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Abstract—A great number of improved fuzzy c-means (FCM)
clustering algorithms have been widely used for grayscale and color
image segmentation. However, most of them are time-consuming
and unable to provide desired segmentation results for color images
due to two reasons. The first one is that the incorporation of local
spatial information often causes a high computational complexity
due to the repeated distance computation between clustering cen-
ters and pixels within a local neighboring window. The other one is
that a regular neighboring window usually breaks up the real local
spatial structure of images and thus leads to a poor segmentation.
In this work, we propose a superpixel-based fast FCM clustering
algorithm that is significantly faster and more robust than state-
of-the-art clustering algorithms for color image segmentation. To
obtain better local spatial neighborhoods, we first define a multi-
scale morphological gradient reconstruction operation to obtain a
superpixel image with accurate contour. In contrast to traditional
neighboring window of fixed size and shape, the superpixel image
provides better adaptive and irregular local spatial neighborhoods
that are helpful for improving color image segmentation. Second,
based on the obtained superpixel image, the original color image is
simplified efficiently and its histogram is computed easily by count-
ing the number of pixels in each region of the superpixel image.
Finally, we implement FCM with histogram parameter on the su-
perpixel image to obtain the final segmentation result. Experiments
performed on synthetic images and real images demonstrate that
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the proposed algorithm provides better segmentation results and
takes less time than state-of-the-art clustering algorithms for color
image segmentation.

Index Terms—Color image segmentation, fuzzy c-means (FCM)
clustering, morphological reconstruction, superpixel.

I. INTRODUCTION

IMAGE segmentation is a key step of object recognition and
classification in computer vision. Although a large number

of algorithms used for image segmentation have been proposed,
image segmentation remains one of the most challenging re-
search topics because none of them is able to provide a unified
framework for achieving fast and effective image segmentation.
The difficulty of image segmentation can be attributed to two
reasons. The first is that image segmentation is a multiple solu-
tion problem, i.e., there are multiple best segmentation results
for one image. The second is that an image is always complex
because of noise, background, low signal-to-noise ratio, and in-
tensity nonuniformity. Consequently, it is difficult to propose
a general segmentation framework to achieve complex image
segmentation tasks.

Image segmentation algorithms can be roughly grouped into
two categories—unsupervised and supervised image segmen-
tation. Unsupervised approaches, such as clustering [1], [2],
GraphCut [3], active contour model [4], watershed transform
(WT) [5], hidden Markov random field (HMRF) [6], fuzzy en-
tropy [7], etc., are useful and popular due to their simplicity
without depending on training samples and labels. In contrast to
unsupervised image segmentation approaches, although some
supervised approaches such as convolutional neural network
(CNN) [8] and fully convolution networks (FCN) [9], are able
to achieve image segmentation by using feature learning, but
they require a lot of training samples and label images. In ad-
dition, the segmentation result has a coarse contour since CNN
and FCN essentially achieve image classification. In this paper,
we mainly discuss unsupervised image segmentation.

In unsupervised algorithms, clustering represents one kind of
important and popular algorithms for grayscale and color image
segmentation because it is suitable and useful for both low- and
high-dimensional data. Generally, clustering algorithms can be
roughly categorized into three groups—minimizing an objective
function [10], decomposing a density function [11], and graph
theory [12]. In this paper, we will focus on image segmentation
based on clustering by minimizing an objective function. It is
well-known that k-means and FCM are clustering algorithms by
minimizing an objective function. Because k-means is a hard
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clustering algorithm, it is sensitive to initial clustering centers
or membership. In contrast, FCM is a soft algorithm that im-
proves the shortcomings of k-means at the cost of increasing
iterations. However, both k-means and FCM are sensitive to
noise because the local spatial information of pixels is missed
for image segmentation. To address this shortcoming, a great
number of improved clustering algorithms that incorporate lo-
cal spatial information into their objective function have been
proposed in recent years [13]–[15]. These algorithms can be
grouped into two groups. The first group employs neighbor-
hood information of a center pixel using a window of fixed
size to improve image segmentation effect, e.g., FCM algorithm
with spatial constraints (FCM_S) [16], FCM_S1 [17], FCM_S2
[17], fast generalized FCM algorithm (FGFCM) [18], fuzzy lo-
cal information c-means clustering algorithm (FLICM) [19],
neighborhood weighted FCM clustering algorithm (NWFCM)
[20], FCM algorithm based on noise detection (NDFCM) [21],
Memon’s algorithm [22], and the FLICM based on kernel met-
ric and weighted fuzzy factor (KWFLICM) [23]. The advantage
of these algorithms is that the neighborhood information can be
computed in advance, except FCM_S and FLICM, to reduce the
computational complexity. However, a neighborhood window
of fixed size and shape is unable to satisfy the requirement of
robust image segmentation. The second group employs adaptive
neighborhood information instead of the window of fixed size
and shape, e.g., Liu’s algorithm [24], Bai’s algorithm [25], and
adaptive FLICM [26]. As adaptive neighborhood information is
consistent with real image structuring information, the second
group of algorithms obtains a better robustness for noisy images
and a better segmentation effect than the first group.

Though improved FCM algorithms consider the neighbor-
hood information of an image, the neighborhood information of
the corresponding membership, which is helpful for improving
classification effect, is ignored. HMRF [27]–[29] is a popular
algorithm for addressing the issue. In [30], the current member-
ship called posterior probability depends on clustering centers
and the prior probability of neighborhood. Because HMRF con-
siders the previous state of current membership, it obtains better
result than FCM for image segmentation [30]. Based on the
idea, Zhang et al. [31] incorporated the local spatial informa-
tion of membership into the objective function of FCM, which
obtains better results for image segmentation than the algo-
rithm proposed in [30]. Furthermore, Liu et al. [24] improved
FCM algorithm by integrating the distance between different
regions obtained by mean-shift and the distance of pixels into
its objective function. Although these HMRF-based clustering
algorithms [24], [30], [31] effectively improve the effect of im-
age segmentation, they have a high computational complexity
caused by the computation of neighborhood information pro-
vided by original image and previous state’s membership in
every iteration.

It is clear that the algorithms mentioned above improve image
segmentation effect at the cost of increasing the computational
complexity. Therefore, the question arises how one can main-
tain local spatial information while reducing the computational
complexity efficiently. Lei et al. [32] proposed a fast and robust
FCM algorithm (FRFCM) to address the problem by employ-
ing morphological reconstruction [33] and membership filter-
ing. Because the repeated distance computation between pixels

within neighborhood window and clustering centers is removed,
the algorithm is very fast and provides a better segmentation re-
sult than state-of-the-art algorithms. Nevertheless, the FRFCM
requires much execution time for color image segmentation be-
cause it is difficult to compute the histogram of color images. To
address the issue, we propose a superpixel-based fast FCM (SF-
FCM) for color image segmentation. The proposed algorithm
is able to achieve color image segmentation with a very low
computational cost, yet achieve a high segmentation precision.

Two contributions are presented as follows.
1) We present a multiscale morphological gradient recon-

struction (MMGR) operation to generate superpixel image
with accurate boundaries, which is helpful for integrating
adaptive neighboring information and reducing the num-
ber of different pixels in a color image.

2) Based on a superpixel image obtained by MMGR, we
propose a simple color histogram computational method
that can be used to achieve a fast FCM algorithm for color
image segmentation.

The rest of this paper is organized as follows. In Section
II, we illustrate the motivation of our work. In Section III, we
propose our model and analyze its superiority. The experimental
results on synthetic images and real images are described in
Section IV. Finally, we present our conclusion in Section V.

II. MOTIVATION

FCM often miss spatial information leading to a poor result
for image segmentation. Although a great number of improved
algorithms address the problem by incorporating local spatial
information into the objective function, this, in turn, increases
the computational complexity of algorithms. Fortunately, su-
perpixel [34] is able to address the problem. Superpixel is an
image preprocessing tool that oversegments an image into a
number of small regions. A superpixel region is usually defined
as perceptually uniform and homogenous regions in the image
[35]. Superpixel is able to improve the effectiveness and effi-
ciency of image segmentation due to two advantages. On the
one hand, superpixel is able to achieve a presegmentation based
on the local spatial information of images. The presegmenta-
tion provides better local spatial information than traditional
neighboring windows employed by FCM_S, FLICM, FGFCM,
KWFLICM, NWFCM, NDFCM, and FRFCM. On the other
hand, superpixel is able to reduce the number of different pixels
in an image by replacing all pixels in a region with the mean
value of the superpixel region [36], [37]. In this paper, we will
employ superpixel technology to obtain adaptive local spatial in-
formation, and then compute the histogram of superpixel image
to achieve fast color image segmentation.

A. Motivation for Using Superpixel

In early improved FCM algorithms, local spatial information
is often insufficient in a neighboring window of fixed size and
shape. If the window is too small, the local spatial information
will be limited for improving segmentation effect. But if the
window is too large, the computational complexity of the corre-
sponding algorithm will be very high. Recently, some improved
FCM algorithms [26] incorporate adaptive local spatial infor-
mation into their objective function to obtain better robustness
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and higher performance for image segmentation. Adaptive local
spatial information means that the pixels within a neighboring
region have variable weighting factors depending on local char-
acteristics of an image. For example, in Liu’s algorithm [24],
the adaptive neighborhood of a pixel is decided by its neighbor-
ing window and the corresponding region obtained by a prior
mean-shift algorithm [11].

In [24], the objective function denoted by Jm is defined as

Jm =
N∑

i=1

c∑

k=1

ukiDki + �

N∑

i=1

c∑

k=1

uki log

(
uki

πki

)
(1)

where uki is the membership between the ith pixel and the kth
clustering center, 1 ≤ i ≤ N , 1 ≤ k ≤ c, N is the number of
data items, c is the number of clusters, N, c ∈ N+ , � is the
degree of fuzziness of uki , and the distance function Dki is the
combination of the pixel dissimilarity and region dissimilarity

Dki =
dki + dkRi

2
. (2)

In (2), dki is the dissimilarity distance between the ith pixel and
the kth clustering center, dkRi

is the region dissimilarity between
the region Ri obtained by mean-shift and the kth clustering
center, dkRi

= 1
sum(Ri )

∑
j∈Ri

dkj , Ri is the region that contains
the ith pixel, and the sum(Ri) denotes the number of pixels in
the region Ri . Furthermore

πki =

∑
j∈Ni

wj ζjukj∑c
k=1

∑
j∈Ni

wj ζjukj
. (3)

In (3), wj is a weighting parameter of the neighborhood pixels,
Ni is the neighborhood of the ith pixel, and j ∈ Ni , and ζ is the
region-level iterative strength

ζj =
1
Z

(
ERi ,Rj

+ 1
)−1

(4)

where ERi ,Rj
= ‖mean(Ri) − mean(Rj )‖ is the Euclidean

distance between the mean values of region Ri and Rj . Z =∑
j∈Ni

(
ERi ,Rj

+ 1
)−1

is a normalized constant.
Clearly, a prior oversegmentation obtained by mean-shift is

necessary for Liu’s algorithm. However, mean-shift is sensitive
to parameters. Moreover, the fuzzy membership depends on
both the pixel’s neighboring window and the region containing
the pixel.

Based on the analysis above, although Liu’s algorithm is able
to improve image segmentation effect by incorporating adaptive
local spatial information into the objective function, it has a high
computational complexity due to the repeated computation of
adaptive neighboring information in every iteration. Although,
we also employ adaptive neighboring information obtained by a
superpixel algorithm to improve the segmentation effect, signifi-
cantly different from Liu’s algorithm is the fact that the proposed
superpixel algorithm has a lower computational complexity.

B. Motivation for Using Histogram of Color Images

Traditional FCM algorithm has to compute the distance be-
tween each pixel and clustering centers, which leads to a high
computational complexity when the resolution of an image is
high. The enhanced FCM (EnFCM) proposed by Szilágyi et al.
[38] solves the problem by performing clustering on gray levels

instead of pixels. The idea is efficient for the reduction of the
computational complexity because the repeated distance com-
putation is removed by integrating histogram to its objective
function. The objective function of EnFCM is defined as

Jm =
q∑

l=1

c∑

k=1

γlu
m
kl‖f l − vk‖2 (5)

where ukl represents the fuzzy membership of gray value l
with respect to the kth clustering center vk , m is the weighting
exponent, f is a grayscale image, f l is the gray level, 1 ≤ l ≤ q,
q denotes the number of the gray levels of f (it is generally far
smaller than N ), γl is the number of pixels whose gray level
equals to f l , and

q∑

l=1

γl = N. (6)

Clearly, the introduction of histogram is able to reduce the
computational complexity of FCM. Because the level of his-
togram is far less than the number of pixels in an image, it is
faster to implement FCM on gray levels than pixels for grayscale
image segmentation. However, it is difficult to extend this idea
of EnFCM to FCM for color image segmentation [39] because
the number of different colors is usually close to the number
of pixels in a color image. This is also the reason that FRFCM
[32] usually requires a longer execution time to segment a color
image than the corresponding grayscale image.

To address the issue, in this work, we will compute the his-
togram of a color image according to the corresponding super-
pixel image since the number of regions in the superpixel image
is far smaller than the number of pixels in the original color
image. We will use the mean value of all pixels within an area
instead of these pixels to reduce the number of different colors
in the original color image. It is easy to compute the histogram
of the superpixel image because there is only a small number
of different colors in the superpixel image. And then, the fast
FCM algorithm will be achieved for color image segmentation,
which will be presented in detail in Section III-B.

III. METHODOLOGY

Since a superpixel image is able to provide better local spa-
tial information than a neighboring window of fixed size and
shape, superpixel technologies such as mean-shift [11], simple
linear iterative clustering (SLIC) [40], and WT [41], are usu-
ally considered as presegmentation algorithms for improving
segmentation results generated by clustering algorithms [42],
[43]. Compared to SLIC, mean-shift and WT produce irregular
superpixel areas that are better than hexagonal regions obtained
by SLIC. In practical applications, mean-shift is more popular
than WT since the latter is sensitive to noise leading to a serious
oversegmentation.

Even though mean-shift is able to provide better superpixel
results, it is sensitive to parameter values, e.g., the spatial band-
width denoted by hs , the range bandwidth denoted by hr , and the
minimum size of final output regions denoted by hk . Moreover,
the computational complexity of mean-shift is higher than WT.
Therefore, we need to develop a fast superpixel algorithm that
can provide better presegmentation result and requires less time
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Fig. 1. Framework of the proposed algorithm.

than mean-shift. Because WT only depends on region minima
of gradient images to obtain presegmentation, it has a very low
computational complexity. In this work, we employ a novel WT
based on MMGR (MMGR-WT) to produce superpixel images.
The MMGR-WT is able to provide more appropriate preseg-
mentation results using shorter execution time than mean-shift.
Moreover, it is insensitive to parameters.

Based on the superpixel image obtained by MMGR-WT, we
compute the histogram of superpixel images to achieve fast
FCM algorithm. The computation of the histogram of superpixel
images is easy because the number of different colors from
superpixel images is far smaller than that from the original color
image. Finally, the histogram is considered as a parameter of the
objective function to achieve fast color image segmentation. The
framework of our proposed algorithm is shown in Fig. 1.

A. Superpixel-Based on MMGR-WT

WT is a fast algorithm used for image segmentation via com-
puting local minima of a gradient image and searching the wa-
tershed line between adjacent local minima. The algorithm eas-
ily causes an oversegmentation because it is sensitive to noise.
To address the problem, many algorithms have been proposed
by modifying the gradient image of the original image. Among
these algorithms, morphological gradient reconstruction (MGR)
[44] is a simple and efficient algorithm for overcoming overseg-
mentation because it is able to preserve the contour details of
objects while removing noise and useless gradient details. First,
the basic definition of morphological reconstruction is presented
as follows:

{
Rε

f (g) = ε
(i)
f (g)

Rδ
f (g) = δ

(i)
f (g)

(7)

where Rε and Rδ represent morphological erosion and dilation
reconstruction, respectively, f is the original image, i.e., the
mask image, g is the marker image, ε is the erosion operation,
and δ is the dilation operation. Erosion reconstruction requires
that g ≥ f , but dilation reconstruction requires g ≤ f , ε(1)

f (g) =

ε(g) ∨ f , ε
(i)
g (f) = ε(ε(i−1)(g)) ∨ f , δ

(1)
f (g) = δ(g) ∧ f , and

δ
(i)
g (f) = δ(δ(i−1)(g)) ∧ f . The symbols ∨ and ∧ stand for the

pointwise maximum and minimum, respectively.
Because morphological erosion and dilation are a pair of dual

operators, they always appear in pairs such as morphological
opening and closing operators. The morphological opening and
closing are more popular than erosion and dilation because they
have stronger capability for feature extraction or noise removal.
Consequently, the morphological opening reconstruction de-
noted by RO and closing reconstructions denoted by RC , are

Fig. 2. Watershed segmentation based on MGR with different SEs. (a) Origi-
nal image “12003” (image size: 481 × 321). (b) r = 1. (c) r = 3. (d) r = 10.

defined as
{

RO (g) = Rδ (Rε)
RC (g) = Rε(Rδ ) (8)

where the marker image g is generally considered as g = εB (f)
in Rδ or g = δB (f) in Rε . B is a structuring element (SE).

Both RO and RC are able to remove region minima in a
gradient image to reduce oversegmentation. For instance, we
use RC to reduce oversegmentation as shown in Fig. 2.

In Fig. 2, the SE is defined as a disk, where r is the radius of
the SE. Fig. 2 shows that the number of segmentation regions
decreases quickly by increasing the value of r. However, a small
SE easily leads to oversegmentation, while a large SE easily
leads to undersegmentation. Therefore, it is difficult to obtain a
superpixel image with both fewer regions and accurate contour
by using MGR. To balance the number of regions in superpixel
image and contour precision, a suitable SE is required, but it is
difficult to choose a suitable SE for different images.

To solve the problem, we try to use different SEs to reconstruct
a gradient image, and then fuse these reconstructed gradient
images to remove the dependency of segmentation result on
SEs. Thus, we propose a MMGR operation denoted by RM C

that is defined as follows:

RM C
f (g, r1 , r2) = ∨{RC

f (g)Br 1
, RC

f (g)Br 1 + 1 , . . . , R
C
f (g)Br 2

}
(9)

where r1 and r2 represent minimal and maximal r, respectively,
r1 ≤ r ≤ r2 , r1 , r2 ∈ N+ , g ≤ f .

We can see that RM C employs multiscale SEs to reconstruct
a gradient image to obtain multiple reconstructed images. By
computing the pointwise maximum of these reconstructed gra-
dient images, an excellent gradient image that removes most of
useless local minima while preserving important edge details is
obtained.

The proposed MMGR includes two parameters, r1 and r2 ,
where r1 controls the size of the minimal region and r2 con-
trols the size of the maximal region. If r1 is too small, there
will be many small regions in segmentation results, but if r1
is too large, the boundary precision will be low. An example
is shown in Fig. 3. It can be seen that the superpixel result
has a high contour precision but includes some small regions
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TABLE I
COMPARISON OF THE NUMBER OF SUPERPIXEL REGIONS FOR WT BASED ON MGR AND MMGR, RESPECTIVELY

Fig. 3. Segmentation results using MMGR-WT with different r1 , where r2 =
10. (a) r1 = 1. (b) r1 = 3. (c) r1 = 5, (d) r1 = 8.

Fig. 4. Watershed segmentation based on MMGR-WT with different sized
SEs. (a) r1 = 2, r2 = 3. (b) r1 = 2, r2 = 7. (c) r1 = 2, r2 = 11, (d) r1 = 2,
r2 = 20.

when r1 = 1, the superpixel result has a high contour precision
and excludes small regions when r1 = 2 or r1 = 3, the super-
pixel result has a clearly low contour precision when r1 = 8.
Consequently, we choose 1 ≤ r1 ≤ 3 here. Because r2 controls
the size of the maximal region, the superpixel image is better
when the value of r2 is larger as shown in Fig. 4. However, the
superpixel image is unchanged when the value of r2 is larger
than a threshold; for example, the threshold is 11 in Fig. 4.
Clearly, the superpixel image is convergent via increasing the
value of r2 . Moreover, the convergent result is perfect because it
includes fewer regions and yet provides accurate contour. There-
fore, the MMGR is insensitive to the change of r2 when r2 is
larger than a threshold. Table I shows the comparison of the
number of superpixel regions for WT-MGR and WT-MMGR,
respectively.

r2 can be a variant as can be seen from Table I. But it is
difficult to set different values of r2 for each image. In practical
applications, r2 is adaptive and it is not required for MMGR as
long as we set a minimal error threshold denoted by η instead
of r2 , i.e.,

max
{
RM C

f (g, r1 , r2) − RM C
f (g, r1 , r2 + 1)

} ≤ η. (10)

In (10), r2 can be replaced by η because r2 is supposed to
have different values for each image in a data set, but a fixed
value of η can be used for all images in the data set. Note that
if η is too large, r2 will be small but the error will be large.
On the contrary, if η is too small, the error will be small but
r2 will be large leading to a high computational burden for
MMGR. Therefore, it is important to choose an appropriate η
for a data set. We perform MMGR on ten images from the
Berkeley segmentation dataset and benchmark (BSDS), we can
obtain different values of r2 according to a fixed value of η as
shown in Table II.

Table II shows that the values of r2 will be larger when
decreasing η. However, r2 will be unchanged when η is smaller
or equal to 10−4 . Therefore, we set η = 10−4 in this paper.

To demonstrate the effectiveness of the MMGR, Fig. 5 shows
superpixel images obtained by SLIC, mean-shift, and MMGR-
WT, respectively, where sk is the number of desired superpixels,
sm is the weighting factor between color and spatial differences,
and ss is the threshold used for region merging. These parame-
ters are selected depending on [40] and [42]. It can be seen from
Fig. 5 that the superpixel images generated by SLIC include lots
of areas with similar shape and size, but the superpixel images
generated by the mean-shift and MMGR-WT include lots of
areas with different shapes sizes. It is clear that later two algo-
rithms provide better visual effect for the requirement of real
images.

Although SLIC and mean-shift are able to generate superpixel
images according to task requirements by changing parameters,
they have a longer execution time than the proposed MMGR
as shown in Table III, where SLIC corresponds to Fig. 5(b),
mean-shift1 corresponds to Fig. 5(c), mean-shift2 corresponds
to Fig. 5(d), and MMGR-WT corresponds to Fig. 5(e). Because
our purpose is to propose a fast FCM algorithm for color image
segmentation, MMGR is more appropriate than SLIC and mean-
shift for our task requirement.

B. Superpixel-Based Fast Fuzzy c-Means

In Section III-A, we proposed the MMGR-WT to obtain bet-
ter local spatial information used for fuzzy clustering. Because
MMGR-WT depends on the local feature of an image, while
FCM depends on the global feature, the combination of MMGR-
WT and FCM is able to improve image segmentation result. In
this section, we propose an SFFCM algorithm by incorporating
adaptive local spatial information into the objective function
of FCM.

EnFCM is popular and efficient for achieving fast image seg-
mentation because a gray image only includes 256 gray levels,
which is usually far smaller than the number of pixels in an
image but the number of different colors in a color image is
far larger than 256. The quantization technology is usually used
to reduce the number of colors in an image. The basic idea of
quantization technology is that a clustering algorithm is per-
formed on each channel of a color image to obtain an image
with fewer color levels than before. However, the traditional
color quantization only reduces the number of different colors,
but the color distribution of the quantized image is still similar
to that of the original image because the local spatial informa-
tion is ignored. Because a superpixel image carries the spatial
information of the image and reduces the number of different
colors, the superpixel image is superior to images quantized
by clustering algorithms. We applied the clustering algorithm
proposed in [39] and the proposed MMGR-WT to quantize a
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TABLE II
VALUES OF r2 FOR TEN IMAGES FROM BSDS FOR DIFFERENT VALUES OF η

Fig. 5. Superpixel images using different methods. (a) Original images. (b)
Superpixel images obtained by SLIC (sk = 500, sm = 50, ss = 1). (c) Su-
perpixel images obtained by mean-shift1 with hs = 7, hr = 7, hk = 30. (d)
Superpixel images obtained by mean-shift2 with hs = 15, hr = 15, hk = 50.
(e) Superpixel images obtained by MMGR-WT (r1 = 2).

TABLE III
COMPARISON OF EXECUTION TIME (IN SECONDS) OF DIFFERENT METHODS

USED TO GENERATE SUPERPIXEL IMAGES

The best values are in bold.

color image, and then computed the histogram of the quantized
image as shown in Fig. 6, where the number of different colors
is 57 214 in the original image. Furthermore, Fig. 7, the color
distribution of Fig. 6, shows that the proposed MMGR-WT is
more appropriate than clustering algorithm proposed in [39] for
subsequent image segmentation.

It is clear that the histograms of Fig. 6(b) and (d) are simpler
with only a small number of different colors appearing in the
quantized images. According to Fig. 6(c) and (e), we can ex-

Fig. 6. Quantization of a color image and the corresponding histogram. (a)
Original image. (b) Color quantization using the algorithm proposed in [39]
(c = 10). (c) Histogram of Fig. 1(b). (d) Superpixel image using MMGR-WT
(r1 = 2). (e) Histogram of Fig. 1(c).

Fig. 7. Color distribution of different color images. (a) Color distribution of
Fig. 6(a). (b) Color distribution of Fig. 6(b). (c) Color distribution of Fig. 6(d).

tend EnFCM to color image segmentation easily. Compared to
Fig. 6(c), Fig. 6(e) has even fewer color levels. In addition, it
is clear that the color distributions of Fig. 7(c) is different from
Fig. 7(a) and (b), and the former is helpful for subsequent pixel
classification.

Based on the superpixel image obtained by MMGR-WT, we
proposed the objective function of SFFCM for color image seg-
mentation as follows:

Jm =
q∑

l=1

c∑

k=1

Slu
m
kl

∥∥∥∥∥∥

⎛

⎝ 1
Sl

∑

p∈Rl

xp

⎞

⎠− vk

∥∥∥∥∥∥

2

(11)

where l is the color level, 1 ≤ l ≤ q, q is the number of regions
of the superpixel image, l, q ∈ N+ , Sl is the number of pixels
in the lth region Rl , and xp is the color pixel within the lth
region of the superpixel image obtained by MMGR-WT. The
new objective function only introduces histogram information
compared with the old one in FCM. Because each color pixel
in the original image is replaced by the mean value of color
pixels within the corresponding region of the superpixel image,
the number of color level is equivalent to the number of regions
in the superpixel image. Thus, the computational complexity is
efficiently reduced due to l � N .

Utilizing the Lagrange multiplier technique, the aforemen-
tioned optimization problem can be converted to an uncon-
strained optimization problem that minimizes the following ob-
jective function, i.e.,

J̃m =
q∑

l=1

c∑

k=1

Slu
m
kl

∥∥∥∥∥∥

⎛

⎝1
Sl

∑

p∈Rl

xp

⎞

⎠− vk

∥∥∥∥∥∥

2

− λ

(
c∑

k=1

ukl − 1

)

(12)
where λ is a Lagrange multiplier. We compute the par-
tial differential equation of J̃m with respect to ukl and vk ,
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respectively

∂J̃m

∂ukl
=

q∑

l=1

c∑

k=1

∂Slu
m
kl‖
(

1
Sl

∑
p∈Rl

xp

)
− vk‖2

∂ukl
− λ

=
q∑

l=1

c∑

k=1

mSlu
m−1
kl

∥∥∥∥∥∥

⎛

⎝ 1
Sl

∑

p∈Rl

xp

⎞

⎠− vk
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2

− λ

= 0 (13)

∂J̃m

∂vk
=

q∑

l=1

c∑

k=1

∂Slu
m
kl

∥∥∥
(

1
Sl

∑
p∈Rl

xp

)
− vk

∥∥∥
2

∂vk

=
q∑

l=1

c∑

k=1

Slu
m
kl

∂
∥∥∥
(

1
Sl

∑
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)
− vk
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2
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=
q∑

l=1
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kl

∂
∥∥∥
(

1
Sl

∑
p∈Rl
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)
− vk

∥∥∥
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∂vk

= −2
q∑

l=1
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m
kl
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⎛

⎝ 1
Sl

∑

p∈Rl
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⎞

⎠− vk

∥∥∥∥∥∥

= 0. (14)

Combing (13) and (14) together, the corresponding solutions
for ukl and vk are obtained as

vk =

∑q
l=1 um

kl

∑
p∈Rl

xp∑q
l=1 Slum

kl

(15)

ukl =

∥∥∥
(

1
Sl

∑
p∈Rl

xp

)
− vk

∥∥∥
−2/(m−1)

∑c
j=1

∥∥∥
(

1
Sl

∑
p∈Rl

xp

)
− vj

∥∥∥
−2/(m−1) . (16)

Based on (9)–(16), the proposed SFFCM algorithm can be
summarized as follows.

Step 1: Set values for c, m, r1 , η, η
′
, where η

′
is the conver-

gence condition used for SFFCM.
Step 2: Compute a superpixel image using (9)–(10), and then

compute its histogram.
1) Compute the gradient image using Sobel op-

erators.
2) Implement MMGR using (9)–(10) and η.
3) Implement WT to obtain the superpixel im-

age.
Step 3: Initialize randomly the membership partition matrix

U (O ) according to the superpixel image.
Step 4: Set the loop counter b = 0.
Step 5: Update the clustering centers using (15).
Step 6: Update the membership partition matrix U (t) using

(16).
Step 7: If max{U (b) − U (b+1)} < η

′
then stop, otherwise,

set b = b + 1 and go to Step 5.
We applied the proposed SFFCM to Fig. 6(a) following the

previous steps. Then, the segmentation result is shown in Fig. 8.
We can see that the proposed SFFCM is able to obtain better

Fig. 8. Segmentation results on Fig. 6(a). (a) Segmentation result using FCM
for quantized image. (b) Segmentation result using the proposed SFFCM.

segmentation result than the traditional algorithm. Based on
the analysis mentioned above, we conclude that the proposed
SFFCM has following advantages.

1) SFFCM is very fast for color image segmentation because
the number of different colors is reduced efficiently due
to superpixel and color histogram.

2) SFFCM is insensitive to the change of parameters be-
cause the superpixel image obtained by MMGR-WT is
convergent.

3) SFFCM obtains an excellent result for color image seg-
mentation because both adaptive local spatial information
and global color feature are incorporated into the objective
function.

IV. EXPERIMENTS

We conduct experiments on two synthetic color images of size
256 × 256 and real color images from the BSDS [45] and the
Microsoft Research Cambridge (MSRC) [46]. The first synthetic
image includes four different colors, while the second includes
five different colors. The experiments are conducted on a DELL
desktop with Intel Core CPU, i7-6700, 3.4 GHz, 16 GB RAM.

A. Comparative Algorithms

To assess the effectiveness and efficiency of the proposed
SFFCM, nine comparative algorithms based on clustering used
for color image segmentation are presented, i.e., FCM [10],
FGFCM [18], HMRF-FCM [30], FLICM [19], NWFCM [20],
KWFLICM [23], NDFCM [21], Liu’s algorithm [24], and FR-
FCM [32]. Since these algorithms employ different local spatial
neighborhoods to improve segmentation results, they have dif-
ferent advantages and disadvantages.

B. Parameters Setting

Since both comparative algorithms and the proposed SFFCM
belong to clustering algorithms based on objective function op-
timization, three indispensable parameters: the weighting expo-
nent, the convergence condition, and the maximal number of
iteration must be set before iterations. In our experiments, the
three parameters are 2, 10−5 , and 50, respectively. In addition,
the value of the minimal error threshold used for MMGR is
10−4 . In the comparative algorithms, a window of size 3 × 3 is
employed by those algorithms required a neighboring window
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Fig. 9. Comparison of segmentation results on the first symmetric image.
(a) First synthetic image. (b) Noisy image (Gaussian noise, the noise level is
10%). (c) FCM. (d) FGFCM. (e) HMRF-FCM. (f) FLICM. (g) NWFCM. (h)
KWFLICM. (i) NDFCM. (j) Liu’s algorithm. (k) FRFCM. (l) SFFCM.

of fixed size for fair comparison. Moreover, the computational
complexity is also an important reason for the choice of the
window of size 3 × 3. In addition, a neighborhood window is
unnecessary for FCM. According to the criterion of parameters
setting mentioned in those comparative algorithms, the spatial
scale factor and the gray-level scale factor in FGFCM and ND-
FCM, are λs = 3 and λg = 5, respectively. The third parameter
of the NDFCM, a new scale factor is λa = 3. The NWFCM only
refers to the gray-level scale factor, λg = 5. Because Liu’s algo-
rithm requires a presegmentation obtained by mean-shift, three
parameters hs = 10, hr = 10, and hk = 100 follow the orig-
inal paper. Except three indispensable parameters mentioned
above and the number of the cluster prototypes, HMRF-FCM,
FLICM, and KWFLICM do not require any other parameters.
In FRFCM, the SE used for multivariate morphological recon-
struction is a square of size 3 × 3, and the filtering window
used for membership filtering is also a square of size 3 × 3. As
the proposed SFFCM needs a minimal SE for MMGR, we set
r1 = 2 for MMGR.

C. Results on Synthetic Images

First, we test these comparative algorithms and the proposed
SFFCM on two synthetic color images to show their robust-
ness to noise. In this experiment, three kinds of different noise
Gaussian, Salt & Pepper, and Uniform noise are added to these
synthetic images. All algorithms mentioned above are imple-
mented and segmentation results are shown in Fig. 9 and 10.

FCM, HMRF-FCM, FLICM, and NWFCM provide poor re-
sults as shown in Figs. 9(c), (e), (f), and (g) and 10(c), (e), (f),
and (g), which show that they are sensitive to both Gaussian and
Salt & Pepper noise. HMRF-FCM, FLICM, and NWFCM can-
not improve the FCM algorithm for color images. FGFCM, ND-
FCM, and FRFCM obtain good segmentation results as shown
in Fig. 9(d), (i), and (k) for the image corrupted by Gaussian
noise, but poor segmentation results as shown in Fig. 10(d), (i),
and (k) for the image corrupted by Salt & Pepper noise. It is
clear that the three algorithms are insensitive to Gaussian noise
but they are sensitive to Salt & Pepper noise of high density.
KWFLICM, Liu’s algorithm, and the proposed SFFCM pro-

Fig. 10. Comparison of segmentation results on the second symmetric image.
(a) Second synthetic image. (b) Noisy image (Salt & Pepper, the noise level is
40%). (c) FCM. (d) FGFCM. (e) HMRF-FCM. (f) FLICM. (g) NWFCM. (h)
KWFLICM. (i) NDFCM. (j) Liu’s algorithm. (k) FRFCM. (l) SFFCM.

vide better results as shown in Figs. 9(h), (j), and (l) and 10(h),
(j), and (l), which demonstrates that they are robust against both
Gaussian noise and Salt & Pepper noise as adaptive neighboring
information is employed by the three algorithms.

To assess the performance of different algorithms on noisy
image segmentation, two performance indices, the quantitative
score (S) that is the degree of equality between pixel sets Ak

and the ground truth (GT) Ck and the optimal segmentation
accuracy (SA) that is the sum of the correctly classified pixels
divided by the sum of the total number of the pixels [23], are
adopted. S and SA are defined as

S =
c∑

k=1

Ak

⋂
Ck

Ak

⋃
Ck

(17)

SA =
c∑

k=1

Ak

⋂
Ck∑c

j=1 Cj
(18)

where Ak is the set of pixels belonging to the kth class found
by the algorithm, while Ck is the set of pixels belonging to the
class in the GT. We implemented each of these algorithms on
two synthetic images, and computed the mean value and the root
mean square error (RMSE) of S and SA as shown in Tables IV
and V.

In Tables IV and V, FCM, HMRF-FCM, FLICM, and
NWFCM obtain similar S values as well as SA values, which
further demonstrates that HMRF-FCM, FLICM, and NWFCM
are inefficient for color image segmentation. FCM misses the
local spatial information leading to poor segmentation result.
HMRF-FCM, FLICM, and NWFCM only employ a small neigh-
boring window to incorporate local spatial information into their
objective function, which is helpful for segmenting images cor-
rupted by low-density noise but not useful for segmenting im-
ages corrupted by high-density noise. FGFCM and NDFCM
obtain higher values of S and SA than FCM, HMRF-FCM,
FLICM, and NWFCM because the tested images are synthetic
and the added noise is known. Because FGFCM and NDFCM
employ a filter to suppress noise before iterations in clustering,
they obtain larger S and SA than FCM, HMRF-FCM, FLICM,
and NWFCM for synthetic images corrupted by known noise.
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TABLE IV
COMPARISON SCORES (S%) OF THE TEN ALGORITHMS ON THE FIRST SYNTHETIC IMAGE CORRUPTED BY NOISE OF DIFFERENT LEVELS (c = 4)

The best values are in bold.

TABLE V
SA (SA%) OF TEN ALGORITHMS ON THE SECOND SYNTHETIC IMAGE CORRUPTED BY NOISE OF DIFFERENT LEVELS (c = 5)

The best values are in bold.

FRFCM obtains high S and SA when noisy density is low, but
small S and SA when noisy density is high because FRFCM
employ multivariate morphological reconstruction to simplify
image and use the membership filtering to improve segmenta-
tion results.

As KWFLICM, Liu’s algorithm, and the proposed SFFCM
employ adaptive local spatial information to improve segmenta-
tion results, they obtain larger S and SA than those comparative
algorithms that employ local spatial information in a window
of fixed size. Liu’s algorithm obtains higher values of S and SA
because of the combination of mean-shift, FCM, and HMRF. In
some cases, the proposed SFFCM provides smaller S and SA
than Liu’s algorithm but higher values than those comparative
algorithms because contour details are smoothed in segmenta-
tion results obtained by the SFFCM. However, SFFCM provides
the best mean value of S for two synthetic images and the best
RMSE of SA for the second synthetic image, which shows that
SFFCM is able to obtain good segmentation results for images
corrupted by different noises.

Fig. 11. GT segmentations of images “12003” and “113009” from BSDS.

D. Results on Real Images

To demonstrate that the proposed SFFCM is useful for real
image segmentation, we further conducted experiments on the
BSDS and MSRC. The BSDS is a popular benchmark that has
been widely used by researchers for the task of image seg-
mentation [45]. The early BSDS is named as BSDS300 that is
composed of 300 images and the current BSDS is an extended



1762 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 27, NO. 9, SEPTEMBER 2019

Fig. 12. Comparison of segmentation results on color images from BSDS
using different models.

version that is composed of 500 images, called BSDS500. For
each image in BSDS, there are four to nine GT segmentations.
These GT segmentations are delineated by different human sub-
jects. For instance, there are five GT segmentations delineated
by five subjects on image “12003” and “113009” as shown in
Fig. 11. The MSRC data set contains 23 object classes and com-
prises of 591 natural images. For each image in MSRC, there is
only one GT segmentation that is pixel-wise labeled.

Figs. 12–14 show segmentation results of images from the
BSDS and MSRC. The parameters setting is the same as that
in Section IV-B. Since the size of images in BSDS and MSRC
is different from the size of synthetic images, the SE used for
multivariate morphological reconstruction in FRFCM is a disk
of size 5 × 5 for the BSDS and MSRC. The value of r1 is set to
3 for real images in this section. In addition, the CIE-Lab color
space is used for all algorithms for fair comparison.

As can be seen from Figs. 12 and 13, segmentation results
obtained by FCM, FGFCM, HMRF-FCM, FLICM, NWFCM,
KWFLICM, and NDFCM include a great number of small re-
gions because only a small local neighboring window is em-
ployed (a large neighboring window will cause a very high
computational complexity). FRFCM obtains better results than

Fig. 13. Comparison of segmentation results on color images from BSDS
using different models.

algorithms mentioned above due to the introduction of multi-
variate morphological reconstruction and membership filtering.
However, Liu’s algorithm and the proposed SFFCM obtain bet-
ter results than FRFCM due to the use of adaptive local spatial
information provided by presegmentation. Although Liu’s algo-
rithm provides a better segmentation result than the proposed
SFFCM on the left image, the later provides better results than
the former on four other images in Fig. 12. In practical applica-
tions, since it is difficult to propose an algorithm to achieve the
best segmentation result for every image in a data set, researchers
usually use the average result on all images in the data set, e.g.,
BSDS and MSRC, to estimate the algorithm performance.

In Fig. 14, all algorithms are efficient for images in which the
foreground is clearly different from the background as shown
in the first row. A large number of small regions appear in seg-
mented images except images obtained by SFFCM as shown in
the second to fifth rows. Liu’s algorithm, FRFCM, and SFFCM
obtain better results than other algorithms as shown in the sixth
row. All algorithms fail to segment images except SFFCM, as
shown in the last three rows.

To evaluate segmentation results obtained by different al-
gorithms, five performance measures [45], [47], namely, the
probabilistic rand index (PRI), the covering (CV), the varia-
tion of information (VI), the global consistency error (GCE),
and the boundary displacement error (BDE), are computed in
this experiment. The PRI is a similarity measure that counts
the fraction of pairs of pixels whose labels are consistent be-
tween the computed segmentation and the corresponding GT
segmentation. The CV is an overlap measure that can be also
used to evaluate the segmentation effect. The VI is a similar-
ity measure that is always used to measure the distance between
two segmentations in terms of their average conditional entropy.
The GCE computes the degree to which two segmentations are
mutually consistent. The BDE is an error measure that is used
to measure the average displacement error of boundary pixels
between two segmentations. If the segmentation result is more
similar to the GT, PRI and CV will be larger but VI, GCE, and
BDE will be smaller. In the BSDS, each image corresponds to
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Fig. 14. Comparison of segmentation results on color images from MSRC using different models (c = 2).

TABLE VI
AVERAGE PERFORMANCE OF TEN ALGORITHMS ON THE BSDS300 THAT

INCLUDES 300 IMAGES

The best values are in bold.

TABLE VII
AVERAGE PERFORMANCE OF TEN ALGORITHMS ON THE BSDS500 THAT

INCLUDES 500 IMAGES

The best values are in bold.

TABLE VIII
AVERAGE PERFORMANCE OF TEN ALGORITHMS ON THE MSRC THAT

INCLUDES 591 IMAGES

The best values are in bold.

TABLE IX
AVERAGE PERFORMANCE OF SFFCM ON BSDS300

TABLE X
AVERAGE PERFORMANCE OF SFFCM ON BSDS500
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TABLE XI
COMPARISON OF EXECUTION TIMES (IN SECONDS) OF TEN ALGORITHMS

The best values are in bold.

multiple GT segmentations, which leads to a result that a seg-
mentation result corresponds to multiple groups of performance
index. Therefore, the average value of multiple groups of per-
formance index is usually considered as the final performance
index of the segmentation result.

All these algorithms are evaluated on the BSDS and MSRC
data sets. The value of c is set from 2 to 6 for each image in
the BSDS, while its value is set from 2 to 4 for each image
in the MSRC. We choose the best value of c corresponding to
the highest PRI. Because the BSDS and MSRC includes lots of
images, the average values of PRI, CV, VI, GCE, and BDE cor-
responding to segmentation results of all images in the BSDS or
MSRC are presented in Tables VI–VIII. In Tables VI–VII, we
can see that FCM, FGFCM, FLICM, NWFCM, and KWFLICM
have similar values of the PRI, CV, VI, GCE, and BDE. ND-
FCM has the similar performance with HMRF-FCM. FRFCM
clearly outperforms other algorithms on PRI and BDE due to
the introduction of multivariate morphological reconstruction.
Liu’s algorithm obtains better performance than FRFCM be-
cause it computes the distance between pixels and clustering
centers according to the combination of superpixel image and
the original image. Similarly, Table VIII shows that FLICM,
NWFCM, and KWFLICM have similar values of the PRI, CV,
VI, GCE, and BDE. The performance of FGFCM is similar to
NDFCM. Different from Tables VI–VII, HMRF-FCM obtains
better performance than Liu’s algorithm and FRFCM as shown
in Table VIII. Clearly, the proposed SFFCM is the most excel-
lent because it obtains the best values of PRI, CV, VI, and GCE,
as well as within the 0.04 of the best value obtained of BDE as
shown in Tables VI–VIII and the best segmentation results as
shown in Figs. 12–14.

To demonstrate that the proposed SFFCM is insensitive to
parameters, we further discussed the relationship between the
weighting exponent m and the SFFCM. We have known that
FCM algorithm is insensitive to m when the FCM is used for
image segmentation. The proposed SFFCM has the same objec-
tive function with FCM. The difference between them is that the
proposed SFFCM employ color histogram created by MMGR-
WT to speed up the FCM algorithm. Therefore, theoretically, the
performance of the proposed SFFCM is also insensitive to the
value of m. Tables IX and X show the performance of SFFCM
for different values of m. Fig. 15 shows the plot of Tables IX
and X. It is clear that the performance of SFFCM is changed
slightly via changing the value of m.

E. Execution Time

Execution time is an important index used to measure the
performance of an algorithm. Table XI shows execution time of
different algorithms on two synthetic images and real images

Fig. 15. Plot corresponding to Tables IX and X. (a) BSDS300. (b) BSDS500.

used in Sections IV-C–IV-D. We computed the average execu-
tion time of algorithms on images from the BSDS and MSRC,
respectively.

It can be seen from Table XI that FCM is faster than other
algorithms, except SFFCM, because no additional computation
is implemented. FGFCM and NDFCM are faster than FLICM,
NWFCM, and KWFLICM because the neighboring information
is computed in advance. FLICM, NWFCM, and KWFLICM re-
peatedly compute the neighboring information in each iteration
leading to a high computational complexity. Both HMRF-FCM
and Liu’s algorithm require a long execution time because a
prior probability used for HMRF model must be computed in
each iteration. FRFCM is fast because multivariate morpholog-
ical reconstruction and membership filtering are implemented
only once. The proposed SFFCM is very fast even faster than
FCM for some images because the number of different col-
ors in superpixel image obtained by MMGR-WT is decreased
efficiently and the color histogram is integrated into SFFCM.

V. CONCLUSION

In this paper, an SFFCM algorithm for color image segmenta-
tion has been proposed. Two main contributions are presented.
The first contribution is that we presented the MMGR operation
to obtain a good superpixel image. The second contribution is
that we incorporated color histogram into objective function to
achieve fast image segmentation. The proposed SFFCM is tested
on synthetic and real images. The experimental results demon-
strate that the proposed SFFCM is superior to state-of-the-art
clustering algorithms because it provides the best segmentation
results and requires the shortest running time.

Our algorithm is very fast for color image segmentation, but
similar to other k-means clustering algorithms, it has limitations
in practical applications since the number of clusters must be
set prior. In the future work, we will explore fast clustering
algorithms that automatically estimate the number of clusters
[48], [49].
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