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A New Approach for Transformation-Based Fuzzy
Rule Interpolation

Tianhua Chen , Changjing Shang , Jing Yang , Fangyi Li, and Qiang Shen

Abstract—Fuzzy rule interpolation (FRI) is of particular sig-
nificance for reasoning in the presence of insufficient knowledge
or sparse rule bases. As one of the most popular FRI methods,
transformation-based fuzzy rule interpolation (TFRI) works by
constructing an intermediate fuzzy rule, followed by running scale
and move transformations. The process of intermediate rule con-
struction selects a user-defined number of rules closest to an obser-
vation that does not match any existing rule, using a distance metric.
It relies upon heuristically computed weights to assess the contri-
bution of individual selected rules. This process requires a move
operation in an effort to force the intermediate rule to overlap with
an unmatched observation, regardless of what rules are selected
and how much contribution they may each make. It is, therefore,
desirable to avoid this problem and also to improve the automation
of rule interpolation without resorting to the user’s intervention for
fixing the number of closest rules. This article proposes such a novel
approach to selecting a subset of rules from the sparse rule base with
an embedded rule weighting scheme for the automatic assembling
of the intermediate rule. Systematic comparative experimental re-
sults are provided on a range of benchmark datasets to demonstrate
statistically significant improvement in the performance achieved
by the proposed approach over that obtainable using conventional
TFRI.

Index Terms—Active set-based solution, adaptive network-based
fuzzy inference system (ANFIS), closest rule selection, fuzzy rule
interpolation (FRI).

I. INTRODUCTION

B EING one of the cornerstones of soft computing, fuzzy set
theory enables the tolerance of imprecision, uncertainty,

and approximation in data and knowledge, which many prob-
lems in real life involve that conventional Boolean representation
cannot handle. In particular, fuzzy-rule-based systems [1]–[3]
have been very successful in a wide range of real-world ap-
plications (e.g., [4]–[7]). In order for such systems to work, a
dense fuzzy rule base is normally required to cover the entire
input space such that any incoming new observations may
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at least partially overlap with certain existing rules to derive
appropriate consequents. However, there are many problems
where knowledge about the domain is rather incomplete so that
only a sparse rule base may be available. In this case, an input
observation may not match and fire any of the existing rules from
the sparse rule base, thereby leading to no conclusion. Fuzzy rule
interpolation (FRI) explicitly addresses this common restriction
in fuzzy systems, where the given rule base is sparse and unable
to fully cover the input space.

A number of important FRI approaches and their variations
have been proposed in the literature, which can be generally
categorized into two classes. The first performs interpolation by
directly manipulating the antecedents of those rules, which are
deemed closest to (but do not match) the given observation.
The consequent of the interpolated result may, therefore, be
viewed as the combined logical outcome of those rules involved.
Typical approaches in this group are based on the exploitation
of the concept of α-cuts [8]–[12]. The approach works basically
by propagating distance measures between the α-cuts of the
observed antecedent fuzzy sets and their counterparts in those
rules to compute the α-cuts of the interpolated consequent,
which are then assembled through the use of the resolution
principle [13] to construct the final interpolated outcome.

The second category is based on the application of analogical
reasoning (that is, similar observations lead to similar conse-
quents) [14], [15]. Such an approach first creates an intermediate
rule with its antecedents constructed under the guidance of
the given observation. It then imposes the similarity measure
computed between the observation and the intermediate rule an-
tecedent over the consequent deduced by firing the intermediate
rule. A particular and popular example of this category is the
scale and move transformation-based fuzzy rule interpolation
(TFRI) [16], which has led to a number of advanced theoretical
developments and applications [11], [17]–[32]. A key concept
used in TFRI is the representative value of a fuzzy set, which cap-
tures important geometric characteristics of the fuzzy set (e.g.,
shape and location). This type of FRI works via exploiting the
information provided by such representative values to construct
the required intermediate rule. Further to the aforementioned
two categories, analytical and closed-form solutions to FRI [22],
[33] have been proposed.

TFRI is popular, but the interpolated results of running it may
be significantly affected by the way in which an intermediate rule
is constructed. In the general framework of TFRI, the construc-
tion of the intermediate rule typically starts by selecting a user-
defined number of closest rules with respect to the unmatched
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observation. The fuzzy values of the antecedent features within
an intermediate rule are each obtained by taking a weighted
combination of those corresponding fuzzy sets involved in the
antecedents of the selected rules. However, the selection of
the closest rules is purely based on a distance measure, which
may not be sufficiently indicative of the most relevant rules
for interpolation, especially when none of the existing rules is
close enough to the observation. In addition, the use of such
heuristically generated weights may lead to the implementation
of undesirable move transformation, leading to counterintuitive
interpolated outcomes. This is because no matter which rules to
select, the move transformation will always force the resulting
intermediate rule to overlap with the unmatched observation.
Note that, in the FRI literature, there exist alternative methods
that do not require the choice of a certain number of nearest
neighboring rules to perform interpolation, but work by simply
taking all the rules of the fuzzy rule base into consideration
(e.g., [34], [35]). Nonetheless, all TFRI methods need the selec-
tion of certain nearest rules in order to function.

Having taken notice of the above observation, this article
presents an alternative approach by examining what subset of
rules should be selected and how much each of such selected
rules should contribute to constructing the intermediate rule,
thereby making the interpolation process more robust. In par-
ticular, the proposed method is able to select a subset of rules
that assemble the intermediate rule, which overlaps with the
observation without incurring further move transformation. This
is followed by a procedure, which determines the weight that
each individual selected rule is expected to contribute toward
the intermediate rule, with the weighting scheme converted into
a system of simultaneous bounded linear equations. To have
a fair comparison over different methods for intermediate rule
construction, systematic experimental results of applying these
methods to support Takagi–Sugeno–Kang (TSK) fuzzy infer-
ence on a range of benchmark datasets are provided. Statistical
analyses of the results are carried out, demonstrating the efficacy
of the proposed work.

The remainder of this article is organized as follows. Section II
reviews the underlying algorithm of TFRI. Section III further
justifies the technical reasons for the present new approach.
Section IV describes the proposed methodology. Section V dis-
cusses comparative experimental results. Section VI concludes
this article and outlines ideas for further improvement.

II. BACKGROUND

This section briefly reviews the interpolation procedures in-
volved in the core of conventional TFRI. Without losing gen-
erality, suppose that a sparse rule base R consisting of a set of
fuzzy rules rk, k = 1, 2, . . . , |R|, is given for an n-dimensional
problem, with the rule rk represented as follows:

If x1 is Ak
1 and … and xn is Ak

n,Then yk (1)

where xi, i ∈ {1, 2, . . . , n}, is the ith antecedent (or input)
feature, which is described by the fuzzy value Ak

i , and yk is
the consequent of the fuzzy rule.

A. Representation of Representative Values

For simplicity, triangular fuzzy membership functions (MFs)
are adopted herein to represent fuzzy sets (although any piece-
wise linear fuzzy representation may be used as an alternative
if preferred). Let Ai be a tuple denoting a triangular fuzzy set
Ai = (ai1, ai2, ai3), where ai1 and ai3 are the left and right
support vertexes, and ai2 is the normal point of the fuzzy set. The
representative value Rep(Ai) that denotes the overall geometric
shape and location of the fuzzy set Ai in its corresponding
domain is defined by the following:

Rep(Ai) =
ai1 + ai2 + ai3

3
. (2)

Note that the point associated with the center of gravity is
typically used to define the representative value of an MF, but
the above is used for computational simplicity.

B. Selection of Closest Rules

Given an observation o∗ = (A∗
1, . . . , A

∗
k, . . . , A

∗
n), with A∗

k

denoting the kth feature value of the observation, the distance
between a rule rk and the observation is calculated as the
aggregated distance of all individual antecedent features, as
follows:

d(rk, o∗) =
√∑n

i=1
d(Ak

i , A
∗
i )

2 (3)

where d(Ak
i , o

∗
k) is the normalized distance of the otherwise

absolute distance measure, ensuring compatibility across all
antecedent features, such that

d(Ak
i , A

∗
k) =

|Rep(Ak
i )−A∗

i |
maxAi

−minAi

(4)

where |Rep(Ak
i )−A∗

i | is the absolute difference between the
observed feature value A∗

i and the representative value of the
fuzzy set Ak

i for the corresponding attribute xi, and minAi

and maxAi
denote the maximal and minimal value of xi, re-

spectively, jointly delimiting the domain bound of xi. Once the
distances between the given observation and all existing rules in
the sparse rule base are calculated, the l(l � 2) rules that have
the minimal distances are determined and selected as the closest
l rules to the observation. The number of rules l to be selected
is determined by the user.

C. Construction of Intermediate Rule

Let ωAk
i

denote the weight of the ith antecedent fuzzy set Ak
i

of rk such that

ωAk
i
=

ω′
Ak

i∑l
i=1 ω

′
Ak

i

(5)

and be termed the normalized displacement factor, where ω′
Ak

i

represents the similarity between the antecedent fuzzy set Ak
i

and the corresponding fuzzy value within the observation, which
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is defined by

ω′
Ak

i
=

1

d(Ak
i , A

∗
i ) + 1

. (6)

The intermediate fuzzy terms A′′
i over i, i ∈ {1, . . . , n}, are

constructed from the antecedents of the l closest rules. These are
then moved to A′

i such that they have the same representative
values as those of A∗

i

A′
i = A′′

i + δAi
(maxAi

−minAi
) (7)

where

A′′
i =

l∑
k=1

ωAk
i
Ak

i (8)

δAi
= d(A∗

i , A
′′
i ). (9)

From this, by analogy, the moved intermediate consequent y′

can be computed with the parameters ωyk and δy through ag-
gregation of the n corresponding values of A′

i, such that

y′ =
l∑

k=1

ωykyk + δy(max y −min y) (10)

where ωyk and δy are calculated by

ωyk =
1

n

n∑
i=1

ωAk
i

(11)

δy =
1

n

n∑
i=1

δAi
. (12)

D. Scale and Move Transformations

The aim of carrying out scale and move transformations in
TFRI is to ensure that transformed antecedent feature values
of the intermediate rule will coincide with their corresponding
fuzzy values in the unmatched observation given. The transfor-
mations are implemented in two stages.

I) Scale operation: transform from A′
i to Â′

i termed as the
scaled intermediate fuzzy set, in an effort to determine the
scale rate sAi

.
II) Move operation: transform from Â′

i toA∗
i to obtain a move

ratio mAi
.

Given a triangular intermediate fuzzy setA′
i = (a′i1, a

′
i2, a

′
i3),

the scale rate sAi
is calculated by

sA′
i
=

a∗i3 − a∗i1
a′i3 − a′i1

(13)

which essentially expands or contracts the support length of A′
i:

a′i3 − a′i1 so that it becomes the same as that of the observation

A∗
i . The scaled intermediate fuzzy set Â′

i is obtained as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

â′i1 =
(1 + 2sAi

)a′i1 + (1− sAi
)a′i2 + (1− sAi

)a′i3
3

â′i2 =
(1− sAi

)a′i1 + (1 + 2sAi
)a′i2 + (1− sAi

)a′i3
3

â′i3 =
(1− sAi

)a′i1 + (1− sAi
)a′i2 + (1 + 2sAi

)a′i3
3

.

(14)
The move operation shifts the position of Â′

i to the same as
that of A∗

i , with the move ratio mA′
i

determined by

mA′
i
=

⎧⎪⎪⎨
⎪⎪⎩

3(a∗i1 − â′i1)
â′i2 − â′i1

, if a∗i1 > â′i1

3(a∗i1 − â′i1)
â′i3 − â′i2

, otherwise .

(15)

Once all scale and move parameters are computed over i,
the required factors for analogically modifying the intermediate
consequent y′ are heuristically calculated by finding the aver-
ages, as follows:

sy′ =
1

n

n∑
i=1

sA′
i

(16)

my′ =
1

n

n∑
i=1

mA′
i
. (17)

The scaled result ẑ′ of the intermediate consequent y′ is then
calculated as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ŷ′1 =
(1 + 2sy′)y′1 + (1− sy′)y′2 + (1− sy′)y′3

3

ŷ′2 =
(1− sy′)y′1 + (1 + 2sy′)y′2 + (1− sy′)y′3

3

ŷ′3 =
(1− sy′)y′1 + (1− sy′)y′2 + (1 + 2sy′)y′3

3
.

(18)

Finally, the interpolated consequent is obtained by applying the
averaged move ratio such that⎧⎪⎪⎪⎨

⎪⎪⎪⎩
y∗1 = ŷ′1 +my′γ

y∗2 = ŷ′2 − 2my′γ

y∗3 = ŷ′3 +my′γ

(19)

γ =

⎧⎨
⎩

ŷ′
2−ŷ′

1

3 , if my′ > 0

ŷ′
3−ŷ′

2

3 , otherwise.
(20)

III. MOTIVATIONS AND OBJECTIVES

As can be seen from (7), in conventional TFRI, the inter-
mediate term A′

i is obtained by moving A′′
i with a location

shift of δAi
(maxAi

−minAi
), where A′′

i is a linear combination
of those fuzzy sets Ak

i , k = 1, ..., l, respectively, selected from
the l closest rules, weighted by the normalized distance to the
unmatched observation. This move operation is devised in an
effort to ensure that the representative value of each antecedent
fuzzy set in the intermediate rule equals that of its counterpart
in the observation. Whether the selected rules are used for
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Fig. 1. Case 1—Extrapolation.

extrapolation or interpolation [although mathematically, both
take the same form as (7)], this requirement will in general lead
to a significant problem in performing TFRI, as discussed in the
following subsections.

A. Case 1—Extrapolation

Extrapolation deals with situations where the selected closest
fuzzy rules all geometrically lie on one side of the hypergraphical
plot depicting the given observation. For illustration, Fig. 1
shows such a case in a single input problem space, whereA2 and
A3 are the two antecedent fuzzy values taken from the rules r2

and r3, which are the closest to the observation A∗, thereby
being selected to construct the intermediate rule. Obviously,
A′′ will lie in between A2 and A3, given that A′′ is simply a
weighted combination of A2 and A3. Therefore, A′′ is required
to be moved left to make its representative value equaling to that
of the observation.

Denote the value of a certain antecedent feature xi within the
unmatched observation o∗ as A∗

i . Given a selected rule subset
R∗ of l rules, the following equation should hold if the weighted
linear combination of the antecedent values for xi is required
to be of the same representative value as its counterpart in the
observation:

Rep(A∗
i ) = w1Rep(A1

i ) + · · ·+ w2Rep(Ak
i )

+ · · ·+ wlRep(Al
i). (21)

For extrapolation, the representative values Rep(Ak
i ), k =

1, . . . , l, are all on one side of that of the observation Rep(A∗
i ).

Thus, if ∀rk ∈ R∗,Rep(A∗
i ) < Rep(rki ), while supposing that

Rep(A1
i ) < Rep(Ak

i ), ∀k �= 1, then Rep(A∗
i ) =

∑l
k=1 wkRep

(Ak
i ) <

∑l
k=1 wkRep(A1

i ) = Rep(A1
i ), given that

∑l
k wk = 1,

wk ∈ [0, 1]. This means that the representative value of the
corresponding interpolated term will be greater than that of
the observation no matter what weight vector is used. Vice
versa, if the representative values of all selected fuzzy terms
are smaller than that of the observation, the representative value
of the resulting interpolated term will be smaller than that of
the observation also, regardless of the choice for the weighting
vector. This analysis indicates that for extrapolation in conven-
tional TFRI, without performing the move operation, no solution
can be obtained if an intermediate rule is to be created whose
representative values are to be exactly the same as those of the
corresponding features in the observation.

B. Case 2—Interpolation

Interpolation deals with situations where the selected fuzzy
rules flank (i.e., geometrically lie on both sides of) the obser-
vation, as illustrated in Fig. 2 for a single input problem. In

Fig. 2. Case 2—Interpolation.

this example, A1, A2, and A3 are the fuzzy sets taken from
the rules r1, r2, and r3, which are deemed to be the closest
to the observation, based on distance measures, and which are
selected to construct the intermediate rule. Although there is
a chance that the representative value of A′′ may happen to
be equal to that of the observation, it is generally difficult to
guarantee this, as the weights used for linear combination are
heuristically calculated. Therefore, as with Case 1, the move
operation is also necessary. This is readily shown given the pre-
viously proven case for extrapolation, as, mathematically, both
rule interpolation and extrapolation are calculated in exactly the
same way.

C. Summary of Justifications

As discussed above, whether the existing TFRI is employed
for interpolation or extrapolation, the move operation is required
to ensure the representative values of the intermediate fuzzy
rule to be the same as those of their counterparts within the
observation. The question is whether there exists a mechanism
that is able to construct the intermediate rule, by combining a
set of carefully selected rules with appropriate weights, without
involving the compulsory move operation. That is, whether it is
feasible to utilize just the information available from the existing
sparse rule base itself to create the intermediate rule, in order
to perform transformation-based FRI. A positive answer to this
also allows for automatic determination of the number of closest
rules without human intervention, which is otherwise required
by TFRI, be it for interpolation or extrapolation.

Inspired by these observations, this article proposes a novel
optimized transformation-based fuzzy rule interpolation (OT-
FRI) technique, improving upon the original TFRI method in
two folds.

1) To automatically select a set of useful rules such that its
antecedent fuzzy values lie on both sides of an unfired
observation, instead of using a user-defined number of
closest rules that are judged by a fixed distance measure.

2) To search for a weighting vector such that the resultant
interpolated fuzzy rule overlaps with the unmatched ob-
servation, instead of using heuristic weights that inevitably
requires an additional move operation.

IV. AUTOMATED SELECTION OF FUZZY RULES FOR

INTERPOLATION

In order to construct the intermediate rule without implement-
ing the undesirable move operation, this section shows how a set
of useful rules can be automatically selected from the original
sparse rule base.
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A. Initial Analysis

For clarity, examine just one certain individual feature xi first.
In this case, the representative value of the intermediate term A′

i

may equal to that of its counterpart A∗
i given in the observation

o∗, only if one of the following scenarios is satisfied, where R∗

stands for the set of selected rules:
i) if ∃rk ∈ R∗, such that Rep(Ak

i ) > Rep(A∗
i ), and

Rep(Ak′
i ) < Rep(A∗

i ), for all rk
′ ∈ R∗, k′ �= k;

ii) if ∃rk ∈ R∗, such that Rep(Ak
i ) < Rep(A∗

i ), and
Rep(Ak′

i ) > Rep(A∗
i ), for all rk

′ ∈ R∗, k′ �= k;
iii) if ∃rk ∈ R∗, such that Rep(Ak

i ) = Rep(A∗
i ).

The first and second scenarios correspond to the situations
where the representative values of the fuzzy terms in the selected
rules flank that of their corresponding term in the observation,
and the third scenario describes the case where one (or more) of
the selected fuzzy terms, whose representative value happens
to be exactly the same as that of its counterpart within the
observation.

Suppose that the original sparse rule base is denoted byR. The
aim here is to devise a method that automatically searches for a
subset of fuzzy rules R∗ ⊂ R. This search is constrained such
that the representative values of the antecedent feature terms of
the intermediate rule being constructed using these rules will
equal or closely approximate those of the corresponding terms
in the unmatched observation. To aid in the illustration of the
underlying ideas of this work, suppose that there are |R| = 7 ex-
isting rules in the sparse rule base for a six-dimensional problem.
Table I specifies thekth closest rule for the ith feature value given
an unmatched observation o∗ based on the distance measure
between representative values, together with a sign expressing
the proximity relation between Rep(Ak

i ) and Rep(A∗
i ), where

“ + ” denotes Rep(Ak
i ) > Rep(A∗

i ), “ = ” denotes Rep(Ak
i ) =

Rep(A∗
i ), and “− ” denotes Rep(Ak

i ) < Rep(A∗
i ).

For this problem case, if the features are considered individu-
ally one at a time, the use of the least number (i.e., 2) of closest
rules with regard to the value of the first feature x1 will lead to
the selection of the rules r2 and r3, forming a flanking case for
this feature. However, if r2 and r3 were indeed selected, then
they would result in the same sign for the antecedent values of
x2 and x6. Thus, in computing the required weight vector, no
matter what values are assigned to w2 and w3, the interpolated
antecedent feature values will not lie within the area covered
by the corresponding features of r2 and r3. As such, the final
interpolated result will not be within the space bounded by the
outcomes of r2 and r3, making an incorrect interpolation. In
order to generate valid solutions, it is, therefore, necessary to
simultaneously consider all rule antecedent features, rather than
one by one.

Reflecting on the above discussion, a method for automati-
cally selecting closest fuzzy rules out of the given sparse rule
base can be introduced as follows.

1) Generate a proximity table like Table I in the example,
where the first column lists the feature values (for the
features xi, i = 1, 2, . . ., n) of the unmatched observa-
tion o∗, each of the rest columns represents a fuzzy rule
rk, k = 1, . . . , |R|, and each cell specifies the order of how
close the value Ak

i of the ith feature in the kth closest rule

TABLE I
EXAMPLE PROXIMITY TABLE

is to A∗
i , based on the use of a certain distance measured.

The sign associated with rk denotes the relative position
holding between Ak

i and A∗
i , as indicated previously.

2) Obtain a temporary rule baseR∗
i for each observed feature

valueA∗
i , by adding those rules in the table iteratively from

the leftmost rightwards, given that the rules in the table
have been ranked in ascending order based on the distance
measures. Once either of scenarios (i)–(iii) is found, stop
adding rules. For the present illustration, R∗

1 = {r2, r3},
R∗

2 = {r3, r4}, R∗
3 = {r6, r7}, R∗

4 = {r1, r3, r2}, R∗
5 =

{r3}, and R∗
6 = {r2, r3, r6}.

3) AssignR∗ to the temporary rule baseR∗
i of the largest car-

dinality, i.e., R∗ = R∗
i , ∀i ∈ {1, 2, . . ., n}, |R∗

i | > |R∗
i′ |

and i �= i′. In the case where there are multiple fea-
ture values that involve the same highest number of se-
lected rules, to ensure full coverage, find the union of
these multiple sets. For the present example, the rules
required to perform interpolation are R∗ = R∗

4

⋃
R∗

6 =
{r1, r3, r2}⋃{r2, r3, r6} = {r1, r3, r2, r6}.

4) Remove a row if the A∗
i of that row is consistent with

the currently selected rule subset R∗, namely if either
of scenarios (i)–(iii) is satisfied. For shorthand, denote
the notion of consistency checking between an observed
feature value A∗

i and a corresponding rule set R∗ by

R∗(A∗
i )

=

⎧⎨
⎩

True, if either of scenarios (i)–(iii) is satisfied

False, otherwise.

(22)

Back to the example, this deletes the rows starting with
A∗

1, A∗
3, A∗

4, A∗
5, and A∗

6.
5) Perform the following for each of the remaining rows, by

looping from the leftmost (closest) rule until reaching the
rightmost (furthest) rule, skipping if rk ∈ R∗, else updat-
ing R∗ = R∗ ⋃{rk} if R∗ ⋃{rk}(A∗

i ) is True, otherwise
doing nothing. For the illustrative example, the first rule
encountered for the (only remaining) row starting with A∗

2

that is not in R∗ is r4, the union of {r4} and R∗ results in a
case satisfying scenario (ii), and therefore, R∗ is updated
such thatR∗ = {r1, r3, r2, r6, r4}. As no further checking
is possible, the loop terminates.

Note that the addition of new rules in running the above
procedure is done in order. As such, the aforementioned “sets”
of rules and the “union” of a multielement set R∗ with a
single-element set {rk} do not follow the strict mathematical
definition of the corresponding concepts or operations. Instead,
the elements in such a set are ordered, and any union needs to
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retain such ordering with the single element listed as the last of
the existing multielement set that it is being merged into. From
this, a postpruning step can be proposed as follows.

1) Start from the rightmost (or the last) rule in R∗ and update
R∗ = R∗/{rk} if the removal of the rule rk does not
violate the consistency across all observed feature values.

2) Iterate the above process until every rule in R∗ has been
checked.

For the running example, the removal of the last rule r4

would violate the opposite sign condition; therefore, it should be
retained. The process goes on to check r6, the removal of which
does not violate the consistency relation for any of the features
involved. Hence, R∗ = R∗/{r6} = {r1, r3, r2, r4}. Then, r2 is
checked, and its removal would cause inconsistence for A3,
given that r6 has already been removed and r2 is the only rule that
provides a negative sign. Thus, r2 should be kept. The pruning
procedure then checks r3, which is ok to be deleted, resulting
in the updated R∗ = {r1, r2, r4}. Eventually, r1 is checked and
required to be retained. The final result is R∗ = {r1, r2, r4}.
Such a postpruning ensures that the set of rules required to
perform interpolation for a certain observation is minimal.

B. Rule Selection Algorithm

Generalizing the above initial analysis and the associated
illustrative example leads to Algorithms 1 and 2. These algo-
rithms, respectively, formalize the procedures that are utilized
in this work to automatically determine, and then to prune to
the minimum, a number of rules that are required to compute
the intermediate rule for interpolation, given an observation that
does not match any of the existing rules in the sparse rule base.
No subsequent move operation is necessary. This is different
from the original approach of TFRI that works by selecting a
subset of closest rules whose cardinality is manually set, while
requiring a subsequent move operation as per (7) before the
interpolation is implemented.

An exceptional case is that the inclusion of all rules in the
sparse rule base still fails to simultaneously provide a flanking
scenario for all antecedent features. This implies that the obser-
vation is not within the space bounded by any subset of rules from
the current rule base. In this event, no matter what weight vector
is to be assigned, a linearly weighted combination of any existing
rules cannot produce an interpolated rule that exactly coincides
with the observation. However, an approximation solution may
be sought for this, as described next.

C. FRI With Selected Fuzzy Rules

Given an observation o∗ with no match or insufficient match-
ing degrees against the rules in the sparse rule base, the process
of interpolation is invoked. This starts with a search for its closest
rule subset R∗ = {r1, r2, . . . , rl}, as detailed in the preceding
section. The key to performing interpolation in TFRI is to derive
an intermediate fuzzy rule with the representative values of the
fuzzy sets describing its antecedent features equaling to their
counterparts in o∗. Formally, this can be represented as a system

Algorithm 1: Selection of Candidate Rules.
1: % Step 1
2: Generate a proximity table
3: % Step 2
4: Set |R∗| = 0
5: for each observed feature value A∗

i ∈ o∗, i = 1, . . . , n
do

6: Set |R∗
i | = 0

7: for each rule rk, k = 1, . . . , l in the ith row of the
proximity table do

8: R∗
i = R∗

i

⋃{rk}
9: if R∗

i (A
∗
i ) then

10: break;
11: end if
12: end for
13: end for
14: % Step 3
15: for each row starting with A∗

i , i = 1, . . . , n do
16: if |R∗

i | ≥ |R∗
i′ |, ∀i′ = 1, . . . , n, and, i �= i′ then

17: R∗ = R∗ ∪R∗
i

18: end if
19: end for
20: % Step 4 and 5
21: for each row starting with A∗

i , i = 1, . . . , n do
22: if R∗

i (Ai) then
23: Remove the ith row from the table
24: else
25: for each rule rk ∈ R in the ith row do
26: if rk �∈ R∗ ∧R∗ ⋃{rk}(A∗

i ) then
27: R∗ = R∗ ⋃{rk}
28: end if
29: end for
30: end if
31: end for

of simultaneous linear equations as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rep(A∗
1) =

∑l
k=1 wkRep(Ak

1)

...

Rep(A∗
i ) =

∑l
k=1 wkRep(Ak

i )

...

Rep(A∗
n) =

∑l
k=1 wkRep(Ak

n)

(23)

where Rep(A∗
i ) is the representative value of the fuzzy set

denoting the input feature xi in o∗, Ak
i is the ith antecedent

value in the rule rk, and wk is the weight associated with rk.
This system of linear equations can be simplified in the form

of matrix representation such that

Aw = A∗ (24)

wherew = [w1, . . . , wk, . . . , wl]
T is the weighting vector,A∗ =

[Rep(A∗
1), . . . ,Rep(A∗

i ), . . . ,Rep(A∗
n)]

T is the vector of repre-
sentative values for the observation o∗, and A is an n× l matrix
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Algorithm 2: Postpruning.
1: Input R∗ from selection of candidate rules
2: for each rule rk, k = |R∗|, . . . , 2, 1 do
3: isRemoved = True;
4: for each observed feature value

A∗
i ∈ o∗, i = 1, . . . , n do

5: if ¬(R∗/{rk}(A∗
i )) then

6: isRemoved = False;
7: continue;
8: end if
9: end for

10: if isRemoved then
11: R∗ = R∗/{rk};
12: end if
13: end for

with its generic entry Aik (i ∈ {1, . . . , n}, k ∈ {1, . . . , l}) sig-
nifying the representative value Rep(Ak

i ) for the ith feature value
of the rule rk:

A =

⎡
⎢⎢⎢⎢⎣

Rep(A1
1) · · · Rep(Al

1)

...
. . .

...

Rep(A1
n) · · · Rep(Al

n)

⎤
⎥⎥⎥⎥⎦ . (25)

That is to say, if a certain weight vector can be determined
that satisfies (24), an intermediate rule can then be constructed.
The resulting representative values of its antecedent feature
terms will be exactly the same as those for the corresponding
feature valuesA∗

i as given in the unmatched observation, without
applying any further move operation. Following conventional
representation of a weighting system, without losing general-
ity, the bounding constraints below are introduced such that∑l

i=1 wi = 1, wi ∈ [0, 1].
The above constraints are introduced as with those imposed

over the weighting vector in the original T-FRI method, upon
which this work aims to improve. This is a common practice fol-
lowed by other related work (e.g., [18], [19], [21], [23]). Further
to helping assess directly how much contribution each selected
fuzzy rule may make to the overall formulation of the resulting
intermediate rule, such constraints also make the subsequent
computation simpler in deriving the weighting vector. This is in
comparison with the possible alternatives that typically use the
Euclidean norm, requiring more complicated computation.

In so doing, the task of constructing an intermediate rule
construction is converted into that of solving a system of si-
multaneous linear equations

Aw = A∗, s.t.
l∑

i=1

wi = 1, wi ∈ [0, 1]. (26)

Without attempting to directly resolve this system of bounded
linear equations (which would otherwise require the considera-
tion of whether the system is underdetermined, overdetermined,
or square), (26) can be transformed into an optimization problem
using the least squares method. This can be implemented by

minimizing the sum of the squares of the residuals in the results
of every single equation as follows:

argmin
w

||Aw −A∗||2, s.t.
l∑

i=1

wi = 1, wi ∈ [0, 1]. (27)

The minimization of ||Aw −A∗||2 is equivalent to that of its
squared difference ||Aw −A∗||22, which can be further decom-
posed such that

||Aw −A∗||22 = (Aw −A∗)T (Aw −A∗)

= (ATwT −A∗T )(Aw −A∗)

=
1

2
wT (2ATA)w + (−2ATA∗)Tw +A∗TA∗.

(28)

This fits perfectly into the problem of quadratic programming
as being of the form

arg min
v

1

2
vTHv + cT v (29)

where the vector v plays the role of w, H does that of (2ATA),
c corresponds to (−2ATA∗)T , and the constant term A∗TA∗

has no effect upon the minimum being sought and is, therefore,
omitted during the optimization process.

D. Optimal Weight Computation

In order to solve the above transformed quadratic program-
ming problem, the popular active set method [36] is applied
herein. In general, the solution procedure involves two phases.
The first calculates an initial feasible start point, and the sec-
ond executes an iterative test and generation process regarding
the feasible points, which eventually converge to the solution
sought. There are many versions of the active set method that
are similar in structure, with the underlying method adopted
in this article taken from the classical work of [37] and [38]
(which has been modified for both linear and quadratic pro-
gramming [39]). For the present work, this algorithm is taken as
a tool to implement the proposed approach and is outlined below
for completeness. Note that alternative versions of the method
may be employed if preferred, but an investigation into their use
is beyond the scope of this article.

In running the adopted algorithm, an active set matrix Sk is
maintained as an estimate of active constraints on the boundaries
of the solution point. At each iteration k, Sk is updated and used
to form a basis upon which to determine the search direction
dk, which attempts to minimize a given optimization objective
function. The potentially feasible subspace for dk is constructed
from a basis Zk, whose columns are orthogonal to the estimate
of the active set Sk with SkZk = 0. Thus, the resulting search
direction dk is guaranteed to remain on the boundaries of the
active constraints.

Once Zk is found, the objective function is optimized along
the search direction at dk, with dk being a linear combination of
the columns of dk = Zkp for a certain vector p, within the null
space of the active constraints. The quadratic objective function
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can be viewed as a function ofp, by substituting fordk as follows:

q(p) =
1

2
pTZT

k HZkp+ cTZkp. (30)

This can be differentiated with respect to p yielding

∇q(p) = ZT
k HZkp+ ZT

k c (31)

where ∇q(p) is referred to as the projected gradient of the
quadratic objective function. The minimum of the function
q(p) in the subspace defined by Zk occurs when ∇q(p) = 0,
which is the solution of the system of linear equations under
consideration, assuming that the matrix H is positive definite.

Whether such an active set method converges is generally
determined by the manner, in which the parameter α (named
step length) in the following is updated at each iteration:

vk+1 = vk + αdk, dk = Zkp. (32)

Given the quadratic nature of the objective function, there are
only two types of choice forα. The choice of a step of unity along
dk is the correct one to make, entailing the objective to reach
the minimum of the function that is restricted to the null space
of Sk. If such a step is taken without violating the constraints,
then the final solution is found. Otherwise, the step along dk is
less than unity, and the process of modifying the weights iterates
according to (32). The distance to the constraint boundaries in
any direction dk is given by

α = min
i∈1,...,m

{−(Aivk − bi)

Aidk

}
. (33)

From this, Lagrange multipliers λk are calculated that satisfy
the nonsingular set of linear equations

ST
k λk = c. (34)

If all λk over k are positive, the vector v composed of the corre-
sponding vk is the optimal solution for the original problem, i.e.,
the vector of weights, w required for interpolation. However, if
any λk is negative, and it does not correspond to an equality
constraint, then the element corresponding to it is deleted from
the active set, and a new iteration is carried out.

Note that the active set method has been shown to be conver-
gent for strictly convex quadratic programming problems [40].
In the event that a problem is infeasible with overly stringent con-
straints, the method is still able to produce a result that minimizes
the constraint violation in the worst case. More discussions on
the convergence proof and properties of this method can be found
in [40] and [41].

V. EXPERIMENTAL ANALYSES

This section presents and discusses the results of systematic
comparative experimental investigations, supported with statis-
tical analyses.

A. Experimental Setup

Experiments are performed on ten real-valued benchmark
datasets taken from UCI [42] and KEEL [43] data repository,
with all feature values normalized to fall within [0, 1]. A sum-
mary of the characteristics of these datasets is given in Table II.

TABLE II
SUMMARY OF DATASETS USED

Stratified hold-out validation is employed for result analysis,
in order that there are potentially more unmatched instances
for testing as opposed to the use of conventional tenfold cross
validation. In a hold-out validation, a given dataset is partitioned
into two subsets. Of the two, one is used to perform training to
generate a fuzzy rule base, while the other subset is retained
as the testing data for assessing the performance of the trained
fuzzy systems. This validation process is then repeated ten times
in order to lessen the impact of random factors; results of these
10× hold-out validations are then averaged to produce each final
experimental outcome, as reported in the following.

The experiments on comparisons between the optimized TFRI
(as proposed in this work and denoted by OTFRI hereafter) and
conventional TFRI are focused on applications to regression
problems. To ensure fair comparison regarding the use of the
intermediate rules constructed in different ways, they are verified
through running the first-order TSK systems (which are of more
representation power than Mamdani systems). In particular,
weighted consequents propagated from the rule antecedents are
directly computed, purposefully avoiding any subsequent move
and scale transformation processes that remain the same to both
TFRI approaches. For presentational simplicity, in the following,
an intermediate rule built by the use of a certain TFRI method
is referred to as an interpolated rule using that method.

The popular adaptive network-based fuzzy inference system
(ANFIS) [44] is used to generate a sparse fuzzy rule base
for experimental verification. Also, for fair comparison, each
ANFIS is initialized with a simple and common grid partitioning,
with each specified by a given MF. As such, the dimensionality
of a rule base is kn, where k is the partition granularity for each
of the n input features. ANFIS is then trained using a hybrid
learning method combining gradient descent and least squares
estimation, which involves parameter optimization in terms of
both MFs and coefficient parameters. To reduce the adverse
impact of the curse of dimensionality [45] as the number of
input features increases, and also to facilitate a wide range of
experimental computations, only two uniformly divided trian-
gular MFs are employed for datasets whose number of features
is greater than four, otherwise three, as shown in Fig. 3. More
details of ANFIS and the training method are beyond the scope
of this article, but can be found in [44].

Once an original rule base is learned (by reading off from a
trained ANFIS), to emphasize on the potential of FRI, a sparse
rule base is created by randomly removing a certain fixed number
of rules from the original rule base (see more below). Note that
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Fig. 3. Simple partitioning of feature spaces.

the removal of certain learned rules is purely introduced for
evaluation purposes. In real application, especially for situations
where training samples are limited, no such rule removal is
carried out, but the coverage of learned ANFIS over the problem
domain may be sparse in the first place. The rule removal here
is set to see whether interpolation is indeed able to provide
approximate inference results, in comparison to cases where
richer domain knowledge is available.

Throughout the experimental investigations, a testing instance
o∗ is regarded unmatched if the matching degree

∏n
i μAk

i
(A∗

i ) <

0.5n, for all rules from the (sparse) rule base, where Ak
i rep-

resents the fuzzy set for the ith feature xi in rule k, and A∗
i

stands for the observed value of xi. To quantitatively access
the performance of each compared approach, the measure of
root-mean-square errors (RMSEs) is adopted as the performance
index, which is defined by

RMSE =

√∑I
i (yi − ŷi)2

I
(35)

where I is the number of unmatched testing instances, yi is the
underlying (or ground) true output value, and ŷi is the value
predicted with the interpolated rule.

B. Illustrative Example

Before running systematical experiments for comparison, this
subsection illustrates the main working procedures of the pro-
posed OTFRI and its associated byproducts. The dataset utilized
for this example is the Electric Length 1 dataset, i.e., ele1,
with 495 instances and two numerical predictors to facilitate
graphical illustration. This illustration is based on one single
random run with the data partitioned into two subsets. The first is
the training set consisting of 253 instances utilized to obtain a set
of TSK fuzzy rules learned by ANFIS. With equally spaced three
triangular MFs predefined for each feature and the first-order
representation assumed for the rule consequent, the resulting full
rule base is shown in Table III. This is followed by a random re-
moval of four rules from the full rule base (of a size of 9), leading
to a rather sparse rule base, consisting of rules 4, 6, 7, 8, and 9.

Fig. 4 shows all testing instances in the two-dimensional
plane. In this figure, the horizontal and vertical axes represent
the normalized values of the first attribute x1 and those of the
second attribute x2, respectively, and the triangles refer to fired
instances, while the circles are deemed unmatched as their partial
matching degrees with any given rule are less than 0.52. As such,
in the absence of approximately half of the all the rules required
to cover the problem space, a large number of instances (233
out of 242) fail to directly find matching rules from the (sparse)

TABLE III
FULL RULE BASE USED FOR ILLUSTRATION

Fig. 4. Fired (triangular) instances and unfired (circles).

rule base. Fuzzy interpolation is, therefore, resorted to work on
these unmatched instances.

As an initial step of OTFRI (see Algorithms 1 and 2), a prox-
imity table is built for each of the unmatched instances. Taking
the unmatched instance (0.577, 0.548, 0.850) as an example,
rules 6 and 7 are returned by the constructed proximity table and
heuristic search (see Table III for their semantics). Note that the
selected rule subset does not include rule 8, which is the closest
rule otherwise to be returned by the use of the conventional
distance metric, as given in [16]. For shorthand, denote this rule
subset as {rule_6, rule_7} (and similarly for the other rules to be
mentioned below). The construction of the interpolated rule is
then invoked by calculating a weighting vector that minimizes
the distance between this unmatched instance and the linear
combination of the two fuzzy rules selected above. The elements
of the resultant weighting vector (which is optimized by the
active set method) are 0.706 and 0.294 for rules 6 and 7, respec-
tively. The interpolated rule is finally assembled by aggregating
all corresponding individual antecedent feature values of the
selected fuzzy rules, modified by their respective weights.

In contrast, if conventional TFRI is employed, with the num-
ber of closest rules for selection manually set to 2, the rule subset
of {rule_6 and rule_8} is selected for the construction of the
interpolated rule. The construction process works purely based
on the exploitation of distance measures. For direct comparison,
the resultant interpolated fuzzy rule produced by TFRI and that
obtained using OTFRI as described above are both shown in
Table IV.

The way of OTFRI constructing interpolated fuzzy rules leads
to a significantly different outcome from that of TFRI. Fig. 5
shows a simple comparison for the illustrative example, over the
whole set of 233 unfired instances. In particular, the horizontal
axis in the figure projects the values of the first antecedent
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TABLE IV
INTERPOLATED FUZZY RULES

Fig. 5. Illustrative performance comparison.

feature x1, and the vertical axis depicts the consequent values ŷ,
obtained by running different approaches with the use of various
rule bases. As demonstrated by this figure, OTFRI running on
the sparse rule base can excellently approximate the ground truth
for the middle range of the domain and even outperform the
result of using the full rule base over the final part of the domain
range. It also beats the possible alternative approach by obtaining
the estimated consequent through simply firing the closest rule in
the sparse rule base, over most parts of the domain. Note that over
the full domain range, using just a sparse rule base is overall un-
derperformed as compared to the use of the full rule base learned
by ANFIS. This is of course expected given that a large propor-
tion of the rules are randomly removed from the full rule base.

As explicitly stated previously, the purpose of this work is to
show that when only a sparse rule base is available, the proposed
approach can improve upon the popular state-of-the-art TFRI.
Fig. 5 clearly illustrate this, with OTFRI beating TFRI over
almost the whole range of the feature domain. Instead of using
just one particular example, in order to demonstrate that such
superior performance over TFRI is systematic, results on a set of
experiments across a variety of setting and benchmark datasets
are discussed below.

C. Results and Discussion

1) With or Without FRI: Tables V and VI show the RMSEs
between the ground truth and the predicted values returned by
the use of different sparse rule bases, where “m% Missing”
(m ∈ {10, 15, 20, 25, 30, 40, 50}) stands for what percentage of
rules are omitted from the original learned rule base. Again, such
an omission is intentional, to reveal the potential effectiveness
of rule interpolation. That the proportion of missing rules is set
over this range (from 10% to 50%) also helps demonstrate the ro-
bustness of the proposed approach under different settings. Nu-
merical figures under the headings of ANFIS, ANFIS_TFRI and
NFIS_OTFRI in these tables indicate the averaged RMSEs and

their associated standard deviations over the results, obtained
by the use of ANFIS, conventional TFRI, and the proposed
approach, respectively. Note that TFRI involves the selection of
a user-defined number of closest rules for interpolation, which is
uniformly set to 2 here. This is both for computational simplicity
and for reflecting the most recent discovery in that effective TFRI
techniques typically require the use of just two closest rules to
perform interpolation [18].

In Tables V and VI, an entry of N/A indicates that all testing
instances have been fired with the rules given in the (sparse) rule
base, thereby leaving no unmatched instances requiring FRI.
For example, two or three datasets have no instances that cannot
be matched by the given rules for firing when the proportion
of missing rules is 10% or 15%, respectively. An interesting
observation from these results is that for the delta_ail dataset, all
testing instances are fired with the original rules when the sparse
rule base misses 15% rules, but there are unmatched instances
when the missing proportion is lower at 10%. This is due to
the randomness nature of the experiments in that the particular
15% rules missed in one case are completely independent of
those 10% missing rules in the other. However, in general, as
the missing proportions are getting larger, more datasets will
have more instances unmatchable by the given rules.

In both Tables V and VI, the lowest RMSEs are highlighted
in boldface, indicating the best performance for a dataset under
the same experimental setting over different approaches. When
missing 10% rules, the original ANFIS only achieves two lowest
errors out of ten datasets, while incurring a relatively larger
standard deviation. The number of winning cases for ANFIS
is reduced to just one if the missing rule proportion becomes
15% or 25%, and further to no winner at all in the case of 20%
missing rules. This demonstrates that FRI significantly improves
the performance of the systems running on a sparse rule base,
as most of the lowest errors are achieved with interpolated rules
(which are equivalent to rules being added on to the original rule
bases).

As the missing proportions become higher, however, the origi-
nal ANFIS starts to produce relatively more results that are more
accurate, e.g., there are three or four datasets for which a better
RMSE is obtained with the missing proportion being 30%, 40%,
or 50%. This decrease in performance is likely attributed to the
fact that a poor rule base with too many missing rules is difficult
for any rule interpolation method to function well. This can be
expected of course, since with more and more rules missing from
the given rule base, the sparse rule base becomes even more
incomplete (and may eventually become completely empty),
this will gradually deteriorate the effect of interpolation as the
closest rules found in such situations may be very different from
the underlying true relations holding between the antecedent
features and the consequent. Nevertheless, in terms of winning
cases, running FRI methods still outnumber using the original
ANFIS without rule interpolation, despite the reduction in the
winning numbers. The question is then whether the proposed
OTFRI performs better than the conventional TFRI, which is to
be addressed next.

2) Comparison Between TFRI and OTFRI: The main pur-
pose of the proposed approach is to improve upon existing
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TABLE V
PERFORMANCE IN TERMS OF RMSE

TABLE VI
PERFORMANCE IN TERMS OF RMSE (CONTINUED)

TABLE VII
PERFORMANCE OF INTERPOLATED FUZZY RULES

techniques for TFRI. This can also be demonstrated by examin-
ing the results of Tables V and VI. From the viewpoint of overall
performance, as reflected by the bottom row in each of these two
tables, other than the situation where the missing rule proportion
is 20% in which the average performance of OTFRI (2.2200) is
very slightly worse than that of TFRI (2.1377), OTFRI achieves
the best average results under all other settings. Even in the 20%
case, OTFRI has a much less standard deviation (±1.0114 versus
±1.5766). From the viewpoint of individual winners per dataset,
OTFRI also clearly outperforms TFRI with 33 versus 13 wins
across all settings.

Note that TSK systems equivalently compute the final output
based on a weighted combination of firing all matched rules
in the rule base. Thus, it is interesting to examine the errors
of the unmatched instances using interpolated fuzzy rules only,
discounting the contributions made by firing those rules from

a given sparse rule base. This is in order to verify whether the
combination of the original reduced rule base and interpolated
fuzzy rules (by either method) happens to work well. Tables VII
and VIII list the differences between the ground truth and the
results of firing just the interpolated rules, in terms of the
resulting RMSEs, using the same experimental settings as those
used to obtained the results of Tables V and VI.

The average errors of the interpolated results by OTFRI are
always lower than those achievable by TFRI under all settings,
beating TFRI systematically without a single loss. From the
viewpoint of winners over the individual datasets under various
missing rule settings, OTFRI achieves 43 wins against 18 wins
obtained by TFRI. Both of these general outcomes are consistent
with those shown earlier in Tables V and VI (which are obtained
on the basis of the errors measured over the entire rule base,
including the interpolated rules). This is not surprising, since
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TABLE VIII
PERFORMANCE OF INTERPOLATED FUZZY RULES (CONTINUED)

Fig. 6. Overall performance under various settings.

the errors across the whole rule base are more affected by the
interpolated rules than by the rules that do not fire the unmatched
instances to sufficient degrees (smaller than 0.5n). These results
collectively demonstrate that OTFRI improves upon the conven-
tional TFRI method.

Fig. 6 depicts the overall average errors for different ap-
proaches under various settings. In general, the error becomes
larger as the proportion of missing rules gets larger, but again this
is expected since the uncovered problem space becomes larger.
Occasional oscillations are due to the randomness in the removal
of the original rules. However, what is important is the general
outcome in that the error rates of ANFIS_OTFRI and OTFRI
are both below those of their counterparts (i.e., ANFIS_TFRI
and TFRI), showing that OTFRI significantly improves over
the existing TFRI approach. Such significance in performance
improvement is statistically verified below.

3) Statistical Tests: The performance enhancement of the
proposed OTFRI over TFRI is further supported with the cor-
responding pairwise t-test outcomes (p < 0.05), as shown in
Table IX. Regardless of the missing percentage of rules, OTFRI
always statistically achieves more or at least equal number of
winners as compared to TFRI, for each individual setting without
a single exception, be it evaluated using interpolated rules only
or in conjunction with the sparse rule base. Overall, when
considering the results obtained on the basis of a given rule base
plus the corresponding interpolated fuzzy rules, OTFRI achieves
28 wins, 21 ties, and 12 losses. When the interpolated fuzzy rules
are evaluated alone without counting in any contribution of the
existing sparse rule base, OTFRI performs even better with 31
wins, 20 ties, and 11 losses. Once again, these results clearly
show that OTFRI significantly improves over the existing TFRI
method.

Fig. 7. Rankings of ANFIS, ANFIS_OTFRI, and ANFIS_TFRI.

To further validate the overall superior performance that
OTFRI possesses over its alternatives, nonparametric statisti-
cal tests are also employed here. In particular, the Friedman
Aligned Ranks test [46] is applied to detect whether there is
indeed any statistically significant difference among the algo-
rithms (namely, ANFIS, ANFIS_OTFRI, and ANFIS_TFRI)
as a group. Before conducting this test, the results across all
settings including 61 valid pairs are stacked together for ANFIS,
ANFIS_OTFRI, and ANFIS_TFRI, with the corresponding av-
erage RMSEs listed in Table X. From the above, the Friedman
Aligned Ranks test is applied with the rankings calculated, as
shown in Fig. 7, where the bars are proportional to the average
ranking obtained for each named algorithm. The lowest bar
(which corresponds to the best algorithm statistically) achieved
by ANFIS_OTFRI agrees with the smallest error that is also
obtained by it, as of Table X. To examine whether significant
differences indeed exist among the average errors, parameters
associated with the Friedman Aligned Ranks test outputs are
shown in Table XI, where the p value indicates the probability
to reject the null hypothesis that there is no significant difference
among the three average performances. At the significance level
of α = 0.05, the null hypothesis is rejected, indicating that
there exist significant statistical differences among the results
attainable by the members of the group concerned.

The Friedman Aligned Ranks test can detect significant dif-
ferences within a certain group. However, it is unable to estab-
lish explicit comparisons when considering a particular control
method and a set of possible alternatives. As ANFIS_OTFRI
achieves the smallest error and is of the lowest ranking bar
among the three compared algorithms, it is of a natural appeal
to be used as the control method in comparison to ANFIS and
ANFIS_TFRI. The standard Holm’s procedure [46] is applied
to run the test, computing the adjusted p values. The results
of this investigation are presented in Table XII. Since both p
values are smaller than the level of significance specified by
α = 0.05, the null hypothesis that there exists no significant
performance difference between ANFIS_OTFRI and ANFIS or
between ANFIS_OTFRI and ANFIS_TFRI is rejected. Thus, it
can be concluded statistically that ANFIS_OTFRI significantly
improves upon both ANFIS and ANFIS_TFRI.

Further to comparing at the overall rule base level, it is also
interesting to investigate the performance when only interpo-
lated rules are used. The Wilcoxon signed-rank test [47] is
employed to detect whether significant differences exist between
two sample means over the errors due to the use of interpolated
fuzzy rules introduced by TFRI or those by OTFRI. From the
statistical point of view, this test may be more reliable than t-test,
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TABLE IX
COMPARISON BETWEEN OTFRI AND TFRI, WHERE b, =, AND w INDICATE OTFRI ACHIEVING STATISTICALLY BETTER, EQUIVALENT, AND

WORSE PERFORMANCE, RESPECTIVELY

TABLE X
AVERAGE RMSE AT RULE BASE LEVEL

TABLE XI
FRIEDMAN ALIGNED RANKS TEST RESULT

TABLE XII
OUTCOME OF HOLM’S PROCEDURE WITH ANFIS_OTFRI BEING THE

CONTROL METHOD

TABLE XIII
AVERAGE RMSE OF INTERPOLATED FUZZY RULES

TABLE XIV
WILCOXON TEST ON OTFRI AND TFRI

as it does not assume normal distributions of the samples while
being more robust for situations where exceptionally good or
bad performances on a few datasets may occur.

Similar to comparisons at rule base level, the results across all
settings including 61 valid pairs are stacked together for OTFRI
and TFRI, with the corresponding average RMSEs presented in
Table XIII. Applying the Wilcoxon signed-rank test leads to the
outcomes as given in Table XIV, where the p value represents
the probability that two pieces of information under comparison
are of statistically equal significance. As p is much smaller than
the predefined significance level (0.05), the null hypothesis that
there is no statistical difference between running the two sets
of interpolated rules is thus rejected. That is to say, OTFRI
significantly beats TFRI in producing quality interpolated rules,
reassuring the previous evaluation outcome.

VI. CONCLUSION

TFRI is a popular approach to performing inference with
sparse rule bases. Existing techniques require the user to specify
the number of the rules that are selected, with the employment
of a distance metric, to build the intermediate fuzzy rules.
They also require a move operation that forces a generated
intermediate rule to overlap with an unmatched observation.
This article has proposed an automatic rule selection proce-
dure and an associated mechanism to automatically assemble
the intermediate rules, without involving the move operation.
In particular, the required rule weighting scheme is computed
by interpreting the solution of a linear equation system as a
quadratic programming problem, which is then resolved using
the classical active set method. Systematic comparative exper-
imental results have demonstrated statistically the significant
performance improvement achieved by the proposed approach
over conventional TFRI.

The present research is focused on the application to TSK
fuzzy systems. The transference of the underlying approach to
suit Mamdani inference systems forms an immediate next piece
of further work. Working with Mamdani rules, which are of
fuzzy consequents instead of crisp values directly produced by
the TSK-style rules, would allow for a more general representa-
tion of the inferred output. This is facilitated by the employment
of fuzzy values to describe the vague consequents in response
to imprecise observations. Thus, an extension of the present
work to Mamdani systems would help attain interpretability
for situations, where a linguistic inference outcome is sought,
as with other typical FRI methods in the literature [48]. Also,
the current approach presumes the use of a fixed (sparse) rule
base. It is very interesting to investigate how such a static rule
base may be enriched through an integration with dynamic
FRI [19]. Finally, the present experimental studies are based
on the use of a fixed, even partition of the feature domains.
Interpolation performance may be further improved if a learn-
ing mechanism can be built into the system to automatically
construct the required partitions, say using a fuzzy clustering
method [49].
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