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Abstract—Auscultation is an important tool for diagnosing
respiratory-related diseases. Unfortunately, the quality of auscul-
tation is limited by the professional level of the doctor and the
environment of the auscultation. Some studies have focused on
automated auscultation techniques. However, existing approaches
suffer from two challenges: 1) the models cannot learn from data
distributed among multiple hospitals and 2) the predictions of the
models are difficult to interpret for physicians. To address this issue,
this article proposes a novel explainable respiratory sound analysis
framework with fuzzy decision tree regularization. This framework
develops an ensemble knowledge distillation technique to learn
distributed data and achieves good performance in terms of model
efficiency and accuracy. Fuzzy decision trees are used to explain
the predictions of the model and produce decision rules that can be
well accepted by physicians. The effectiveness of this framework
is thoroughly validated on the Respiratory Sound database and
compared with other existing approaches.

Index Terms—Convolutional neural network, fuzzy decision
tree, interpretable, knowledge distillation, respiratory sounds.

I. INTRODUCTION

CHRONIC respiratory diseases, such as chronic obstructive
pulmonary disease (COPD) and asthma, are responsible

for a large number of deaths in the world, affecting more than
15% of the world population [1]. According to the prediction
of the World Health Organization, COPD will become the third
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leading cause of death in the world [2]. Up till December 2021,
the outbreak of coronavirus disease 2019 has caused nearly 265
million confirmed cases and globally over 5.2 million deaths
due to severe pneumonia [3]. In practice, respiratory sounds are
commonly used to diagnose obstructive or restrictive lung dis-
eases [4]. By examining respiratory sounds during auscultation,
the medical practitioners can identify adventitious sounds (e.g.,
crackles or wheezes) during the respiratory cycle. For example,
crackles are the earliest sign of idiopathic pulmonary fibrosis and
wheezes are usually related to COPD and asthma [5]. However,
the traditional way to detect abnormalities in lung sounds by
using a stethoscope could be affected by various factors, such
as the environmental noise, hearing fatigue, and lack of experi-
ence among junior doctors. In addition, traditional stethoscopes
are not user-friendly when doctors have to wear full personal
protective equipment in highly infectious environments.

To overcome the limitations of conventional auscultation,
the researchers have developed digital signal processing tech-
nology for analyzing lung sounds, which can be digitized and
converted into signals in time domain, frequency domain, or a
combination of both [6]. As it is less effective to analyze lung
sounds solely in time-domain or frequency-domain techniques,
the time–frequency techniques are more commonly applied to
lung sound signal analysis [7], [8]. With the development of
automated technology and adventitious sound detection, algo-
rithms, such as k-nearest neighbors (KNN) method, genetic al-
gorithm, fuzzy logic, wavelet transform, etc., are used to analyze
respiratory sounds [9], [10]. In addition, several studies focus on
automated adventitious sound detection or the characteristics
of lung sounds [11]. Although the traditional machine learning
methods have contributed to the development of automated
auscultation, their predictive accuracy in lung sound analysis
is very limited and needs to be further improved.

To achieve better predictive accuracy, deep-learning-based
methodologies have been proposed for respiratory sound de-
tection [12]–[15]. Existing studies of respiratory sounds based
on deep learning technology mainly convert lung sounds into
spectrograms and then analyze them using convolutional neural
networks (CNNs) or recurrent neural networks (RNNs) [15].
As the CNN models are successful in the field of computer
vision, image recognition, and audio analysis, similarly, many
studies analyze respiratory sound data by first extracting Mel
frequency cepstral coefficients [12], Mel spectrograms [13], or
local binary pattern from the lung sounds spectrograms [14]
and then feeding them into the CNN models for training and
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Fig. 1. Framework overview.

prediction. In addition, the RNN is designed to discover temporal
patterns and can be used for lung sound analysis. As an advanced
extension of the RNN, a long short-term memory network has
been developed for the detection of respiratory abnormal sounds
and chronic/nonchronic diseases [15]. Although the develop-
ment of the deep learning models can improve the predictive
accuracy of respiratory sound analysis, their real-world deploy-
ment is constrained due to lack of interpretability. Intuitively,
deep learning models are intrinsically black-box models, and it is
difficult for healthcare practitioners to fully trust the predictions
if no explanation is available. In fact, as discussed in [16],
the interpretability of a model is crucial in the medical and
healthcare field.

In order to explain the deep learning models, existing explain-
able machine learning research [17]–[21] can be categorized
into intrinsic interpretable models and post-hoc interpretable
models. For intrinsic interpretable models, the key is to construct
directly a model that can be explained by their internal structures.
Methods in this category include the use of semantic repre-
sentation constraints [17], rule-based methods [18], attention
mechanisms [19], etc. Although the intrinsic interpretability has
good explanatory power, it also degenerates the discriminatory
capability of the model [20]. In contrast, the post-hoc inter-
pretable methods suffer less from the degeneration by learn-
ing an additional explainer network [20] or using traditional
explainable models (e.g., decision tree) to approximate the
original black-box model [21]. However, the above explainable
methods cannot be directly applied in healthcare scenarios due
to several reasons. First, the well-annotated data are distributed
among multiple hospitals and cannot be directly shared due
to privacy. If the model only learns from one data source, the
features learned from small datasets typically fail to generalize
numerous patients [22]. Second, these models are still difficult
to be understood by the healthcare practitioners.

In this article, we propose a novel framework of ensemble
knowledge distillation with fuzzy logic that can achieve both
interpretability and predictive accuracy in the auscultation sce-
nario, where respiratory sound data are distributed (see Fig. 1).
To handle the distributed data, the multiple-teacher models
will be trained on datasets from different sources; then, these
teacher models will transfer the learned patterns to a student

model. Here, each teacher model can learn a large network
structure from a single data source. The student model with
a smaller network structure then obtains the knowledge of
multiple-teacher models through knowledge distillation, which
can take advantage of the distributed lung sound data and achieve
more efficient data analysis. Due to the ensemble knowledge
distillation, the student model can integrate and learn knowledge
from multiple sources without having to touch directly the
datasets of the teacher model. To achieve better explanation, the
decision boundaries of the student model can be approximated
by a small fuzzy decision tree. Usually, the medical personnel
apply vague concepts rather than specific values in reasoning
about the condition of the disease in real-world situation [23].
As fuzzy logic is good at managing uncertain information [24],
fuzzy decision tree is a more suitable method, which is easy
to understand by people in other fields, such as doctors. Dif-
ferent from decision tree with clear decision boundaries, the
fuzzy decision trees can handle uncertain information better and
are more interpretable [25]. To use fuzzy logic in respiratory
sound analysis, respiratory sound data are first converted into
the Mel spectrograms, which can represent the magnitude of
sound energy. Then, the fuzzy decision tree can use the different
frequency bands of lung sound as features to approximate the
prediction of the student model, which makes the decision of
the student model more interpretable in a step-by-step manner.

To sum up, the contributions of this article are as follows.
1) To learn an interpretable model from medical data that

is distributed among multiple hospitals, this article pro-
poses the ensemble knowledge distillation to learn from
multiple sources. The proposed model can overcome the
poor generalization due to training from a small single-
source dataset. The distilled student model with a more
compacted network structure can also be more efficient.

2) To introduce interpretability of learning model in respi-
ratory sound analysis, the proposed method incorporates
a fuzzy decision tree regularization with a CNN model
such that each lung sound prediction can be explained by
a sequence of fuzzy logic.

3) The proposed framework is tested on real datasets, and the
experimental results show that the proposed method can
outperform the state-of-the-art counterparts.

II. RELATED WORK

A. Respiratory Sound Analysis

Limited by traditional lung sound auscultation methods,
many machine learning algorithms are currently used in lung
sound analysis, such as artificial neural network (ANN), hidden
Markov model, KNN, and so on [10]. Some research was
motivated by cepstral features, using statistical properties of
the cepstral coefficients as the feature extraction method and
used ANN with multilayer perceptron (MLP) as a classifier for
normal, wheezes, and crackles—three types of lung sound [26].
An automated lung sound analysis process needs to be patient-
friendly. For this reason, a noninvasive electronic stethoscope
system based on support vector machines and the CNN machine
learning algorithm was constructed [12]. In order to overcome
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the challenge of labeling large amount of data, a semisupervised
algorithm has been proposed to train two support vector machine
classifiers to identify wheezes and crackles [22]. In addition,
some research works proposed an automated lung sound anal-
ysis platform to identify abnormal lung sounds, which does
not require the labeled respiratory cycle [27]. However, these
methods are proposed under the premise that there is only one
source of lung sound data, and it is difficult to train the model
from multiple data sources if these data do not contribute to each
other. Unlike these studies, we use multiple-teacher models to
learn datasets from different sources, making the student model
more generalized than learning from a single dataset. The use
of complex classification technology and multiple computa-
tionally expensive features would limit their use in lightweight
devices [1]. Through knowledge distillation, the knowledge of
the teacher models is distilled to a student model, which can
reduce its parameters while retaining the classification ability of
the student model.

B. Knowledge Distillation With Multiple Teachers

The development of deep learning has brought about complex
models with huge overhead. The application of these complex
models in production requires a lot of inference time. Knowl-
edge distillation based on the teacher–student framework as an
effective model compression method tries to achieve a tradeoff
between model accuracy and inference efficiency [28]. To im-
prove the applicability of the knowledge distillation framework
and the accuracy of the model, some researchers have proposed
to improve the framework of distillation from a single teacher
to multiple teachers. For example, multiple pretrained teacher
models are directly assigned fixed weights to integrate their
predictions [29]. Some researchers have used different teacher
models to learn different types of inputs and then used the
weighted average to teach student models [30]. In addition,
to accelerate the training of the student model in the word
embedding task, multiple-teacher models were used to train
a student model by combining their logit values such that the
student no longer needs the teachers during decoding [31].
However, these approaches only treat teacher models equally,
without taking into account the differences between them. In
order to solve the conflicts and competition among all teachers,
Du et al. [32] formulated ensemble knowledge distillation as
a multiobjective optimization problem and assigned dynamic
weights to each teacher model. You et al. [33] proposed to
use a voting mechanism to unify multiple relative dissimilarity
information, which can be transferred into the student network.
These existing methods use multiple-teacher models to learn
category-fixed training samples. In this article, we use multiple-
teacher models to learn local data distributed across multiple
hospitals with flexible categories.

C. Explainable Machine Learning

There have been some interpretable works based on knowl-
edge distillation in recent years. Some studies describe the
features via linear projections and univariate functions based
on the additive index model [16]. However, this additive model

may be biased toward selecting a few visual concepts rather
than all. To overcome the typical bias-interpreting problem, the
researchers distilled knowledge from a pretrained model into an
explainable additive model [20]. Sometimes, the interpretability
of a network comes at the expense of its power. An explainer
network was trained to explain features inside the CNN aim to
trade off between the network interpretability and the network
performance [34]. The emergence of knowledge distillation pro-
vides an opportunity to explain the variables final learned by the
model. Other methods attempt to distill the knowledge of neural
networks into tree structures. The Gradient Boosting Trees was
used to mimic deep learning models and provided interpretable
features and decision rules [35]. Some studies learned filters to
make hierarchical decisions by training a soft decision tree [36].
Some researchers used model distillation techniques to learn
global additive explanations, which describe the relationship
between input features and model predictions [37]. Wu et al. [21]
approximated the decision boundaries of deep model via the
decision tree. Besides, the decision tree was built to summarize
an approximate explanation for CNN predictions at the semantic
level [38]. However, it requires each CNN filter to represent a
semantic concept, which limits the performance of the network.
Compared to previous works [21], our proposed framework can
learn multiple sources of data through knowledge distillation
while protecting the privacy of the data. Moreover, the fuzzy
decision tree in our work is close to the human reasoning process
and more interpretable.

III. BACKGROUND

The combination of fuzzy set theory and decision tree pro-
duces a fuzzy decision tree that handles uncertainty [39]. Fuzzy
ID3 is a top-down algorithm applied to construct fuzzy decision
trees. In this article, the fuzzy decision tree will be constructed
by the fuzzy ID3 algorithm [25].

For datasetD, it has l attributesA = {A1, . . . , Al},n classes,
and e fuzzy sets Fi1, Fi2, . . . , Fie for the attribute Ai. We can
calculate the information entropy as

I(D) = −
n∑

k=1

(rk log2 rk) (1)

where rk denotes the proportion of the kth class of samples in the
current dataset D. The fuzzy ID3 algorithm splits the attributes
based on fuzzy information gain by (2), and the pseudocode is
shown in Algorithm 1

G(Ai,D) = I(D)−
e∑

j=1

|DFij
|∑e

j=1 |DFij
|I(DFij

) (2)

where
∑e

j=1 |DFij
| denotes the sum of the membership values

for the attribute Ai.

IV. OUR APPROACH

In this section, we first formally describe the problem
encountered in respiratory sound analysis and, then, pro-
pose an ensemble knowledge distillation to learn multisource
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Algorithm 1: Fuzzy ID3 Algorithm to Build Decision Tree.
Require: training set D, attributes A.

1: root← Create a root node with D and A.
2: tree← TREEGENERATE(root, D, A).
3: procedure TreeGenerate (node, D, A)
4: if node satisfies the leaf node condition then
5: node← mark node as a leaf.
6: else
7: for each Ai in A do
8: G(Ai,D)← Calculate information gains by

Eq. 2.
9: end for

10: A∗ ← Select the attribute that maximizes
information gains.

11: for each Aj
∗ in A∗ do

12: Dj ← split the sample subset by Aj
∗.

13: if Dj is null then
14: return node.
15: end if
16: childj ← create new child node by Dj and Aj

∗.
17: node← Connect TREEGENERATE(childj , Dj ,

A\A∗) as branch node.
18: end for
19: end if
20: return node
21: end procedure

data and fuzzy decision tree regularization to provide model
interpretation.

A. Problem Formulation

Assuming that the well-annotated lung sound is distributed
across M different sources. For the ith source, its dataset is
defined as (X Ti ,YTi), where the element xTi

n is composed of the
time domain (td) and the frequency domain (fd). In the medical
scenario, the lung sound category of each source is different. We
assume that the category of the ith source is Ci ⊆ {1, . . . ,M}.
For a hospital with dataset (X ,Y), we want to learn a function
fS : Rfd×td �→ {0, 1} and, thus, obtain prediction and some
explainable mechanism. One problem is how we can use these
distributed data, which cannot be directly shared due to privacy.

For this purpose, we design a framework to guide a student
model to learn the knowledge of multiple-teacher models and
distill the knowledge from the student model to an explainable
model. We are given M teacher models {Ti|i ∈ {1, . . . ,M}}
and a student model S. In the learning task, teacher Ti will learn
dataset (X Ti ,YTi); the label of xTi

n is yTi
n ∈ YTi . Let xS

n denote
an example in the dataset X of the student model S, where yS

n is
the label of xS

n. The number of elements in the dataset X is N .
To merge the knowledge of multiple-teacher models and

construct an explainable strategy requires the following four
steps: 1) we need to train teacher model and calculate the
soft prediction with a pretrained teacher model and expand the
dimension of the soft prediction calculated by multiple-teacher
models; 2) train the student model S with soft label and fuzzy

tree regularization term; 3) update the tree regularization term
by the surrogate model; and 4) we need to iterate the training
process. The details of our framework will be described in the
following subsections.

B. Ensemble Knowledge Distillation

1) Teacher Model: The teacher model is a classification net-
work, and each teacher model Ti corresponds to the lung sound
category Ci. We can train the teacher model via the following
loss minimization objective:

LTi
= − 1

NTi

NTi∑
n=1

yTi
n log fTi

(
xTi
n

)
(3)

where NTi is the number of elements in X Ti and fTi(.) is the
predictive function of Ti.

The different datasets from multiple sources cannot be shared
directly; the joint training of the teacher model and the student
model is not applicable in this case [40]. Unlike this, the teacher
models have achieved the ability to predict during the training
process. We can distill the knowledge of teacher models via the
soft prediction; for each element xS

n, the calculation of the soft
prediction q

(i)
k at a temperature of T is given as

q
(i)
k

(
xS
n

)
=

exp
(
g
(i)
k

(
xS
n

)
/T

)
∑

k exp
(
g
(i)
k

(
xS
n

)
/T

) (4)

where g(i)k (.) is the logit layer output of the teacher model Ti that
corresponds to the kth (k ∈ Ci) category. The larger the value of
T , the smoother the soft prediction distribution [28].

2) Transform Soft Label for the Student Model: Since the
categories of teacher models are not fixed, the dimension of their
soft predictions needs to be transformed into the same dimension
as the student model before knowledge distillation. First, the soft
predictions will be extended through

q
(Ti)
j

(
xS
n

)
=

{
q
(i)
k

(
xS
n

)
, j = k

0, j �= k
(5)

where j ∈ {1, . . . ,M} and q
(Ti)
j (xS

n) denotes the transformed
soft predictions. After extending the dimension of the soft
predictions, these soft predictions will be grouped together as
ensemble soft labels πj(x

S
n) for the student model with the

following formula:

πj(x
S
n) =

M∑
i=1

wiq
(Ti)
j

(
xS
n

)
(6)

where wi ∈ [0, 1] denotes weight for q
(Ti)
j (xS

n) and here∑M
i=1 wi = 1.
3) Student Model: Similar to the teacher model, the soft pre-

diction can be calculated through the student model as follows:

pj(x
S
n) =

exp
(
hj

(
xS
n

)
/T

)
∑M

j=1 exp
(
hj

(
xS
n

)
/T

) (7)

where hj(.) is the logit layer output of the student model to the
jth category.
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Fig. 2. Fuzzy membership function. (a) Respiratory sound classification.
(b) Lung disease classification.

On the one hand, we want to reduce the difference of in-
formation between the teacher and the student by knowledge
distillation. On the other hand, we do not want the student model
to be biased toward the teacher model. We want the predictions
of the student model to be close to the ground truth. The loss of
ensemble knowledge distillation is as follows:

L(θθθ) = 1

N

N∑
n=1

{
−λ yS

n log f
(
xS
n, θθθ

)

+ (1− λ)T 2
M∑
j=1

KL
(
πj(x

S
n), pj(x

S
n)
)}

(8)

where N is the number of elements in the dataset for S. f(., θ)
is the predictive function of S, and θθθ is the parameter for
S. λ ∈ [0, 1] is the constant parameter calibrating the relative
importance between the ground truth and the soft labels. KL(.)
denotes the Kullback–Leibler divergence.

C. Fuzzy Tree Regularization for the Student Model

The student model will learn the knowledge of multiple-
teacher models through the technology of ensemble knowledge
distillation. We still have a problem to solve, i.e., how to explain
the student model whose predictions cannot be easily simulated.
We are inspired by [21], distilling the knowledge from the
student model to the decision tree via tree regularization term
Ω(θθθ). The tree regularization will penalize the student model
and requires the behavior of the student model can be simulated
through the decision tree, which is a step-by-step manner.

Since the fuzzy decision tree approximates the prediction
of the student model, its target is ŷS

n, which the output of the
student model for xS

n. When the feature dimension of xS
n is

relatively high, the fuzzy decision tree directly trained on this
is too complex to simulate. Thus, we replace xS

n with a low-
dimensional feature by using a mapping function ∇ : X → D,
where xDn ∈ D. We can divide xS

n into multiple regions and cal-
culate the mean value (or max value, or standard deviation, etc.)
of each region to get example xDn . In the process of calculating
Ω(θθθ), the example xDn will be fuzzified into e fuzzy sets. For
instance, for the strength of energy, we can define fuzzy sets
low, medium, and high. For the membership degree, values of
the ith (i ∈ {1, . . . , e}) fuzzy sets can be calculated by triangular

Algorithm 2: Postpruning for Fuzzy Decision Tree.

Require: decision tree T , validation data {xn, yn}Nn=1.
1: Let the squared error on validation data as

mse(T ) =
∑N

n=1(T (xn)− yn)
2

2: procedure PruneTreeT
3: error← mse(T ).
4: nodes← Sort nodes from leaf to root.
5: for each node in nodes do
6: T ′ ← Remove node from T .
7: error′ ←mse(T ′).
8: if error′ < error then
9: T ← T ′, error← error′

10: end if
11: end for
12: return T
13: end procedure

membership function μi(.) as follows:

μ1

(
xDn

)
=

⎧⎨
⎩

1, xDn ≤ m1,
m2−xDn
m2−m1

, m1 < xDn < m2

0, xDn ≥ m2

(9)

μi

(
xDn

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, xDn ≤ mi−1
xDn−mi−1
mi−mi−1

, mi−1 ≤ xDn ≤ mi

mi+1−xDn
mi+1−mi

, mi ≤ xDn ≤ mi+1

0, xDn ≥ mi+1

(10)

μe

(
xDn

)
=

⎧⎨
⎩

0, xDn ≤ me−1
xDn−me−1
me−me−1

, me−1 < xDn < me

1, xDn ≥ me

(11)

where mi denote the parameters of the membership function.
The fuzzy decision tree will be trained to fit the example
{xDn , ŷS

n}. We will prune the trained decision tree by Algorithm 2
to improve the performance and reduce the size of the fuzzy
decision tree. In the process of making a prediction for an input
example xDn , the average number of decision nodes that must
be passed is the average decision path length (APL). The APL
as the output of Ω(θθθ) will be used to measure the complexity
of this fuzzy decision tree. Then, the number of nodes will be
passed when making a prediction for xDn will be calculated. We
define the function for calculating APL as apl(.).

The loss function of the student model with the tree regular
term can be defined as (12). However, there is a challenge of tree
regularization: Ω(θθθ) is not differentiable. If this regular term is
added directly to the loss function of the student model, the loss
function will not be optimized by the gradient descent method.
Therefore, a method is to train a surrogate model to approximate
Ω(θθθ) [21]

min
θθθ
L(θθθ) + ηΩ(θθθ) (12)

where η is a constant.
We use the MLP as the surrogate model; its prediction Ω̂(θθθ)

is used to evaluate Ω(θθθ). In other words, the MLP is required
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Fig. 3. Fuzzy decision tree of respiratory sound classification. For branches with a probability greater than 90%, we added a branch number at the end of them
to more intuitively associate the branch with the relevant rule.

Fig. 4. Decision rule for respiratory sound classification. The rule number here corresponds to the branch number in Fig. 3.

to fit the dataset {θθθk,Ω(θθθk)}Kk=1 of K parameter values. The
elements in the training dataset {θθθk,Ω(θθθk)}Kk=1 of the MLP
will be appended in the process of training the student model.
Training the surrogate MLP by minimizing the sum of squared
errors

min
ϕϕϕ

K∑
k=1

(Ω(θθθk)− Ω̂(θθθk,ϕϕϕ))
2
+ ε ‖ϕϕϕ‖22 (13)

where ϕϕϕ denotes the parameters of this MLP and ε > 0 is a
regularization strength, we have

min
θθθ
L(θθθ) + ηΩ̂(θθθ) (14)

In practice, Ω̂(θθθ) will be substituted into (12) as this tree regu-
larization term. Wu et al. [21] provide a detailed demonstration
for the tree-regularized MLP. Here, we directly give the solution
in (14). The ensemble knowledge distillation of the learning
process is summarized in Algorithm 3.

V. EXPERIMENTS

A. Dataset

The dataset we use is the Respiratory Sound database cre-
ated by two research teams in Portugal and Greece [41]. The
database consists of a total of 5.5 h of recordings containing 6898
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Fig. 5. (a) Model prediction as crackles. (b) Model prediction as normal. (c) Model prediction as wheezes. The three pictures in each row represent their Mel
spectrogram, fuzzy energy level, and decision path, respectively. We mark the different feature values with rectangular boxes on the Mel spectrograms. The values
of different frequency bands denote the fuzzy membership degree at low, medium, high, and very high energy, respectively.

respiratory cycles, of which 1864 contain crackles, 886 contain
wheezes, and 506 contain both crackles and wheezes from eight
types of subjects. The respiratory sound audio was recorded from
126 entities, including healthy and seven respiratory diseases:
asthma, bronchiectasis, bronchiolitis, COPD, lower respiratory
tract infection, upper respiratory tract infection, and pneumonia.

B. Network Architecture

The network architecture of the teacher model and the student
model is shown in Table I. The network contains convolutional

(Conv) layers, rectified linear units (ReLU), max pooling (MP)
layers, fully connected (FC), and softmax layer. C indicates the
number of model classification categories. The MLP has three
hidden layers with 256, 64, and 64 hidden units, respectively.

C. Experimental Setup

We designed two experiments to validate our method. In
experiment 1, we select three categories of respiratory cycles,
namely, crackles, wheezes, and cycles that do not contain crack-
les and wheezes (normal cycles) from the Respiratory Sound
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Fig. 6. Fuzzy decision tree of lung disease classification.

Fig. 7. Decision rule for lung disease classification. The rule number here corresponds to the branch number in Fig. 6.

database. In experiment 2, we classify between three categories,
namely, COPD, healthy, and pneumonia. During data prepro-
cessing, first, the lung sound recordings will be sampled by the
target sampling rate of 8000 Hz and transform into mono audio
data.

In all experiments, the audio data will be extracted as the time–
frequency results’ Mel spectrograms feature [42] by 2048 length
of the FFT window, 512 samples between successive frames, 128
Mel bands, and Hann window. Then, the time–frequency results
will be split into 128× 79 for model input. We use the learning
rate of 0.001, the batch size of 128, 100 epochs, λ of 0.5, T of

2.0, and η of 1000. For this experiment, we divided the training
set and the test set using the fivefold cross-validation method.
C of the teacher model that is used for the classification of M
categories and C of the student model are both set to 3. In all
experiments, the training set will be augmented by changing
dynamic range and adding distribution noise.

For each time–frequency result, we will divide it into 16 parts
in the frequency domain; each part represents a frequency band,
as shown in Table II, and then calculate the mean value of each
part to get 16 features (B0, . . . , B15) as input of the decision
tree. Then, each feature will be fuzzified into four fuzzy sets,
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Fig. 8. (a) Model prediction as COPD. (b) Model prediction as healthy. (c) Model prediction as pneumonia.

indicating low, medium, high, and very high energy. In addition,
we apply the self-organizing map algorithm [43] to determine
four clustering centers as the parameters of the membership
function. The clustering center is at −78.9,−71.9,−63.1, and
−53.9 for experiment 1 and at−78.9,−58.7,−46.3, and−29.2
for experiment 2. Thus, the fuzzy membership function is shown
in Fig. 2.

In our experiment, we compared three models [12]–[14]
on our preprocessed data. Similar to our processing, these

methods use the CNN to analyze the lung sounds through the
spectrograms.

D. Evaluation Metrics

The evaluation uses the metrics of sensitivity (SE), specificity
(SP), and average score (AS) as the authors did in [15] and [44].
In experiment 1, for the confusion matrix as shown in Table III,
N

(i)
(j), i, j ∈ {c, n, w}, denote the number of classification results
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Algorithm 3: Summary of Our Approach.

Input: data {xTi
n , yTi

n }N
Ti

n=1 for teacher Ti,
data {xS

n, y
S
n}Nn=1 for student model S

Output: The student model S and fuzzy decision tree
T

1: Initialize teachers parameters, student parameters θθθ,
MLP parameters ϕϕϕ, set l = 0.

2: Ti← Construct teacher model with (3).
3: q

(i)
j ← Calculate soft prediction by Ti with (4).

4: πj(.)← Transform q
(i)
j into soft label with (5) and (6).

5: for l = l + 1 until l < MAX-ITERATE do
6: L(θθθ)← Get loss of ensemble distillation with (8).
7: Construct the student model S and get prediction

function f(., θθθ) with (14).
8: ŷS

n← Get the prediction of student by f(xS
n, θθθ).

9: xD
n ← Get the data of T by mapping function ∇ and

membership function (9)–(11).
10: Fit a decision tree T on ({xDn , ŷS

n}) by Algorithm 1.
11: T ← Prune the trained decision tree by Algorithm 2.
12: Ω(θθθ) = 1

N

∑
n apl(T , xDn).

13: Construct the surrogate MLP and approximate Ω(θθθ)
by Ω̂(θθθ) with (13).

14: end for

TABLE I
MODEL NETWORK ARCHITECTURE

TABLE II
FREQUENCY BANDS AND SYMBOLS

for three categories, where the subscript j represents the ground
truth and the superscript i represents the prediction of the model.
SE and SP can be calculated as

SE =
(
N

(c)
(c) +N

(w)
(w)

)
/

∑
i∈{c,n,w}

(
N

(i)
(c) +N

(i)
(w)

)

SP = N
(n)
(n) /

∑
i∈{c,n,w}

N
(i)
(n). (15)

TABLE III
CONFUSION MATRIX

TABLE IV
COMPARISON RESULTS OF CLASSIFYING CYCLES

The bold entities indicate the best achieved performance among the comparisons.

In experiment 2, for the confusion matrix as shown in
Table III, co, h, and p denote COPD, healthy, and pneumonia,
respectively. SE and SP can be calculated as

SE =
(
N

(co)
(co) +N

(p)
(p)

)
/

∑
i∈{co,h,p}

(
N

(i)
(co) +N

(i)
(p)

)

SP = N
(h)
(h) /

∑
i∈{co,h,p}

N
(i)
(h). (16)

AS can be calculated as

AS = (SE + SP)/2. (17)

In addition, we will also indicate if the method requires the data
to be assimilated before training.

E. Experiment 1: Respiratory Sound Classification

In experiment 1, since 97% of the respiratory cycles are within
5 s, we extract the sound clips for the fixed duration of 5 s. For
the short cycles, we will add enough 0 values to ensure that the
duration is not less than the duration we want.

Table IV evaluates the performance of difference methods for
adventitious sounds. In Table IV, models “Aykanat,” “Bardou,”
and “Tariq” denote our three comparison networks, “Teacher”
denotes the teacher model fit student dataset for three categories,
“No Distill” denotes a model with student network architecture
without knowledge distillation and tree regularization, “Distill”
denotes a model with student network architecture and knowl-
edge distillation without tree regularization, and “Student” is our
proposed framework. Compared with other models, the teacher
model has good performance for three metrics SP, SE, and
AS. We can find that distilling knowledge to the student model
through the teacher model can improve the performance of the
student model. Our student model has higher performance than
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TABLE V
COMPARISON RESULTS OF CLASSIFYING DISEASES

The bold entities indicate the best achieved performance among the comparisons.

“Distill” in terms of AS. The tree regularization can prevent the
model from overfitting compared with “No Distill.” Our student
model with knowledge distillation and tree regularization makes
it possible to balance various evaluation metrics comparing “No
Distill” and “Distill.” Comparing the other three networks, our
student model outperforms model “Aykanat,” “Bardou,” and
“Tariq” by 3%, 2%, and 5% in AS. Besides, the student model
is only 0.01 lower in SE than the teacher model and higher than
other models. The performance of the student model on this
metric and the characteristics of learning from multiple sources
data are more suitable for the medical care. Although the student
model is lower in the first three metrics than the teacher model,
the student model has fewer parameters and higher prediction
accuracy.

The decision tree generated by the model is shown in Fig. 3.
The leaf nodes of the decision tree are the one class with the
highest prediction probability and the prediction probability of
this class. We use the probability that the predictions of the
decision tree on the test set agree with the predictions of the
student model as material for the confidence level of the decision
tree. In this task, the confidence level of the fuzzy decision tree is
68%. The decision tree is an interpretable model whose decision
rules can be extracted directly. The decision tree branches with
a probability of less than 70% are pruned in order to pay more
attention to high-probability rules. To show the decision rules
more visually, we list the decision rules with probability greater
than 90%, as shown in Fig. 4.

The three types of test sample of crackles, normal, and
wheezes are shown in Fig. 5. When the student model predicts
a sample, we can obtain the Mel spectrogram, fuzzy energy
level, and decision path of the sample. Through such a decision
rule, the prediction of the model can be simply simulated by the
doctor.

F. Experiment 2: Lung Disease Classification

In this experiment, since the duration of most respiratory
cycles is about 20 s, we will extract the sound clips for the
fixed duration of 5 s to get the same length of sound clips.
Table V reports the performance of our model and comparison
networks on various evaluation materials. Since our student
model uses the knowledge distillation and tree regularization,
it has higher performance than models “Aykanat” and “Tariq” in
terms of AS. More importantly, the performance of the student
model is only 0.01 and 0.02 lower than the model “Bardou” and
the teacher model, respectively. Similarly, the student model
achieves better performance on metric SP than “No distill” and

“Distill” due to the combined effect of knowledge distillation
and tree regularization. The student model does not require the
data to be assimilated to learn from multiple data sources.

The decision tree generated by the model is shown in Fig. 6.
The confidence level of the fuzzy decision tree is 84%, which
indicates that the decisions can be trusted for most of the sam-
ples. The pruning process of the decision tree is the same as that
in experiment 1. As above, we list the decision paths that have
a prediction probability greater than 90% on the decision tree,
as shown in Fig. 7. The three types of test sample of COPD,
healthy, and pneumonia are shown in Fig. 8. The fuzzy decision
trees allow us not to care about the specific values of the decision
boundary, which is more in line with our behavior when making
decisions. The decision path is directly translated into a decision
rule that is easy for physicians to understand.

VI. CONCLUSION

This article proposed a novel explainable CNN framework
based on fuzzy decision tree regularization for respiratory sound
analysis, which can learn distributed data from multiple hospitals
and provide decision rules that can be simulated by physicians.
In this framework, teacher models can learn nonfixed categories
of data and transfer their knowledge to student models. More
importantly, fuzzy decision trees are used to deal with the uncer-
tainty in the decision process, thus improving the interpretabil-
ity of the model. Decision rules generated by fuzzy decision
trees in this form are more easily accepted by physicians. This
framework is evaluated on the Respiratory Sound database.
The experimental results show that our framework can learn
from distributed data, simplify the parameters of the model
with less performance loss, and provide easily acceptable and
interpretable fuzzy decision trees, compared to other methods.
In future work, we aim to apply this framework to hospital
auscultation systems.
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