requires

root permissions to write to the MSRs. The attack might

nevertheless be relevant in a hypervisor or cloud setting, where

an untrusted virtual machine can undervolt the CPU just before

a hypercall and/or context switch to another VM. This attack

scenario would require the hypervisor to be configured to allow

the untrusted virtual machine to directly access undocumented

MSRs (e.g., 0x150) and we did not find this in any real-world

configurations. Consequently, for the lack of plausible attack

targets, we did not extensively study the possibility of fault

induction on these processors. Our initial undervolting testing

yielded a voltage-dependent segmentation fault on the Haswell

i5-4590 and Haswell i7-4790 for the simple test program

described in Section III.

III. FAULTING IN-ENCLAVE MULTIPLICATIONS

As a first step towards practical fault injection into SGX

enclaves, we analyzed a number of x86 assembly instructions

in isolation. While we could not fault simple arithmetic (like

addition and subtraction) or bit-wise instructions (like shifts

and OR/XOR/AND), we found that multiplications can be

faulted. This might be explained by the fact that, on the

one hand, multipliers typically have a longer critical path

compared to adders or other simple operations, and, on the

other hand, that multiplications are likely to be most ag-

gressively optimized due to their prevalence in real-world

code. This conjecture is supported by the fact that we also
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observed faults for other instructions with presumably complex

circuitry behind them, in particular the AES-NI extensions (cf.

Section IV-C).

Consider the following proof-of-concept implementation,

which runs a simple multiplication (the given code compiles to

assembly with imul instructions) in a loop inside an ECALL

handler:

uint64_t multiplier = 0x1122334455667788;
uint64_t var = 0xdeadbeef * multiplier;

while (var == 0xdeadbeef * multiplier)
{

var = 0xdeadbeef;
var *= multiplier;

}
var ˆ= 0xdeadbeef * multiplier;

Clearly, this program should not terminate. However, our

experiments show that undervolting the CPU just before

switching to the enclave leads to a bit-flip in var, typically

in byte 3 (counting from the least-significant byte as byte 0).

This allows the enclave program to terminate. The output is

the XOR with the desired value, to highlight only the faulty

bit(s). We observe that in this specific configuration the output

is always 0x04000000.

A. Analysis of Undervolting Effects on Multiplications

Using MSR 0x198 (IA32_PERF_STATUS), we were able

to read the voltage in normal operating mode and also record

the voltage when a faulty result was computed. While we

are aware that the measurements in this register might not be

precise in absolute terms, they reflect the relative undervolting

precisely. Figure 3 and Figure 4 show the measured relation

between frequency, normal voltage (blue), and the necessary

undervolting to trigger a faulty multiplication inside an SGX

enclave (orange) for the i3-7100U-A and an i7-8650U-A,

respectively.

Fig. 3. Base voltage (blue) and voltage for first fault (orange) vs. CPU
frequency for the i3-7100U-A

We conducted further investigations from normal (non-

SGX) code, as we found that these faults were identical to

those inside the SGX enclave. We wrote the following code

to enable the first operand (start_value) and the second

operand (multiplier) to be tested:

Fig. 4. Base voltage (blue) and voltage for first fault (orange) vs. CPU
frequency for the i7-8650U-A

/* drop voltage */

do {
i++;
var = start_value * multiplier;

} while (var == correct && i < iterations);

/* return voltage */

We then performed a search over different values for both

operands. The faulty results (see Table II for selected exam-

ples) generally fell into the following categories:

• One to five (contiguous) bits flip, or

• all most-significant bits flip.

Additionally, we also rarely observed faulty states in be-

tween, cf. the last entry in Table II and the fault used in

Section V-A. From those results, we noted:

• The smallest first operand to fault was 0x89af;

• the smallest second operand to fault was 0x1;

• the smallest faulted product was 0x80000*0x4, result-

ing in 0x200000; and

• the order of the operands is important when attempting

to produce a fault: For example, 0x4 * 0x80000 never
faulted in our experiments.

TABLE II
EXAMPLES OF FAULTED MULTIPLICATIONS ON I3-7100U-B AT 2 GHZ

Start value Multiplier Faulty result Flipped bits

0x080004 0x0008 0xfffffffff0400020 0xfffffffff0000000
0xa7fccc 0x0335 0x000000020abdba3c 0x0000000010000000
0x9fff4f 0x00b2 0x000000004f3f84ee 0x0000000020000000
0xacff13 0x00ee 0x000000009ed523aa 0x000000003e000000
0x2bffc0 0x0008 0x00000000005ffe00 0x0000000001000000
0x2bffc0 0x0008 0xfffffffff15ffe00 0xfffffffff0000000
0x2bffc0 0x0008 0x00000100115ffe00 0x0000010010000000

We also investigated the iterations and undervolting required

to produce faults (cf. Table III) on the i3-7100U-B at 2 GHz.

A higher number of iterations will fault with less undervolting,

i.e., the probability of a fault is lower with less undervolting.

For a small number of iterations, it is very difficult to induce

a fault, as the undervolting required caused the CPU to freeze
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before a fault was observed. For the experiments in Fig. 3 and

Fig. 4, we used a large number of 100,000,000 iterations, so

faults occur with relatively low undervolting already.

TABLE III
NUMBER OF ITERATIONS UNTIL A FAULT OCCURS FOR THE

MULTIPLICATION (0XAE0000 * 0X18) VS. NECESSARY

UNDERVOLTING ON I3-7100U-B AT 2 GHZ.

Iterations Undervolting

1,000,000,000 -130mV
100,000,000 -131mV

10,000,000 -132mV
1,000,000 -141mV

500,000 -146mV
100,000 crash at -161mV

B. Differences between CPUs with Same Model Number and
Temperature Dependencies

Another interesting observation is that the amount of under-

volting can differ between CPUs with the same model number.

We observed that the i3-7100U in an Intel NUC7i3BNH: i3-

7100U-A had a base voltage of 0.78 V at 1 GHz, and we

observed the first fault at 0.68 V (over 100 000 000 iterations).

In contrast, two other (presumably slightly newer) CPUs i3-

7100U-B and i3-7100U-C had a base voltage of approximately

0.69 V at the same frequency and began to fault at 0.6 V.

However, the processor with the higher base voltage toler-

ated more undervolting overall: the system was stable under-

volting up to approximately -250 mV, while the other CPUs

crashed at around -160 mV. This indicates that for certain

CPUs, a higher base voltage is configured (potentially in the

factory based on internal testing).

Finally, we observed that the required undervolting to reach

a faulty state depends (as expected) on the CPU tempera-

ture. For example, while the i3-7100U-A reliably faulted at

approximately -250 mV with a CPU temperature of 47◦ C, an

undervolting of -270 mV was required to obtain the same fault

at 39◦ C. While we have not investigated this behaviour in

detail, we note that the temperature dependency and possible

differences in “stability” of the fault warrant further investiga-

tion. All our attacks were performed at room temperature and

caused no impediments.

C. Overvolting

The VID interface specification limits the maximum voltage

to 1.52 V. According to the CPU datasheets [33], this voltage

is within the normal operating region. We experimentally

confirmed that we could not increase the voltage beyond

1.516 V (even with a higher value in the MSR), and we did not

observe any faults at 1.516 V at any frequency on i3-7100U-A.

IV. FROM FAULTS TO ENCLAVE KEY EXTRACTION

Having demonstrated the feasibility of fault injection into

SGX enclaves in Section III, we apply the undervolting tech-

niques to cryptographic libraries used in real-world enclaves.

To this end, we showcase practical fault attacks on mini-

malist benchmark enclaves using off-the-shelf cryptographic

libraries.

A. Corrupting OpenSSL Signatures

We first developed a simple proof-of-concept application

using OpenSSL in userspace. This application runs the mul-

tiplication loop from Section III until the first fault occurs

(to make sure the system is in a semi-stable state) and then

invokes OpenSSL as follows:

system("openssl dgst -sha256 -sign
private.pem test.c | openssl base64
>> log.txt");

Running at the standard voltage, this proof-of-concept out-

puts a constant signature. Running with undervolting (on the

i3-7100U-A at 1 GHz, -230 mV was sufficient), this generated

incorrect, apparently randomly changing signatures. While we

have not exploited this fault to factor the RSA key, this

motivating example shows that undervolting can successfully

inject faults into complex cryptographic computations, without

affecting overall system stability.

B. Full Key Extraction from RSA-CRT Decryption/Signature
in SGX using IPP Crypto

The tcrypto API of the Intel SGX-SDK only exposes

a limited number of cryptographic primitives. However, the

developer can also directly call IPP Crypto functions when

additional functionality is needed. One function that is avail-

able through this API is decryption or signature generation

using RSA with the frequently used Chinese Remainder

Theorem (CRT) optimization. In the terminology of IPP

Crypto, this is referred to as “type 2” keys initialized through

ippsRSA_InitPrivateKeyType2(). We developed a proof-

of-concept enclave based on Intel example code [34].

Given an RSA public key (n, e) and the corresponding

private key (d, p q), RSA-CRT can speedup the computation

of y = xd (mod n) by a factor of around four. Internally,

RSA-CRT makes use of two sub-exponentiations, which are

recombined as:

y = [q · cp] · xdp
p + [p · cq] · xdq

q (mod n)

where dp = d (mod p− 1), dq = d (mod q − 1), xp =
x (mod p), xq = x (mod q), and cp, cq are pre-computed

constants.

RSA-CRT private key operations (decryption and signature)

are well-known to be vulnerable to the Bellcore and Lenstra

fault-injection attacks [9], which simply require a fault in

exactly one of the two exponentiations of the core RSA

operation without further requirements to the nature or location

of the fault. Assuming that a fault only affects one of the two

sub-exponentiations x
dp
p (mod p) and given the respective

faulty output y′, one can factor the modulus n using the

Bellcore attack as:

q = gcd (y − y′, n) , p = n/q
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The Lenstra method removes the necessity to obtain both

correct and faulty output for the same input x by computing

q = gcd
(
(x′)e − y, n

)
instead.

As a first step to practically demonstrate this attack for SGX,

we successfully injected faults into the ippsRSA_Decrypt()

function running within an SGX enclave on the i3-7100U-A,

undervolting by -225 mV for the whole duration of the RSA

operation. However, this resulted in non-exploitable faults,

presumably since both sub-exponentiations had been faulted.

We therefore introduced a second thread (in the untrusted

code) that resets the voltage to a stable value after one third

of the overall duration of the targeted ECALL. With this

approach, the obtained faults could be used to factor the 2048-

bit RSA modulus using the Lenstra and Bellcore attacks, and

hence to recover the full key with a single faulty decryption or

signature and negligible computational effort. An example for

faulty RSA-CRT inputs and outputs is given in Appendix B.

C. Differential Fault Analysis of AES-NI in SGX

Having demonstrated the feasibility of enclave key-

extraction attacks for RSA-CRT, we turn our attention to

Intel AES New Instructions (AES-NI). This set of processor

instructions provide very efficient hardware implementations

for AES key schedule and round computation. For instance,

on the Skylake architecture, an AES round instruction has

a latency of only four clock cycles and a throughput of

one cycle per instruction1. AES-NI is widely used in cryp-

tographic libraries, including SGX’s tcrypto API, which

exposes functions for AES in Galois Counter Mode (GCM),

normal counter mode, and in the CMAC construction. These

crypto primitives are then used throughout the Intel SGX-

SDK, including crucial operations like sealing and unsealing

of enclave data. Other SGX crypto libraries (e.g., mbedtls

in Microsoft OpenEnclave) also make use of the AES-NI

instructions.

Our experiments show that the AES-NI encryption round

instruction (v)aesenc is vulnerable to Plundervolt attacks:

we observed faults on the i7-8650U-A with -195 mV under-

volting and on the i3-7100U-A with -232 mV undervolting.

The faults were always a single bit-flip on the leftmost

two bytes of the round function’s output. Such single bit-flip

faults are ideally suited for Differential Fault Analysis (DFA).

Examples of correct and faulty output are:

[Enclave] plaintext: 697DBA24B0885D4E120FFCAB82DDEC25
[Enclave] round key: F8BD0C43844E4B4F28A6D3539F3A73E5
[Enclave] ciphertext1: C9210B59333A07A922DE59788D7AA1A7
[Enclave] ciphertext2: C9230B59333A07A922DE59788D7AA1A7
[Enclave] plaintext: 4C96DD4E44B4278E6F49FCFC8FCFF5C9
[Enclave] round key: BE7ED6DB9171EBBF9EA51569425D6DDE
[Enclave] ciphertext1: 0D42753C23026D11884385F373EAC66C
[Enclave] ciphertext2: 0D40753C23026D11884385F373EAC66C

Next, we use these single-round faults to build an enclave

key-recovery attack against the full AES. We took a canonical

AES implementation using AES-NI instructions2 and ran it

1https://software.intel.com/sites/landingpage/IntrinsicsGuide/#expand=
233&text= mm aesenc si128

2https://gist.github.com/acapola/d5b940da024080dfaf5f

in an enclave with undervolting as before. Unsurprisingly, the

probability of a fault hitting a particular round instruction is

approx. 1/10, which suggests a uniform distribution over each of

the ten AES rounds. By repeating the operation often enough

(5 times on average) we get a fault in round 8. An example

output for this (using the key 0x000102030405060708090a

0b0c0d0e0f) is the following:

[Enclave] plaintext: 5ABB97CCFE5081A4598A90E1CEF1BC39
[Enclave] CT1: DE49E9284A625F72DB87B4A559E814C4 <- faulty
[Enclave] CT2: BDFADCE3333976AD53BB1D718DFC4D5A <- correct

input to round 10:
[Enclave] 1: CD58F457 A9F61565 2880132E 14C32401
[Enclave] 2: AEEBC19C D0AD3CBA A0BCBAFA C0D77D9F

input to round 9:
[Enclave] 1: 6F6356F9 26F8071F 9D90C6B2 E6884534
[Enclave] 2: 6F6356C7 26F8D01F 9DF7C6B2 A4884534

input to round 8:
[Enclave] 1: 1C274B5B 2DFD8544 1D8AEAC0 643E70A1
[Enclave] 2: 1C274B5B 2DFD8544 1D8AEAC0 646670A1

In order to understand the fault (the following profiling is
not part of the actual attack and only needs to be done once),
we took both correct and faulty ciphertexts and decrypted them

round-by-round while comparing the intermediate states. The

result can be seen in the above output: Observe that byte one

(counting from the left in the rightmost word) in round 8

has changed from 0x66 to 0x3E. This faulty byte is actually

caused by an XOR with 0x02 (i.e., a single-bit flip) for state

byte one after SubBytes in round 8. We established this by

simulating the AES invocation and trying different fault masks.

Equipped with this fault in round 8, we were able to apply the

differential fault analysis technique by Tunstall et al. [68] as

implemented by Jovanovic3:

Given a pair of correct and faulty ciphertext on the same

plaintext, this attack is able to recover the full 128-bit AES key

with a computational complexity of only 232+256 encryptions

on average. We have run this attack in practice and it only

took a couple of minutes to extract the full AES key from the

enclave, including both fault injection and key computation

phases. The steps to reproduce this attack with the above pair

of correct and faulty ciphertexts are given in Appendix D.

D. Faulting Intel SGX’s Key Derivation Primitives

Finally, we investigated whether we can successfully apply

our undervolting techniques to inject faults in Intel SGX’s

hardware-level key derivation instructions. These primitives

form the basis for local and remote attestation, as well as

sealing, and are indispensable to bootstrap trust in the SGX

ecosystem [1]. As with most of SGX’s trusted computing

base, complex key derivation functionality is implemented

in microcode [14] and, according to an Intel patent [47],

may leverage the processor’s native AES-NI instructions to

accelerate some of the cryptographic operations. Hence, our

hypothesis is that we can produce incorrect key derivations

through an Plundervolt attack. While this in itself does not

directly break SGX’s security objectives (the attestation will

3https://github.com/Daeinar/dfa-aes

1472



simply fail), faulty key derivations may, in turn, reveal in-

formation about the processor’s long-term key material that

should never be exposed to software. In this section, we

merely want to show that even complex microcode instructions

can be successfully faulted. We leave further exploration and

cryptanalysis of such faults as future work.
a) Faulting EGETKEY: Enclaves can make use of SGX’s

key derivation facility by means of a dedicated EGETKEY

instruction [1, 14]. This instruction derives an enclave-specific

128-bit symmetric key based on a hardware-level master

secret, which is burned into efuses during the processor manu-

facturing process and never directly exposed to software. The

exact key derivation algorithm implemented in the microcode

is largely undocumented, but one Intel patent [47] reveals that

AES-CMAC is used with a derivative string specifying, among

others, a software-provided KeyID and the calling enclave’s

identity. We furthermore confirmed that Intel’s official SGX

software simulator4 indeed relies on AES-CMAC with a fixed

128-bit secret for key derivations.
Our experimental setup consists of a minimal attacker-

controlled enclave that first prepares a fixed key request and

thereafter repeatedly derives the expected cryptographic key

using the EGETKEY assembly instruction. We expect the de-

rived key to be constant, since we made sure to always supply

the exact same KeyID meta data. However, our experiments

on the i3-7100U-C running at 2 GHz with -134 mV under-

volting showed that Plundervolt can reliably fault such SGX

key derivations. We provide several samples of incorrectly

derived keys in Appendix E. Interestingly, we noticed that

key derivation faults appear to be largely deterministic. That

is, for a fixed KeyID, the same (wrong) key seems to be

produced most of the time when undervolting, even across

reboots. However, we also observed, at least once, that two

different faulty keys can be produced for the same KeyID, cf.

Appendix E.
b) Faulting EREPORT: SGX supports local attestation

through the EREPORT primitive. This instruction can be in-

voked by a client enclave to create a tagged measurement

report destined for another target enclave residing on the same

platform. For this, EREPORT first performs an internal key

derivation to establish a secret key that can only be derived by

the intended target enclave executing on the same processor.

This key is thereafter used in the EREPORT microcode to create

a 128-bit AES-CMAC that authenticates the report data. We

experimentally confirmed that Plundervolt can indeed reliably

induce faults in local attestation report MACs. We provide a

few samples of faulty report MACs in Appendix F. As with the

EGETKEY experiments above, we noticed that the faulty MACs

appear to be deterministic. However, faulty MACs do change

across reboots as EREPORT generates an internal random Key

ID on every processor cycle.

E. Faulting Other Intel IPP Crypto Primitives in SGX
In addition to the above key extractions from RSA-CRT and

AES-NI, we applied the undervolting technique to a number of

4https://github.com/intel/linux-sgx/blob/master/sdk/simulation/tinst/deriv.cpp#L90

enclaves using other tcrypto APIs. We successfully injected

faults into the following primitives among others:

AES-GCM In certain cases, faults in sgx_rijndael128GCM

_encrypt() only affect the MAC, aside from our results

on AES-NI in Section IV-C. Note that DFA is not directly

applicable to AES in GCM mode, since it is not possible

(if used correctly) to get two encryptions with the same

nonce and plaintext.

Elliptic Curves We also observed faults in elliptic curve

signatures (sgx_ecdsa_sign()) and key exchange

(sgx_ecc256_compute_shared_dhkey()).

This list of cryptographic fault targets is certainly not ex-

haustive. We leave the examination of fault targets for Plunder-

volt, as well as the evaluation of their practical exploitability

for future work, which requires pinpointing the fault location

and debugging IPP crypto implementations. There is a large

body of work regarding the use of faults for key recovery

that could be applicable once the effect of the fault for each

implementation has been precisely understood. Fan et al. [17]

provide an overview of fault attacks against elliptic curves,

while other researchers [18, 15] discuss faults in nonce-based

encryption modes like AES-GCM.

V. MEMORY SAFETY VIOLATIONS DUE TO FAULTS

In addition to the extraction of cryptographic keys, we show

that Plundervolt can also cause memory safety misbehavior in

certain situations. The key idea is to abuse the fact that com-

pilers often rely on correct multiplication results for pointer

arithmetic and memory allocation sizes. One example for this

would be indexing into an array a of type elem_t: according

to the C standard, accessing element a[i] requires calculating

the address at offset i*sizeof(elem_t). Clearly, out-of-

bounds accesses arise if an attacker can fault such multipli-

cations to produce address offsets that are larger or smaller

than the architecturally defined result (cf. Section III). Note

that Plundervolt ultimately breaks the processor’s ISA-level

guarantees, i.e., we assume perfectly secure code that has

been guarded against both traditional buffer overflows [16] as

well as state-of-the-art Spectre-style [42] transient execution

attacks.

In this section, we explore two distinct scenarios where

faulty multiplications impair memory safety guarantees in

seemingly secure code. First, we fault imul instructions

transparently emitted by the compiler to reliably produce

out-of-bounds array accesses. Next, we analyze trusted SGX

runtime libraries and locate several sensitive multiplications in

allocation size computations that could lead to heap corruption

by allocating insufficient memory.

A. Faulting Array Index Addresses

We first focus on the case where a multiplication is used

for computing the effective memory address of an array

element as follows: &a[i]=&a[0]+i*sizeof(elem_t).

However, we found that, in most cases, when the respective

type has a size that is a power of two, compilers will use left

bitshifts instead of explicit imul instructions. Furthermore,
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as concluded from the micro-benchmark analysis presented

in Section III, we found it difficult (though not impossible) to

consistently produce multiplication faults where both operands

are ≤ 0xFFFF without crashing the CPU (cf. Section V-B).

Hence, here we only consider cases in this section where si

zeof(elem_t) �= 2x and i > 216.

a) Launch Enclave Application Scenario: To illustrate

that our attack requirements can be realistically met and

exploited in compiler-generated enclave code, we constructed

an example enclave application. Our application scenario takes

advantage of the “flexible launch control” [39] features in

the latest SGX processors via a custom Launch Enclave that

decides which other enclaves are allowed to be loaded on the

platform. We loosely based our implementation on the open-

source reference launch enclave code (psw/ae/ref_le) pro-

vided by Intel as part of its SGX SDK [35]. For completeness,

we refer to Appendix G for full source code and disassembly

of the relevant functions.

Our custom Launch Enclave maintains a global fixed-length

array of white-listed enclave authors. Each element in this

array is a composite struct data type specifying the white-

listed enclave author’s MRSIGNER hash, plus whether or not

her enclaves are allowed access to the special platform “pro-

visioning key”. The latter restriction relates to CPU tracking

privacy concerns [14]. Specifically, the provisioning key is

the only SGX key which is directly derived from a long-term

platform-specific cryptographic secret, without first including

an internal OWNEREPOCH register. Hence, the provisioning

key remains constant as a processor changes owners, and is

normally only available to privileged architectural enclaves

that establish long-term platform attestation key material.

The security objective of our example scenario is to en-

force a simple launch control policy: only enclave authors

whose MRSIGNER value is present in the global white list

are allowed to run production enclaves on the system (poten-

tially with an additional restriction on the provisioning key

attribute). For this, our sample Launch Enclave repeatedly

calls a check_wl_entry() function in a for loop to look

up and compare to every element in the global white list

array. Note that our sample Launch Enclave merely returns a

non-zero value if access is allowed, as we omitted the actual

computation of the cryptographic launch token for simplicity.

Evidently, after the global white list has been initialized to

all zeroes, our Launch Enclave should never return 1 when

looking up the adversary’s non-zero MRSIGNER value.

b) Launch Enclave Exploitation: Figure 5 visualizes the

high-level attack flow in our application scenario. For exploita-

tion, we first turn our attention to the check_wl_entry()

function 1 which indexes into the global white list array.

As evident from Appendix G, this array access compiles

to an imul$0x21,%rdi,%rdi instruction, which calculates

the required offset to be added to the array base address

afterwards. In order to reliably fault 2 this product, the array

index specified in the %rdi parameter needs to be sufficiently

large (cf. Section III). Specifically, we experimentally estab-

lished that a white list of about 530,000 entries suffices to

MRSIGNER_A
MRSIGNER_B

...

id
x

Enclave virtual memory range

Attacker-controlled memory page

check_wl_entry:

...
entry = wl_base + idx * 0x21

MRSIGNER_ADV
...

1 2

4 mmap(...)

3 AEX

5 ERESUME

Page fault handler

6

Fig. 5. Example scenario of a custom launch enclave where erroneous
multiplication bitflips allow to redirect a trusted white list array lookup to
attacker-controlled memory outside the enclave.

reliably induce predictable faults in the multiplication result

(the victim Launch Enclave almost always hits an exploitable

fault in under 100 invocations). We noticed that Plundervolt

frequently causes the higher-order bits to be flipped in the

faulty product. For example, 0x80D36 * 0x21 = 0x109b3f6

predictably faults to 0xffffffffe109b417 at 2 GHz and

undervolting of -118 mV on the i3-7100U-C. Notice that flip-

ping the most-significant bits effectively causes the resulting

product to be interpreted as a large negative offset (in the order

of magnitude of the computed number) relative to the trusted

array base address. Hence, after adding the faulty product,

the resulting address now points in the large untrusted 48-bit

address space outside the enclave.

In the next stage of the attack, the victim enclave unknow-

ingly dereferences the erroneous white list element pointer

as if it was in-enclave memory. Since the virtual memory

region before the enclave base has not been allocated, this

access causes a page fault 3 to be delivered to the un-

trusted operating system. We installed a custom signal handler

4 which subsequently mmap()s the required memory page

on demand. At this point, the adversary can setup a bogus

white list entry with her own MRSIGNER hash and provision-

ing key attribute in attacker-controlled memory outside the

enclave. Note, however, that SGX clears the least significant

12 bits in the reported page fault address to limit page fault

side-channel exposure [78]. Hence, for a successful attack,

we should still determine at which offset within the allocated

page to place the bogus MRSIGNER value. To overcome this

challenge, we observe that the multiplication bit-flips induced

by Plundervolt are often very deterministic and predictable.

That is, we noticed that frequently the exact same bits are

flipped by applying a constant XOR mask to the expected

product (e.g., 0xffffffffe00007e1 in the above example).

We thus conveniently pre-compute the expected fault mask by

running identical code in our own debug enclave, so that we

can afterwards accurately predict the page offset of the faulty

address by XORing the precomputed mask with the correct

product. As a final challenge for this to work, we still require
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knowledge of the correct product, i.e., the architecturally

expected array offset depending on the current loop iteration

in the enclave. However, this is actually a standard scenario in

classical side-channel attack works, which accurately recon-

struct enclave control flow by, for instance, monitoring page

table access patterns [78, 73], cache accesses [58] or interrupt

counts [71, 72]. To improve reproducibility, we disclose the

current loop iteration in our current proof-of-concept attack

code (Appendix G) providing the same information without

noise.

Finally, after the bogus white list entry has been constructed

in untrusted memory, the adversary merely resumes 5 the

victim enclave. The latter will now proceed and unknowingly

dereferences 6 the attacker-controlled memory page instead

of the trusted white list entry in enclave memory. The attack

is successfully concluded when the benign Launch Enclave

eventually returns one after the adversary’s MRSIGNER and

provisioning key values were successfully matched.

B. Faulting Memory Allocation Sizes

Apart from array indices, we identified size computations

for dynamic memory allocations as another common program-

ming pattern that relies on correct multiplication results. We

showed in Section III that imul can also be faulted to produce

results that are smaller than the correct value. Clearly, heap

corruption may arise when such a faulty multiplication result

is used to allocate a contiguous chunk of heap memory that

is smaller than the expected size. Since Plundervolt corrupts

multiplications silently, i.e., without failing the respective

malloc() library call, the client code has no means of

determining the actual size of the allocated buffer and will

subsequently read or write out-of-bounds.

a) edger8r-generated Code: To ease secure enclave

development, the official Intel SGX-SDK comes with a dedi-

cated edger8r tool that generates trusted proxy bridge code to

transparently copy user arguments to and from enclave private

heap memory [35, 70]. The tool automatically generates C

code based on the ECALL function’s prototype and explicit

programmer annotations that specify pointer directions and

sizes. Consider the following (simplified) example enclave

code, where the [in,count] attributes are used to specify

that arr is an input array with cnt elements:

void vuln_ecall([in, count=cnt] struct_foo_t *arr,
size_t cnt, size_t offset)

{
if (offset >= cnt) return;

arr[offset].foo1 = 0xdeadbeef;
}

The edger8r tool will generate the following (simplified)

trusted wrapper code for parameter checking and marshalling:

...
size_t _tmp_cnt = ms->ms_cnt;
size_t _len_arr = _tmp_cnt * sizeof(struct_foo_t);
...
_in_arr = (struct_foo_t*)malloc(_len_arr);
...
vuln_ecall(_in_arr, _tmp_cnt);

The above code first computes the expected size _len

_arr of the input array, allocates sufficient space on the

enclave heap, and finally copies the input array into the

enclave before invoking the programmer’s vuln_ecall()

function. Crucially, if a multiplication fault occurs during

calculation of the _len_arr variable, a potentially smaller

buffer will be allocated and passed on to the actual ECALL

function. Any subsequent writes or reads to the allocated buffer

may cause inadvertent enclave heap corruption or disclosure.

For example, the above vuln_ecall() implementation is

safeguarded against overflows in a classical sense, but can

trigger a heap overflow when the above multiplication is

faulted and arr is smaller than expected.

For the type used in this example, we have

sizeof(struct_foo_t)=0x64. We performed initial

testing based on our micro-benchmark from Section III,

established a predictable fault for this parameter, and verified

that the enclave indeed corrupts trusted heap memory when

computing on a buffer with the faulty size. Specifically, we

found that the multiplication 0x08b864 * 0x64 = 0x36807

10 reliably faults to a smaller result 0x1680710 with an

undervolting of -250 mV on our i3-7100U-A system.

For convenience during exploit development, we artificially

injected the same fault at compile time by changing the

generated edger8r code from the Makefile.

b) calloc() in SGX Runtime Libraries: Another pos-

sible target for fault injection is the hidden multiplication

involved in calls to the prevalent calloc() function in the

standard C library. This function is commonly used to allocate

memory for an array where the number of elements and the

size of each element are provided as separate arguments.

According to the calloc() specification, the resulting buffer

will have a total size equal to the product of both arguments

if the allocation succeeds. Note that optimizations of power-

of-two sizes to shifts are not applicable in this case, since the

multiplication happens with generic function parameters.

Consider the following calloc() implementation from

musl-libc, an integral part of the SGX-LKL [54] library

OS for running unmodified C applications inside enclaves5:

void *calloc(size_t m, size_t n)
{

if (n && m > (size_t)-1/n) {
errno = ENOMEM;
return 0;

}
n *= m;
void *p = malloc(n);
...

}

In this case, if the product n*=m can be faulted to produce

a smaller result, subsequent code may trigger a heap overflow,

eventually leading to memory leakage, corruption, or possibly

even control flow redirection when neighbouring heap chunks

contain function pointers e.g., in a vtable. Based on practical

experiments with the i3-7100U-A, we artificially injected a

realistic fault for the product 0x2bffc0 * 0x8 = 0x15ffe00

5https://github.com/lsds/sgx-lkl-musl/blob/db8c09/src/malloc/malloc.c#L352
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via code rewriting in SGX-LKL’s musl-libc to cause an

insufficient allocation of 0x5ffe00 bytes and a subsequent

heap overflow in a test enclave.

We also investigated calloc() implementations in Intel’s

SGX SDK [35] and Microsoft’s OpenEnclave [48], but inter-

estingly found that their implementations are hardened against

(traditional) integer overflows as follows:

if (n_elements != 0) {
req = n_elements * elem_size;
if (((n_elements | elem_size) & ˜(size_t)0xffff)

&& (req / n_elements != elem_size))
req = MAX_SIZE_T; /* force downstream failure on
overflow */

}

Note how the above code triggers a division (that would

detect the faulty product) if at least one of n_elements and

elem_size is larger than 0xFFFF. Producing faults where

both operands are ≤ 0xFFFF (cf. Section III) is possible, e.g.,

we got a fault for 0x97b5*0x40 on the i3-7100U-A. How-

ever, in the majority of attempts, this leads to a crash because

the CPU has to be undervolted to the point of becoming

unstable. The above check (without the restriction on only

being active for at least operand being > 0xFFFF) serves as

an example of possible software hardening countermeasures,

as discussed in Section VII.

VI. DISCUSSION AND RELATED WORK

Compared to widely studied fault injection attacks in cryp-

tographic algorithms, memory safety implications of faulty

instruction results have received comparatively little attention.

In the context of physically injected faults, Govindavajhala

et al. [20] demonstrated how a single-bit memory error can

be exploited to achieve code execution in the Java/.NET

VM, using a lightbulb to overheat the memory chip. Barbu

et al. [5] used laser fault injection to bypass a type check

on a Javacard and load a malicious applet afterwards. In the

context of software-based Rowhammer attacks, on the other

hand, Seaborn and Dullien [60] showed how to flip operand

bits in x86 instruction streams to escape a Native Client

sandbox, and more recently Gruss et al. [21] flipped opcode

bits to bypass authentication checks in a privileged victim

binary. While flipping bits in instruction opcodes enables the

application control flow to be illegally redirected, none of these

approaches directly produce incorrect computation results.

Furthermore, Rowhammer attacks originate outside the CPU

package and are hence fully mitigated through SGX’s memory

integrity protection [24], which reliably halts the system if an

integrity check fails [21, 38].

To the best of our knowledge, we are the first to explore

the memory safety implications of faulty multiplications in

compiler-generated code. Compared to prior work [65] that

demonstrated frequency scaling fault injection attacks against

ARM TrustZone cryptographic implementations, we show that

undervolting is not exclusively a concern for cryptographic

algorithms. As explored in the following Section VII, this

observation has profound consequences for reasoning about

secure enclave code, i.e., merely relying on fault-resistant

cryptographic primitives is insufficient to protect against Plun-

dervolt adversaries at the software level.

While there is a long line of work on dismantling SGX’s

confidentiality guarantees [69, 11, 46, 73, 50, 25, 72] as

well as exploiting classical memory safety vulnerabilities in

enclaves [45, 8, 70], Plundervolt represents the first attack

that directly violates SGX’s integrity guarantees for func-

tionally correct enclave software. By directly breaking ISA-

level processor semantics, Plundervolt ultimately undermines

even relaxed “transparent enclaved execution” paradigms [66]

that solely require integrity of enclave computations while

assuming unbounded side-channel leakage.

The differences and ramifications of violating integrity

vs. confidentiality guarantees for enclaved computations can

often be rather subtle. For instance, the authors of the Fore-

shadow [69] attack extracted enclave private sealing keys

(confidentiality breach), which subsequently allowed an active

man-in-the-middle position to be established - enabling all

traffic to be read and modified from an enclave (integrity

breach). Likewise, we showed that faulty multiplications or

encryptions can lead to unintended disclosure of enclave se-

crets. Our Launch Enclave application scenario of Section V-A

is another instance of the tension between confidentiality

and integrity. That is, the aforementioned Foreshadow attack

showed how to bypass enclave launch control by extracting

the platform’s “launch key” needed to authenticate launch

tokens, whereas our attack intervened much more directly

with the integrity of the enclaved execution by faulting pointer

arithmetics and redirecting the trusted white list into attacker-

controlled memory.

VII. COUNTERMEASURES

In Intel SGX’s threat model, the operating system is con-

sidered untrusted. However, we showed that while an enclave

is running, privileged adversaries can manipulate MSR 0x150

and reliably fault in-enclave computations. Hence, counter-

measures cannot be implemented at the level of the untrusted

OS or in the untrusted runtime components. Instead, two

possible approaches to mitigating Plundervolt are possible:

preventing unsafe undervolting directly at the level of the CPU

hardware and microcode, or hardening the trusted in-enclave

code itself against faults. Respective methods can be used

separately or—to increase the level of protection—in com-

bination, as is common practice for high-security embedded

devices like smartcards.

In the following, we first overview potential approaches

to mitigate Plundervolt attacks at the hardware and software

levels. Next, we conclude this section by summarizing the

specific mitigation strategy adopted by Intel.

A. Hardware-Level and Microcode-Level Countermeasures

a) Disabling MSR Interface: Given the impact of our

findings, we recommend initiating SGX trusted computing

base recovery by applying microcode updates that completely

disable the software voltage scaling interface exposed via MSR

0x150. However, given the apparent complexity of dynamic
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voltage and frequency scaling functionality in modern Intel

x86 processors, we are concerned that this proposed solution

is still rather ad-hoc and does not cover the root cause for Plun-

dervolt. That is, other yet undiscovered vectors for software-

based fault injection through power and clock management

features might exist and would need to be disabled in a similar

manner.
Ultimately, even if all software-accessible interfaces have

been disabled, adversaries with physical access to the CPU are

also within Intel SGX’s threat model. Especially disturbing in

this respect is that the SerialVID bus between the CPU and

voltage regulator appear to be unauthenticated [30, 31]. Hence

adversaries might be able to physically connect to this bus and

overwrite the requested voltage directly at the hardware level.

Alternatively, advanced adversaries could even replace the

voltage regulator completely with a dedicated voltage glitcher

(although this may be technically non-trivial given the required

large currents).
b) Scaling Back Voltage during Enclave Operation:

Plundervolt relies on the property that CPU voltage changes

outside of enclave mode persist during enclave execution. A

straw man defense strategy could be to automatically scale

back any applied undervolting when the processor enters en-

clave mode. Interestingly, we noticed that Intel seems to have

already followed this path for its (considerably older) TXT

trusted computing extensions. In particular, the documentation

of the according SENTER instruction mentions that [36, 6-21]:

“Before loading and authentication of the target code module is
performed, the processor also checks that the current voltage and
bus ratio encodings correspond to known good values supportable by
the processor. [. . . ] the SENTER function will attempt to change the
voltage and bus ratio select controls in a processor-specific manner.”

However, we make the crucial observation that this defense

strategy does not suffice to fully safeguard Intel SGX enclaves.

That is, in contrast to Intel TXT which transfers control to a

measured trusted environment, SGX features a more dynamic

design where attacker code and trusted enclaves are interfaced

at runtime. Hence, while one core is in enclave mode, another

physical core could attempt to trigger the undervolting for

the shared voltage plane in parallel after entering the victim

enclave. Therefore, such checks would need to be continuously

enforced every time any core is in enclave mode. This defense

strategy is further complicated by the observation that the time

between a write to MSR 0x150 and the actual voltage change

manifesting is relatively large (order of magnitude of 500k

TSC cycles, cf. Fig. 2). Therefore, removing and restoring

undervolting on each enclave entry and exit would likely add

a substantial overhead.
c) Limiting to Known Good Values: Even slightly under-

volting the CPU creates significant power and heat reductions;

properties that are highly desirable in data centers, for mobile

computing and for other end user applications like gaming.

Completely removing this feature might incur substantial

limitations in practice. As an alternative solution, the exposed

software interface could be adjusted to limit the amount of

permitted undervolting to known “safe” values whitelisted

by the processor. However, this mitigation strategy is fur-

ther complicated by our observations that safe voltage levels

depend on the current operating frequency and temperature

and may even differ between CPUs of the same model (cf.

Section III-A). Hence, establishing such safe values would

require a substantial amount of additional per-chip testing at

each frequency. Even then, circuit-aging effects can affect safe

values as the processor gets older [40].

d) Multi-variant Enclave Execution: A perpendicular ap-

proach, instead of trying to prevent undervolting faults directly,

would be to modify processors to reliably detect faulty compu-

tation results. Such a defense may, for instance, leverage ideas

from multi-variant execution [28, 76, 43] software hardening

techniques. Specifically: processors could execute enclaved

computations twice in parallel on two different cores and halt

once the executions diverge. To limit the performance penalty

of such an approach, we propose leveraging commodity Hy-

perThreading [36] features in Intel CPUs and turn them from

a security concern into a security feature for fault resistancy.

After a long list of SGX attacks [69, 75, 59, 50] demonstrated

how enclave secrets can be reconstructed from a sibling CPU

core, Intel officially recommended disabling hyperthreading

when using SGX enclaves [32]. However, this also imposes a

significant performance impact on any non-SGX workloads.

A well known solution to fault injection attacks is re-

dundancy [4], either in hardware, by duplicating potentially

targeted circuits, or in software by duplicating potentially tar-

geted parts of the instruction stream, and frequently checking

for mismatches in both cases. For instance, Oh et al. [52]

and later Reis et al. [56] proposed duplicating the instruction

stream to produce software that is tolerant against hardware-

induced faults. In the case of SGX, such a solution might also

be applied at the microarchitectural level. The processor would

simply run the duplicated instructions in parallel on the two

hyperthreads of a core. Faults would be reliably detected if the

probability that the attacker induced the exact same fault in two

immediately subsequent executions of the same instructions is

significantly lower than the probability of observing a single

fault at some point in time.

B. Software-Level Hardening

a) Fault-Resistant Cryptographic Primitives: There is a

large body of work regarding fault injection countermeasures

for cryptographic algorithms, including (generic) temporal

and/or spatial redundancy [26] and algorithm-specific ap-

proaches such as performing the inverse operation or more

advanced techniques like ineffective computation [19].

For the example of RSA-CRT signature/decryption (cf.

Section IV-B), the result could be verified before outputting by

performing a (in the case of RSA with small public exponent)

cheap signature verification/encryption operation. Indeed, such

a check is present by default in some cryptographic libraries,

e.g., mbedtls. However, for the Intel SGX-SDK this might

require changes to the API specification of tcrypto, as the

public key is currently not supplied as a parameter to private

key operations.
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For AES-NI (cf. Section IV-C), an encryption operation

could be followed by a decryption to verify that the plaintext

remains unchanged. However, this would incur substantial

performance overhead, doubling the runtime of an encryption.

Trade-offs like storing the intermediate state after k rounds

and then only performing 10 − k inverse rounds (for AES-

128) can defeat DFA but might still be susceptible to statistical

attacks [18].

b) Application and Compiler Hardening: It is important

to note that SGX supports general-purpose, non-cryptographic

code that can also be successfully exploited with Plundervolt,

as demonstrated in Section V. To further complicate matters,

typical enclave runtime libraries contain numerous, potentially

exploitable mul and imul instructions. For instance, we

found that the trusted runtime code for a minimalistic enclave

using the Intel SGX-SDK [35] contains 23 multiplications,

with many in standard library functions like free(). For

comparison, the trusted runtime part of Microsoft’s OpenEn-

clave SDK [48] contains 203 multiplications, while Graphene-

SGX’s [67] libpal-Linux-SGX.so features 71 mul/imul

instructions.

Certain standard library functions like calloc() could be

hardened manually by inserting checks for the correctness of a

multiplication, e.g., through a subsequent division, as already

implemented in the Intel SGX-SDK (see Section V-B). How-

ever, in functions where many “faultable” multiplications are

being used (e.g., public-key cryptography, signal processing,

or machine learning algorithms), this would incur significant

overhead. Furthermore, each case of a problematic instruction

needs to be analyzed separately, often at the assembly level

to understand the exact consequences of a successful fault

injection. Finally, it should be noted that while we have

focused on multiplications in our analysis, defenses should

also take into account the possibility of faulting other high-

latency instructions.

c) Traditional Memory Safety Hardening: As a final

consideration, we recommend applying more general counter-

measures known from traditional memory safety application

hardening [16] in an enclave setting. One approach to hinder

Plundervolt-induced memory safety exploitation would be to

randomize the enclave memory layout using systems like

SGX-Shield [61]. Yet, it is important to note that these tech-

niques can only raise the bar for actual exploitation, without

removing the actual root cause of the attack.

C. Intel’s Mitigation Plan

Following the responsible disclosure, Intel’s Product Secu-

rity Incident Response Team informed us of their mitigation

plans with the following statement:

“After carefully reviewing the CPU voltage setting modification, Intel
is mitigating the issue in two parts, a BIOS patch to disable the
overclocking mailbox interface configuration. Secondly, a microcode
update will be released that reflects the mailbox enablement status
as part of SGX TCB [Trusted Computing Base] attestation. The
Intel Attestation Service (IAS) and the Platform Certificate Retrieval
Service will be updated with new keys in due course. The IAS

users will receive a ‘CONFIGURATION NEEDED’ message from
platforms that do not disable the overclocking mailbox interface.”

We note that Intel’s strategy to disable MSR 0x150 (i.e.,
said “mailbox interface”) corresponds to our recommended

mitigation outlined in Section VII-A. However, this strategy

may not cover the root cause for Plundervolt. Other, yet

undiscovered, avenues for fault injection through power and

clock management features might exist (and would have to

be disabled in a similar manner). Finally, we want to stress

that, similiar to previous high-profile SGX attacks like Fore-

shadow [69], Intel’s mitigation plan for Plundervolt requires

trusted computing base recovery [1, 14]. That is, after the

microcode update, different sealing and attestation keys will be

derived depending on whether or not the undervolting interface

at MSR 0x150 has been disabled at boot time. This allows

remote verifiers to re-establish trust after resealing all existing

enclave secrets with the new key material.

VIII. CONCLUSION

In this paper we have identified a new, powerful attack

surface of Intel SGX. We have shown how voltage scaling can

be reliably abused by privileged adversaries to corrupt both

integrity and confidentiality of SGX enclaved computations.

To the best of our knowledge, this represents the first practical

attack that directly breaches the integrity guarantees in the

Intel SGX security architecture. We have proven that this

attack vector is realistic and practical with full key recovery

PoC attacks against RSA-CRT and AES-NI. Furthermore, we

have provided evidence that other micro-instructions can be

faulted as well. Some of these instructions, like EGETKEY

and EREPORT, are the basic building blocks that underpin the

security of the whole SGX ecosystem.

We have shown that Plundervolt attacks are not limited to

cryptographic primitives, but also enable more subtle memory

safety violations. We have exploited multiplication faults in

fundamental programming constructs such as array indexing,

and shown their relevance for widespread memory allocation

functionality in Intel SGX-SDK edger8r-generated code and

in the SGX-LKL runtime. In conclusion, our work provides

further evidence that the enclaved execution promise of out-

sourcing sensitive computations to untrusted remote platforms

creates new and unexpected attack surfaces that continue to

be relevant and need to be studied further.
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APPENDIX A

SCRIPT FOR CONFIGURING CPU FREQUENCY

#!/bin/bash

if [ $# -ne 1 ] ; then
echo "Incorrect number of arguments" >&2
echo "Usage $0 <frequency>" >&2
echo "Example $0 1.6GHz" >&2
exit

fi

sudo cpupower -c all frequency-set -u $1
sudo cpupower -c all frequency-set -d $1

APPENDIX B

EXAMPLE FAULT FOR RSA-CRT

The following 2048-bit RSA key was taken from the Intel

example code:

n = 0xBBF82F090682CE9C2338AC2B9DA871F7368D07E

ED41043A440D6B6F07454F51FB8DFBAAF035C02AB61EA4

8CEEB6FCD4876ED520D60E1EC4619719D8A5B8B807FAFB

8E0A3DFC737723EE6B4B7D93A2584EE6A649D060953748

834B2454598394EE0AAB12D7B61A51F527A9A41F6C1687

FE2537298CA2A8F5946F8E5FD091DBDCB
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e = 0x11
d = 0xA5DAFC5341FAF289C4B988DB30C1CDF83F31251

E0668B42784813801579641B29410B3C7998D6BC465745

E5C392669D6870DA2C082A939E37FDCB82EC93EDAC97FF

3AD5950ACCFBC111C76F1A9529444E56AAF68C56C092CD

38DC3BEF5D20A939926ED4F74A13EDDFBE1A1CECC4894A

F9428C2B7B8883FE4463A4BC85B1CB3C1
The following ciphertext x decrypts to y = xd (mod n):
x = 0x1253E04DC0A5397BB44A7AB87E9BF2A039A33D1

E996FC82A94CCD30074C95DF763722017069E5268DA5D1

C0B4F872CF653C11DF82314A67968DFEAE28DEF04BB6D8

4B1C31D654A1970E5783BD6EB96A024C2CA2F4A90FE9F2

EF5C9C140E5BB48DA9536AD8700C84FC9130ADEA74E558

D51A74DDF85D8B50DE96838D6063E0955
y = 0xEB7A19ACE9E3006350E329504B45E2CA82310B2

6DCD87D5C68F1EEA8F55267C31B2E8BB4251F84D7E0B2C

04626F5AFF93EDCFB25C9C2B3FF8AE10E839A2DDB4CDCF

E4FF47728B4A1B7C1362BAAD29AB48D2869D5024121435

811591BE392F982FB3E87D095AEB40448DB972F3AC14F7

BC275195281CE32D2F1B76D4D353E2D
Injecting a fault during the first half of the RSA-CRT

computation on the i3-7100U-A at 1 GHz with -225 mV un-

dervolting, the following faulty y′ was obtained in one of our

experiments:

y′ = 0xAA105EAFB6BDD9E5A15443729670B70F0428891

03E023428F37B1CEFFAECC91292772652E2016AA5955DF

DA6FD5B685AE062A32DEA9C9E99F516370BE2ED4EF48A3

C3513E4026E5DE3647267A83C9C245A72EA9F4D8C2B373

A8CE70047C922A108807197A6BC15A1DF31E06FCD5521A

A00ECC0B3A2A5BCDDE5A8B7B5AAD3015F

APPENDIX C

FURTHER EXAMPLES FOR AES-NI AESENC FAULTS

[Enclave] plaintext: 4C96DD4E44B4278E6F49FCFC8FCFF5C9
[Enclave] round key: BE7ED6DB9171EBBF9EA51569425D6DDE
[Enclave] ciphertext1: 0D42753C23026D11884385F373EAC66C
[Enclave] ciphertext2: 0D40753C23026D11884385F373EAC66C

[Enclave] plaintext: 2A89F789FAE690774FB2FC04DC8EB7BE
[Enclave] round key: E420AFB5B6ECE976B7A55812705DC2A7
[Enclave] ciphertext1: A2A556F8BBE848CA125E110507DC2E0E
[Enclave] ciphertext2: A2A756F8BBE848CA125E110507DC2E0E

[Enclave] plaintext: D15DBCAA47A8D62B281FFCF9CEF49F5D
[Enclave] round key: FF27B41E3A0F2D9215F4AF61F394C3E8
[Enclave] ciphertext1: 2203E7B64DEE0F3133FBE61E451F43FD
[Enclave] ciphertext2: 2201E7B64DEE0F3133FBE61E451F43FD

[Enclave] plaintext: A67DBE59F885B1AD4F20FE212A2F1767
[Enclave] round key: A4A28B5577F4D771C19B20A90B0CFA98
[Enclave] ciphertext1: 70E2C1040C009C78D64952B4F5B2777A
[Enclave] ciphertext2: 70E0C1040C009C78D64952B4F5B2777A

[Enclave] plaintext: 7815CBC04D8FB2A3B464946A9E9B5596
[Enclave] round key: 596FA60CC6496FD3E9E2B41DF701BA3D
[Enclave] ciphertext1: 19C386B99889F93DC16C0D8E3FE3804A
[Enclave] ciphertext2: 1DC386B99889F93DC16C0D8E3FE3804A

APPENDIX D

RUNNING DFA AGAINST AES-NI

Based on the fault described in Section IV-C, the input file

fault.txt to the DFA implementation from https://github.

com/Daeinar/dfa-aes should contain the following line:

BDFADCE3333976AD53BB1D718DFC4D5A DE49E9284A625

F72DB87B4A559E814C4

This fault was obtained on the i7-8650U-A with -195 mV

undervolting at 1.9 GHz.

We ran the DFA implementation on four cores, knowing

that the fault is in byte one as follows:

./dfa 4 1 fault.txt

This yields 595 key candidates for this particular example,

including the correct secret key value 0x000102030405060

708090a0b0c0d0e0f.

APPENDIX E

EXAMPLES OF EGETKEY FAULTS

All samples in this appendix were collected on the i3-

7100U-C running at 2 GHz with -134 mV of undervolting.

KEY_ID = 1966dd54d49f568111ae77074bf14522
860942817065d0cebc7370bd9e5d9549

KEY_OK = 9ed9a757b4bfe29e90833f4b40df4fb7
KEY_FAULT = 745a2d0054b0f7e2542c1bcd502f7ad5

KEY_ID = 728210dc53f1f22b24e79be5fc375f42
421f9dcb67cb6bac29a7caf9aad94cb6

KEY_OK = 6049723afc45f7eb1728cd7eb1b7ea66
KEY_FAULT = 43e1ed22d58729db1e4def53a882a3f9

The following correct/faulty values were obtained for a fixed

key ID (a47171...). The first faulty key (760e5d...) was

observed numerous times over different runs, while the second

faulty value (37535d...) only occured in one experiment.

KEY_ID = a4717110f732e75fa4f021ae3fbb6da8
bbb55e1a8b38dc74e4554749b7ad141f

KEY_OK = 11fea22c14125fd11de205ca3df643be
KEY_FAULT = 760e5d0a50d4ce4a6b5859f58c42b62c

KEY_ID = a4717110f732e75fa4f021ae3fbb6da8
bbb55e1a8b38dc74e4554749b7ad141f

KEY_OK = 11fea22c14125fd11de205ca3df643be
KEY_FAULT = 37535d4ff210de92917cc931a1fe7c08

APPENDIX F

EXAMPLES OF EREPORT FAULTS

All samples in this appendix were collected on the i3-

7100U-C running at 2 GHz with -134 mV of undervolting.

=== Local attestation REPORT: ’REPORT_OK’ ===
CPU_SVN: 0x0809ffffff0200000000000000000000
MISC_SEL: 0x0
MRENCLAVE: 0x144833bab7d6d1a98154da987f2634b1

682311384613dc08d7334e53291eb524
MRSIGNER: 0xf088eb845e3f5fd691e807942a423dc6

5f421c35d79d5a60c019367a72e38170
PROD_ID/SVN: 0x0/0x0
DATA: 0x41414141414141414141414141414141

41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141

KEY_ID: 0xe754cdfebe332605944c1813fa2416ed
00000000000000000000000000000000

MAC: 0x5ab280f46073878588ce8e537888caaa

=== Local attestation REPORT: ’REPORT_FAULT’ ===
CPU_SVN: 0x0809ffffff0200000000000000000000
MISC_SEL: 0x0
MRENCLAVE: 0x144833bab7d6d1a98154da987f2634b1

682311384613dc08d7334e53291eb524
MRSIGNER: 0xf088eb845e3f5fd691e807942a423dc6
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5f421c35d79d5a60c019367a72e38170
PROD_ID/SVN: 0x0/0x0
DATA: 0x41414141414141414141414141414141

41414141414141414141414141414141
41414141414141414141414141414141
41414141414141414141414141414141

KEY_ID: 0xe754cdfebe332605944c1813fa2416ed
00000000000000000000000000000000

MAC: 0xb58acd215557ed3bddb7f648173d8bde

APPENDIX G

REFERENCE LAUNCH ENCLAVE IMPLEMENTATION

In this appendix, we provide the full C source code and

compiled assembly for the minimalist launch enclave applica-

tion scenario presented in Section V-A. We loosely based our

implementation on the open-source reference launch enclave

code (psw/ae/ref_le) provided by Intel as part of its SGX

SDK [35]. Our custom launch enclave enforces a simple

launch control policy by only returning valid launch tokens for

known enclave authors. Specifically, the enclave maintains a

global fixed-length array of known enclave authors (identified

by the respective MRSIGNER values) plus whether or not they

are allowed access to the long-term platform provisioning key.

After the global white list has been initialized to all zeroes,

our implementation should never return 1.

/* Minimal example implementation based on <https://github.
com/intel/linux-sgx/blob/master/psw/ae/ref_le/ref_le.
cpp#L47> */

typedef struct _ref_le_white_list_entry_t
{

sgx_measurement_t mr_signer;
uint8_t provision_key;

} ref_le_white_list_entry_t;

#define REF_LE_WL_SIZE 0x8D1EE

ref_le_white_list_entry_t g_ref_le_white_list_cache[
REF_LE_WL_SIZE] = { 0 };

void init_wl(void)
{

memset(g_ref_le_white_list_cache, 0x00, sizeof(
ref_le_white_list_entry_t) * REF_LE_WL_SIZE);

}

int check_wl_entry(size_t idx, sgx_measurement_t *mrsigner,
int provision)

{
/*
* XXX the following array index compiles to a

* multiplication that can be faulted..

*/
ref_le_white_list_entry_t *current_entry = &
g_ref_le_white_list_cache[idx];

/*
* Our exemplary launch policy requires that the

* enclave author is white listed, plus is optionally

* allowed access to the platform provisioning key.

*/
if (memcmp(&(current_entry->mr_signer), mrsigner,
sizeof(sgx_measurement_t)) == 0)
{

return (provision ? current_entry->provision_key
: 1);

}

return 0;
}

int get_launch_token(size_t *it, sgx_measurement_t mrsigner
, int provision)

{
for (size_t i = 0; i < REF_LE_WL_SIZE; i++)
{

if (check_wl_entry(i, &mrsigner, provision))
{

return 1;
}

/* NOTE: we explicitly leak the loop iteration

* here for simplicity; real-world adversaries

* could use a #PF side-channel or count

* instructions w precise single-stepping

*/

*it = i;
}

/* For simplicity, we only return true or false and do
not compute the actual launch token. */
return 0;

}

For completeness, we also provide a disassembled version

of the relevant check_wl_entry function, as compiled with

gcc v7.4.0 (optimization level -Os):

check_wl_entry:
imul $0x21,%rdi,%rdi
push %rbp
push %rbx
lea g_ref_le_white_list_cache(%rip),%rbx
mov %edx,%ebp
mov $0x20,%edx
sub $0x8,%rsp
add %rdi,%rbx
mov %rbx,%rdi
callq memcmp
xor %edx,%edx
test %eax,%eax
jne 1f
test %ebp,%ebp
mov $0x1,%edx
je 1f
movzbl 0x20(%rbx),%edx

1:
mov %edx,%eax
pop %rdx
pop %rbx
pop %rbp
retq
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