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Fuzzy Rule Based Interpolative Reasoning
Supported by Attribute Ranking

Fangyi Li, Changjing Shang , Ying Li , Jing Yang, and Qiang Shen

Abstract—Using fuzzy rule interpolation (FRI) interpolative rea-
soning can be effectively performed with a sparse rule base where a
given system observation does not match any fuzzy rules. While of-
fering a potentially powerful inference mechanism, in the current
literature, typical representation of fuzzy rules in FRI assumes
that all attributes in the rules are of equal significance in deriving
the consequents. This is a strong assumption in practical applica-
tions, thereby, often leading to less accurate interpolated results.
To address this challenging problem, this paper employs feature
selection (FS) techniques to adjudge the relative significance of
individual attributes and therefore, to differentiate the contribu-
tions of the rule antecedents and their impact upon FRI. This is
feasible because FS provides a readily adaptable mechanism for
evaluating and ranking attributes, being capable of selecting more
informative features. Without requiring any acquisition of real
observations, based on the originally given sparse rule base, the
individual scores are computed using a set of training samples that
are artificially created from the rule base through an innovative
reverse engineering procedure. The attribute scores are integrated
within the popular scale and move transformation-based FRI al-
gorithm (while other FRI approaches may be similarly extended
following the same idea), forming a novel method for attribute
ranking-supported fuzzy interpolative reasoning. The efficacy and
robustness of the proposed approach is verified through system-
atic experimental examinations in comparison with the original
FRI technique over a range of benchmark classification problems
while utilizing different FS methods. A specific and important out-
come that is supported by attribute ranking, only two (i.e., the least
number of) nearest adjacent rules are required to perform accu-
rate interpolative reasoning, avoiding the need of searching for
and computing with multiple rules beyond the immediate neigh-
borhood of a given observation.

Index Terms—Attribute ranking, feature selection (FS),
fuzzy rule interpolation (FRI), interpolative reasoning, reverse
engineering.
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I. INTRODUCTION

FUZZY rule interpolation (FRI) enables fuzzy rule-based
reasoning systems to perform inference with a sparse rule

base [1], [2]. It addresses the key limitation of conventional
fuzzy rule-based systems that work using compositional rule of
inference (CRI) [3], where no conclusion may be drawn if none
of the rules in the given rule base matches a new observation.
Resolving real-world problems frequently involves the use of
such sparse rule bases where all the given rules cannot fully
cover the entire problem domain. FRI techniques play a signif-
icant role in such situations explicitly, where an estimation is
able to be made by computing an interpolated consequent for
the observation which matches no rules.

A number of FRI methods have been proposed and improved
in the literature (e.g., [4]–[19]). However, conventional FRI ap-
proaches assume that the domain attributes appearing in the rule
antecedents are of equal significance in the implementation of
interpolation. This can lead to inaccurate or incorrect interpo-
lated results. FRI methods that exploit rules with weighted an-
tecedents have therefore been introduced to remedy the adverse
side-effects of this equal significance assumption [20]–[23].
For example, genetic algorithms (GA) have been applied to
learn the weights of rule antecedents in support of FRI [24],
but this incurs a substantial increase in computation overheads
and requires the setting of many additional GA parameters.
Also, in [25], a weighted fuzzy interpolative reasoning method
is proposed by employing weighted increment and weighted
ratio transformations, entailing automatic tuning of the optimal
weights of the antecedent attributes. Similar methods to this
are reported in [25] and [26], all of which follow a “wrapper”
scheme, where the attribute weighting procedure is enabled by
firing the underlying FRI for the given training samples. A dif-
ferent approach is given in [27] by exploring piecewise fuzzy
entropies of the fuzzy sets, with the weights assigned differ-
ently to each antecedent fuzzy set involved in different fuzzy
rules, thereby, working at the expense of significant computa-
tion. An alternative work is to subjectively predefine the weights
on the antecedents of the rules by experts, but this may restrict
the adaptivety of the rules and therefore, the flexibility of the
resulting fuzzy reasoning system [21], [28].

A common issue shared by most of the aforementioned
weighting schemes is to aggregate the weights computed for
individual antecedent attributes, in an effort to assign an overall
weight to each rule prior to its use in interpolation. Yet, the resul-
tant weights are utilized in rather different ways dependent upon
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which underlying FRI technique is used. In these techniques, the
weights are not organically integrated with the internal working
of the FRI method. In terms of their typical applications, these
weighted FRI techniques (e.g., [24], [27]) are typically tailored
to problems such as multivariate regression and prediction. Lit-
tle work has been done in developing weighted FRI to perform
classification tasks (which this paper is focused on).

Feature selection (FS) [29], [30] aims to discover a minimal
subset of features that are most predictive of a given outcome. It
generally follows a four-step procedure: generation, evaluation,
termination, and validation. Feature subsets are generated via a
certain search procedure amongst the family of subsets of the
original feature set. These feature subsets are then evaluated in-
dividually with regard to a given quality measure. The process
of searching for a reduced feature subset is terminated if the
measured quality degree reaches a satisfactory level. Finally, a
selected feature subset is validated with respect to the applica-
tion problem at hand. In developing effective FS mechanisms,
much work has been carried out regarding the second step that
evaluates the quality of a candidate feature subset [31]–[34], in-
cluding those directly assessing and ranking individual features
[35]–[37]. For any reasoning system (be it fuzzy or boolean),
different ranking scores of features or domain attributes imply
different contributions of them to the inference outcome. In-
spired by this observation, a novel weighted FRI approach is
proposed here, consolidating upon the initial ideas presented
in [38], where a feature evaluation method is integrated within
the FRI procedure to score the significance of individual rule
antecedents. This is different from existing techniques for rule
interpolation that involve weights (e.g., [39]–[41]), which con-
struct an interpolated result by weighted aggregation of rule
consequents, where rule importances are ranked using Euclidean
distance between rule antecedents and a given observation.

In developing this new approach to fuzzy rule-based inter-
polative reasoning, an innovative reverse engineering process
is introduced to artificially convert a given sparse rule base
into a set of training samples. This is accomplished for the
sake of computing the required ranking scores without the need
of acquiring any real observations. This results in a attribute
ranking-guided FRI method, implemented on the basis of the
popular scale and move transformation-based FRI (T-FRI) [5]
(although the same idea appears to be applicable to other FRI
techniques). To ensure the proposed approach does not rely on
a certain specific FS technique, this approach is systematically
evaluated using five different feature ranking algorithms. Com-
parative studies demonstrate that this research helps minimize
the adverse impact of the equal significance assumption made
in the conventional FRI techniques, significantly improving the
accuracy of the results of fuzzy interpolative reasoning. This
paper also shows that supported by attribute ranking, only two
(i.e., the least number of) nearest adjacent rules are required
to perform accurate interpolative reasoning. This helps increase
computational efficiency, without the need of searching for and
operating on multiple rules beyond the immediate neighborhood
of a given observation.

The remainder of this paper is organized as follows. Section II
outlines the relevant background of T-FRI and reviews five

popular FS approaches, each of which may be adopted for at-
tribute ranking. Section III presents the proposed FRI method
that is guided with attribute rankings. Section IV shows the
results of a systematic comparative experimental evaluation. Fi-
nally, Section V concludes this paper and points out interesting
issues for further research.

II. BACKGROUND

This section presents the relevant background work, including
an outline of FRI based on scale and move transformations and a
brief description of selected FS methods to be used for attribute
ranking.

A. Transformation-Based FRI (T-FRI)

A fuzzy rule-based system essentially contains two key el-
ements 〈R, Y 〉 in describing a given problem: a nonempty fi-
nite set of domain attributes Y = A ∪ {z}, where A = {Aj |j =
1, 2, . . . ,m} represents the set of antecedent attributes and z
stands for the consequent, and a nonempty set of finite fuzzy
rules R = {r1 , r2 , . . . , rN }. In conventional FRI, a given rule
ri ∈ R and an observation o∗ are generally expressed as follows:

ri : if a1 is Ai
1 and a2 is Ai

2 and · · · and am is Ai
m

then z is zi

o∗ : a1 is A∗
1 and a2 is A∗

2 and · · · and am is A∗
m (1)

where Ai
j represents the (fuzzy) value of the antecedent attribute

aj in the rule ri , and zi denotes the value of the consequent
attribute z in ri .

Given a sparse rule base R and an observation o∗, T-FRI
works by running a computational process as highlighted in
Fig. 1, involving four core procedures as summarized in the
following.

1) Selection of Closest Rules: This procedure is required as
the basis upon which to perform FRI, when o∗ does not match
any of the rules in the rule base. It searches for a certain number
of rules that are closest to the observation. The distance between
an observation o∗ and a rule rq , or the distance between any two
rules rp , rq ∈ R, is determined by computing the aggregated
distances between all the corresponding values of the shared
attributes between them

d(v, rq ) =
1√
m

√∑m

j=1
d(Av

j , Aq
j )2 (2)

where v is o∗ or rp (so Av
j is A∗

j or Ap
j ), depending on whether

the distance is between an observation and a rule or between
two rules. So, the n closest rules to o∗ are those rules leading to
the n smallest values of this distance measurement.

In the above definition

d(Av
j , Aq

j ) =

∣∣Rep(Av
j ) − Rep(Aq

j )
∣∣

maxAj
− minAj

(3)

representing the normalized result of the otherwise absolute dis-
tance, where maxAj

and minAj
denote the maximal and min-

imal value of the attribute aj , respectively. This normalization
is to ensure that all distance measures are compatible with each



2760 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 26, NO. 5, OCTOBER 2018

Fig. 1. Framework of T-FRI.

other over different attribute domains. The notation Rep(Aj )
regarding a fuzzy set Aj in this formula represents an important
concept in T-FRI, termed representative value of the fuzzy set.
It reflects the key information on the overall location of Aj in
its domain and also, its geometric shape. For instance, given
an arbitrary polygonal fuzzy set A = (a1 , a2 , . . . , an ) where
ai, i = 1, 2, . . . , n denote the vertices of the polygonal, its rep-
resentative value Rep(A) is defined by

Rep (A) =
n∑

i=1

wiai (4)

where wi is the weight assigned to the vertex ai per i.
For computational simplicity, many fuzzy rule-based systems

(including this paper) have adopted triangular membership func-
tions to define fuzzy sets while representing attribute values.
A triangular membership function is denoted in the form of
Aj = (aj1 , aj2 , aj3), with aj1 , aj3 denoting the left and right
extremity of the support and aj2 the normal point of the fuzzy
set. That is, the membership values of aj1 and aj3 are equal to
0 and the membership value of aj2 equals to 1. For such a fuzzy
set Aj , Rep(Aj ) is simply defined as follows (though its center
of gravity may also be used as an alternative if preferred):

Rep (Aj ) =
aj1 + aj2 + aj3

3
. (5)

The definition of representative values for more complex mem-
bership functions can be found in [6].

2) Construction of Intermediate Fuzzy Rule: From the pre-
ceding procedure, n closest rules to a given observation can be
chosen which have the minimal distances amongst all the rules
to the observation. From this, an intermediate fuzzy rule r′ can
be constructed, forming the starting point of the transformation
process in T-FRI. In most applications of T-FRI, n is taken to be
2 purely for computational efficiency, but often at the expense
of interpolative accuracy.

The construction procedure computes the antecedent fuzzy
sets A′

j , j = 1, . . . ,m and the corresponding consequent fuzzy
set Z ′ of the intermediate rule:

r′ : if a1 is A′
1 and a2 is A′

2 and · · · and am is A′
m , then z

is Z ′

which is a weighted aggregation of the n closest rules. Let
wi

j , i ∈ {1, . . . , n}, denote the weight to which the jth an-
tecedent of the ith fuzzy rule contributes to the construction

of the jth antecedent A′
j of the intermediate fuzzy rule

wi
j =

1
1 + d(Ai

j , A
∗
j )

(6)

where d(Ai
j , A

∗
j ) is calculated as per (3). Then

A′
j = A′′

j + δAj
(maxAj

− minAj
) (7)

with

A′′
j =

∑
i=1,...,n

ŵi
jA

i
j (8)

where ŵi
j is the normalized weight and δAj

is a constant (termed
the shift factor of Aj ), defined respectively by

ŵi
j =

wi
j∑

t=1,...,n wt
j

(9)

δAj
=

|Rep(A∗
j ) − Rep(A′′

j )|
maxAj

− minAj

. (10)

The consequent value of the intermediate rule is constructed
in the same manner as above

Z ′ = Z ′′ + δz (maxz − minz ) (11)

where Z ′′ is the weighted aggregation of the consequent values
of the n closest rules Zi, i = 1, . . . , n

Z ′′ =
∑

i=1,...,n

ŵi
zZ

i (12)

with ŵi
z being the mean of the normalized weights associated

with the antecedents ŵi
j in each rule

ŵi
z =

1
m

m∑
j=1

ŵi
j (13)

and maxz and minz in (11) are the maximal and minimal val-
ues of the consequent attribute, and the shift factor δz of the
consequent is the mean of δAj

, j = 1, . . . , m

δz =
1
m

m∑
j=1

δAj
. (14)

3) Computation of Scale and Move Factors: The goal of a
transformation process T in T-FRI is to scale and move an in-
termediate fuzzy set A′

j , such that the transformed shape and
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representative value coincide with those of the observed value
A∗

j . This process is implemented in two stages: First, scale oper-

ation from A′
j to Â′

j (denoting the scaled intermediate fuzzy set),

and second, move operation from Â′
j to A∗

j . For this purpose, the
required scale rate sAj

and move ratio mAj
are determined in

this step. It computes and records all such scale rates and move
ratios for use in the subsequent and final procedure to obtain
the required consequent value. Unfortunately, it is difficult to
have a generic closed form representation of these transforma-
tion factors as they are dependent upon the fuzzy membership
functions used.

For this work, triangular fuzzy sets are used throughout. Given
such a fuzzy set A′

j = (a′
j1 , a

′
j2 , a

′
j3), the scale rate sAj

is

sAj
=

a∗
j3 − a∗

j1

a′
j3 − a′

j1
(15)

which essentially expands or contracts the support length of A′
j :

a′
j3 − a′

j1 so that it becomes the same as that of A∗
j . The scaled

intermediate fuzzy set Â′
j , which has the same representative

value as A′
j , is then obtained such that

â′
j1 =

(1 + 2sAj
)a′

j1 + (1 − sAj
)a′

j2 + (1 − sAj
)a′

j3

3

â′
j2 =

(1 − sAj
)a′

j1 + (1 + 2sAj
)a′

j2 + (1 − sAj
)a′

j3

3

â′
j3 =

(1 − sAj
)a′

j1 + (1 − sAj
)a′

j2 + (1 + 2sAj
)a′

j3

3
. (16)

Similarly, while dealing with triangular fuzzy sets, the move
operation shifts the position of Â′

j to becoming the same as that

of A∗
j , while maintaining its representative value Rep(Â′

j ). This
is achieved using the move ratio as follows:

mAj
=

⎧⎪⎪⎨
⎪⎪⎩

3(a∗
j 1 − ˆa ′

j 1 )
ˆa ′
j 2 − ˆa ′

j 1
, if a∗

j1 ≥ â′
j1

3(a∗
j 1 − ˆa ′

j 1 )
ˆa ′
j 3 − ˆa ′

j 2
, otherwise.

(17)

4) Scale and Move Transformation: After calculating the
necessary scale and move factors (i.e., sAj

and mAj
, j =

1, . . . ,m), this procedure completes the T-FRI process, deriv-
ing the required consequent of Z∗. This follows the intuition of
similar observations leading to similar consequents, a heuris-
tic fundamental to analogical approximate reasoning. For this,
the transformation factors on the antecedent attributes are ag-
gregated. In the conventional T-FRI, this is implemented by
averaging them as

sz =
1
m

m∑
j=1

sAj
mz =

1
m

m∑
j=1

mAj
. (18)

Fig. 2. FRI via scale and move transformations.

This entails the computation of scaled Ẑ ′ = (ẑ′1 , ẑ
′
2 , ẑ

′
3) as

ẑ′1 =
(1 + 2sz )z′1 + (1 − sz )z′2 + (1 − sz )z′3

3

ẑ′2 =
(1 − sz )z′1 + (1 + 2sz )z′2 + (1 − sz )z′3

3

ẑ′3 =
(1 − sz )z′1 + (1 − sz )z′2 + (1 + 2sz )z′3

3
(19)

where Z ′ = (z′1 , z
′
2 , z

′
3) is the fuzzy value of the intermediate

consequent previously computed. From this, again, by analogy
to the transformation required for the antecedent to match the
observation, move transformation is applied, resulting in the
final required interpolated consequent Z∗ = (z∗1 , z

∗
2 , z

∗
3) as

z∗1 = ẑ′1 + mzγ

z∗2 = ẑ′2 − 2mzγ γ =

⎧⎨
⎩

ẑ ′
2 −ẑ ′

1
3 , if mz ≥ 0

ẑ ′
3 −ẑ ′

2
3 , otherwise

z∗3 = ẑ′3 + mzγ. (20)

The entire scale and move transformation process can be
graphically illustrated as shown in Fig. 2. For conciseness, such a
process can be collectively represented by: Z∗ = T (Z ′, sz ,mz ),
emphasizing on the significance of both scale and move trans-
formations.

B. Attribute Evaluation Within FS

FS aims to choose a minimal subset of domain attributes
that are the most relevant to the target concept or decision. It
preserves the original meaning of the selected attributes while
reducing their overall dimensionality. In FS, an evaluation func-
tion is used to measure how good a subset of attributes are
regarding the potential solution to the problem at hand, if they
are utilized. This offers a natural way to evaluate the relative
significance of an attribute. If systematically carried out across
all domain attributes, the use of such a function will enable
the ranking of the attributes with regard to the underlying qual-
ity criteria. Existing evaluation functions in the literature can be
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generally grouped into categories that reflect the criteria adopted
to judge attribute quality, including those based on measures
over distance, information, dependence, consistency, etc. [29].
The following presents a brief introduction to five of these that
are popularly used and readily available, which will be adopted
to implement the attribute ranking task in the subsequent devel-
opment.

1) Information Gain (IG): IG is defined via Shannon
entropy in information theory to measure the expected
reduction in uncertainty caused by partitioning the values
of an attribute [35], [42]. Given a collection of examples
U = {O,A}, oi ∈ O is an object that is represented with a
group of attribute A = {a1 , . . . , al} and a certain class label i.
Shannon entropy of O is defined by

H(O) = −
m∑

i=1

pi log2 pi (21)

where pi is the proportion of O whose elements are each labeled
as the class i. IG upon a particular attribute ak , k ∈ {1, . . . , l},
is then defined by

IG(O, ak ) = H(O) −
∑

v∈Value(ak )

|Ov |
|O| H(Ov ) (22)

where Value(ak ) is the set of all possible values for the attribute
ak , Ov is the subset of O where the value of ak is equal to
v, and |·| denotes the cardinality of a set. Obviously, a quality
attribute should lead to a high IG value.

2) Relief-F: Relief-F [36] works by exploiting distance mea-
sures. Each individual attribute is assigned a cumulative weight
computed over a predefined number of sample data selected
from a given training dataset. Attributes with a weight above
a certain threshold become selected elements of the attribute
subset sought. A weight is assigned on the basis of the fol-
lowing intuition: Instances that belong to a similar class should
be closer together than those in a different class. Suppose that
near hit represents an instance that is closest to a certain training
instance x under consideration, with both belonging to the same
class, and that near miss represents an instance that is closest
to x but in a different class. The cumulative weight associated
with a given attribute is then computed by

wi = wi−1 − d(x, near hit)2 + d(x, near miss)2 , i = 1, . . . , I
(23)

where w0 = 0, I stands for the number of training iterations,
and d(., .) is typically implemented with Euclidean metric.

3) Laplacian Score (LS): LS [37] is another distance
measure-based evaluation function. It is calculated for each in-
dividual attribute to reflect its capability of locality preserving.
The definition of an LS is inspired by an observation that the
data points being related to the same topic should be close to
each other. Let LSk denote the LS measure of a certain attribute
ak . Then, it is computed by

LSk =

∑
ij (fki − fkj )2Sij

Var(fk )
(24)

where fki and fkj denote the value of ak within the instance
xi and that within xj , respectively, Var(fk ) is the estimated
variance of ak , and Sij represents the neighborhood relationship
between the instances xi and xj , such that

Sij =

{
e−

‖x i −x j ‖2

σ 2 , if xi and xj are nearest neighbors

0, otherwise.
(25)

A quality attribute should be of a small LS.
4) Local Learning-Based Clustering for FS (LLCFS): LL-

CFS [34] performs attribute selection within the framework of
the local learning-based clustering algorithm [43]. It computes
a weight and assigns it to each attribute while performing a
clustering task. Typically, the weights are thinly distributed if
the dataset contains much redundancy, with a weight of zero
indicating that the corresponding attribute is dispensable; only
those attributes associated with a weight of a significant magni-
tude are selected. Incidentally, such an FS approach is termed
wrapper-based in the literature, as opposed to the other tech-
niques outlined herein which follow the so-called filter-based
approach to FS [30]. LLCFS works by iteratively executing
the following two steps until convergence: first, estimating the
weights for the attributes using the intermediate clustering re-
sult, and second, updating the clustering given the weighted
attributes. As such, the weights are estimated iteratively during
the clustering process.

5) Rough Set-Based FS (RSFS): As a dependence measure-
based attribute reduction method, RSFS [44] discovers the de-
pendencies between attributes using the granularity structure
inherent in data. Given the attribute subsets P and Q, the de-
pendence degree of Q on P is defined as

γP (Q) =
|POSP (Q)|

|U | (26)

where U is a nonempty set of finite objects and POSP (Q) is
termed the positive region, which is defined by

POSP (Q) =
⋃

X∈U/IND(Q)

P∗(X)

P∗(X) =
⋃
x∈U

{[x]P : [x]P ⊆ X} (27)

where X ∈ U/IND(Q), representing one of the equivalence
classes partitioning U though the Q-indiscernibility relation

IND(Q) = {(x, y) ∈ U 2 | ∀a ∈ Q, a(x) = a(y)}.
P∗(X) determines the P-lower approximation of X in rough
set theory, which is the union of the equivalence classes of the
P-indiscernibility relations that are completely included in X .
The positive region so defined contains all objects of U that
can be classified as the classes of U/IND(Q) using only the
information conveyed by those attributes in P .

As can be seen from the above, FS methods using IG, Relief-
F, LS, and LLCFS directly weigh and hence, rank features (and
they may follow a filter or wrapper based approach). However,
RSFS takes a different scheme where the quality of an attribute
subset is evaluated at a time, instead of that of an individual
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Fig. 3. Attribute ranking-supported T-FRI, with attribute rankings used in all
key procedures of conventional T-FRI.

attribute. These different styles of FS mechanism are all consid-
ered here in order to demonstrate the generality of the proposed
approach, as illustrated below.

III. FRI GUIDED BY ATTRIBUTE RANKING

This section presents a novel approach for FRI that is guided
by attribute ranking techniques, with the framework as illus-
trated in Fig. 3. Note that any of the five different FS methods
outlined in Section II-B can be employed to perform the rank-
ing, in order to obtain the relative significance of individual
attributes.

A. Reverse Engineering for Sparseness Reduction

In conventional T-FRI algorithms, the first key stage is the
selection of n closest fuzzy rules when an observation is pre-
sented with no direct matching rules available in the rule base.
In such work, all rule antecedents are assumed to be of equal
significance while searching for the subset of closest rules; there
is no assessment regarding the relative importance or ranking
of these antecedents. This may reflect a seemingly important
practical issue in which typically the fuzzy rules that are pro-
vided by domain experts or learned from historical data (which
constitute the rule base) are of the form as shown in (1). That
is, there is no information available on the relative significance
of individual antecedent attributes. This is a premier reason that
existing approaches to T-FRI commonly assume the use of this
format of knowledge representation.

Fortunately, the evaluation functions embedded in the FS
techniques offer an effective ranking mechanism to address this
problem. However, while utilizing the evaluation function of a
certain FS method to differentiate the significance of attributes,
data is required to act as the training instances for computing the
ranking scores. Yet, in general, at the stage of performing FRI,
no sufficient example data are available for use to facilitate such
computation. Nevertheless, every T-FRI system has a sparse
rule base as indicated in Section II-A. This set of rules can
be translated into a man-made decision table, forming a set of
artificially created training samples, where each row represents
either a rule in the given rule base or an artificial rule generated

from a given rule. Note that in data-driven learning, rules are
learned from data samples. The work here is done through a
reverse engineering process of data-driven learning, translating
rules back to data.

1) Reverse Engineering Procedure: The question is how to
create such artificial rules. In general, a fuzzy reasoning system
with a sparse rule-base may involve rules that employ different
antecedent attributes and a different number of antecedent at-
tributes in different rules. To be able to systematically implement
the reverse engineering procedure to obtain a training decision
table, all rules are reformulated into a common representation
using the following procedure: First, all possible antecedent at-
tributes that appear in any given rule are identified, together with
the value domains of these attributes. Then, each given rule is
expanded iteratively into one that involves all domain attributes.
The expansion is implemented such that if a certain antecedent
attribute is not originally involved in a given rule, then that rule
is replaced by q artificial rules, with q being the cardinality of
the value domain of that attribute. In so doing, each expanded
rule involves all domain attributes and each attribute in the rule
takes one and only one possible value from its domain.

This reverse engineering procedure can be logically justified:
For a given rule in the sparse rule base, if an attribute is miss-
ing from the rule antecedent, then the rule will have the same
consequent value independent of what fuzzy value that attribute
may take, provided that all those attributes appearing in the
rule are satisfied regarding their respectively specified value.
The presumption of the value domains being finite and discrete
is also justifiable, given that only fuzzy rules are considered
here, where each attribute takes values from a (normally small)
collection of fuzzy sets. In particular, the proposed reverse engi-
neering procedure works with a sparse rule base, which typically
involves a much smaller number of rules than the usual fuzzy
rule-based systems. Besides, only those missing antecedents are
to be filled with the possible fuzzy sets taken from their value
domains. These factors jointly help restrain the adverse impact
of the curse of dimensionality possibly caused by converting
individual rules in the sparse rule base into artificial training
samples. Fundamentally, it is recognized, however, that in so
doing, the underlying problem may be significantly reduced but
not completely removed and therefore, work remains to develop
a more efficient mechanism in implementing this approach.

2) Illustration of Reverse Engineering: A simple example
may help illustrate the idea of this procedure. Suppose that the
sparse rule base consists of the following two rules only, each
involving one different antecedent attribute, x or y, and the
common consequent attribute z as follows:

r1 : if x is A1 , then z is C1
r2 : if y is B2 , then z is C2

where x takes values from the domain {A1 , A2} and y from
{B1 , B2 , B3}.

Following the two-step reverse engineering procedure, first,
all possible antecedent attributes involved in the problem are
identified, these are x and y, together with their value domains
as indicated above. Then, the artificial decision table as of
Table I can be constructed. This is because there are two
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TABLE I
EXAMPLE REVERSE ENGINEERED DECISION TABLE

antecedent attributes in question, of which x has two possible
values (A1 and A2) and y has three alternatives (B1 , B2 , B3).
Without losing generality, suppose that the first given rule is
used to construct a part of the emerging artificial decision table
first. As y is missing in r1 , which means if x is satisfied (with
the value A1), this rule is satisfied and hence, the consequent
attribute z will have the value C1 no matter which value y takes.
That is, r1 can be expanded by three artificial rules, resulting in
r1 , r2 , and r3 in Table I, for each of which y takes one of its
three possible values. Similarly, r4 and r5 can be constructed to
expand the original rule r2 .

3) Inconsistency in Artificial Decision Table: When the re-
verse engineering procedure is applied to a given (sparse) rule
base, the resultant artificially constructed decision table may in-
clude logically inconsistent rules where certain rules may have
the same antecedent but different consequents. For instance, in
the above illustrative example, r2 and r4 in Table I may appear
to be inconsistent. This does not matter as the eventual rule-
based inference, including rule interpolation, does not use these
artificially generated rules, but the original sparse rule base.
They are created just to help assess the relevant significance of
individual variables through the estimation of their respective
ranking scores. It is because there are attributes which may lead
to potentially inconsistent implications in a given problem that
it is possible to distinguish their relative importance to the prob-
lem, or their potential power in influencing the derivation of the
consequent.

B. Scoring of Individual Attributes

Suppose that an artificial decision table has been derived from
a given sparse rule base via reverse engineering. Then, any of
the five feature ranking methods reviewed in Section II-B may
be applied to evaluate the relative significance of individual
antecedent attributes.

1) Scoring Methods: As indicated previously, four of those
(namely, IG, Relief-F, LS, and LLCFS) can be directly applied to
assess individual attributes, each resulting in a vector of weight-
ing scores associated with those attributes. For easy referenc-
ing, these score vectors are denoted as ScoreIG, ScoreRelief-F,
ScoreLS, and ScoreLLCFS, respectively. Note that the LS-based
FS method seeks those attributes of the smallest LS(s) for se-
lection. Thus, the ranking score of the LS for a rule antecedent
attribute ai, i = 1, . . . ,m, can be defined by

ScoreLS(ai) =
1

1 + LSi
. (28)

Also as indicated earlier, the RSFS method conducts FS based
on evaluating attribute subsets, instead of individual attributes.
To obtain individual attribute scores using such a technique, the
evaluation procedure needs to be modified, which is done in this
paper as follows. It is known that the dependence degree γP (Q)
captures the dependence of an attribute subset Q on another sub-
set P . Suppose that the subset Q contains the single consequent
attribute z and the subset P contains just one certain antecedent
attribute ai, i = 1, . . . ,m of a rule in the sparse rule base. As
such, the general form of the dependence degree γ{ai }({z})
between two subsets of attributes as per (26) degenerates to
the one that assesses the importance degree of each individual
antecedent attribute upon which the consequent depends

ScoreRSFS(ai) = γ{ai }({z}) =

∣∣POS{ai }({z})
∣∣

|U | . (29)

This is of course, what RSFS exactly does in the first round
during its iterative process of adding attributes to the emerging
selected feature subset (starting from an empty set), determining
which attribute is individually speaking, the best to be selected. It
means that to obtain attribute scoring vector using the evaluation
function of RSFS, only one iteration of the FS algorithm is
needed to be run.

2) Attribute Weighting: Having computed the scores of indi-
vidual attributes, using either of the aforementioned five scoring
methods, a normalized relative weighting scheme can be readily
introduced. Thus, all antecedent attributes employed in the rules
of a given sparse rule base can be ranked, each (say, the attribute
ai) being associated with a weight

Wi =
Score∗(ai)∑

t=1,...,m Score∗(at)
(30)

where Score∗ denotes any of the five types of score (namely, one
of the following: ScoreIG, ScoreRelief-F, ScoreLS, ScoreLLCFS, and
ScoreRSFS).

Given their underlying definition, the resulting normalized
values have a natural appeal to be interpreted as the relative sig-
nificance degrees of the individual rule antecedent attributes, in
the determination of the corresponding rule consequent. There-
fore, they can be used to act as the weights associated with each
individual antecedent attribute in the original sparse rule base.
Of course, for any implementation in modifying conventional
nonweighted T-FRI, one and just one of the five types of the
weight is required. From this viewpoint, this paper presents a
range of choices regarding the weighting methods that may be
utilized to support and refine fuzzy interpolative reasoning, as
described in the following.

C. Weighted T-FRI

From the above, weights can be computed and associated with
rule antecedent attributes to indicate their relative significance
in deriving the consequent. From this, T-FRI can be modified as
shown in Fig. 3, involving the following three key computational
stages.

1) Weight-guided Selection of n Closest Rules: Suppose that
an observation is present which does not entail a direct match
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with any rule in the sparse rule base. Thus, a neighborhood
of n (n ≥ 2) closest rules of the observation is required to be
chosen in order to perform rule interpolation. The conventional
approach to making this choice is by exploiting the Euclidean
distance measured through aggregating the distances between
individual antecedent attributes of a given rule and the corre-
sponding attribute values in the observation, as per (2). Now
that the weights of individual attributes have been obtained with
a scoring mechanism (derived from the use of the evaluation
function in an FS method), the distance between a given rule rp

and the observation o∗ needs to be updated accordingly, such
that

d̃(rp , o∗) =
1√∑m

t=1

( 1−Wt

m−1

)2

√√√√ m∑
j=1

((
1 − Wj

m − 1

)
d(Ap

j , A
∗
j )
)2

=
1√∑m

t=1(1 − Wt)2

√√√√ m∑
j=1

(
(1 − Wj )d(Ap

j , A
∗
j )

)2

(31)

where d(Ap
j , A

∗
j ) is calculated according to (3) and m is the

total number of rule antecedents in the rule base and m ≥ 2
(since there is no need to assign any weight if all rules in the
rule base involves just the same single antecedent attribute). The
term (m − 1) in the first part of this formula is for local weight
normalization purpose, but it is cancelled out in the overall
equation. In so doing, those n closest rules whose antecedent
attributes are deemed more significant (than the rest) will be
selected with priority. This is because such attributes will make
less contribution (i.e., (1 − Wj )d(Ap

j , A
∗
j ), j = 1, . . . , m) to the

aggregated distance d̃(rp , o∗) given their relatively larger weight
values.

The computation of the distance d̃(rp , o∗) is carried out to
measure the relative closeness of the rules to the observation.
Under the condition where there is no rule matching the given
observation, the attribute ranking-supported T-FRI is triggered.
Hence, the aggregated distance is calculated in terms of (31)
between the individual elements of the observation and each
rule antecedent, respectively. From this, those n rules that have
resulted in the n smallest distance values are selected.

Note that the normalization term 1√∑ m
t = 1 (1−Wt )2

in the above

is a constant and therefore, can be omitted in the process of
executing FRI. This is because selecting the closest rules only
requires information on the relative distance measures.

2) Weighted Construction of Intermediate Rule: With the
weighting method introduced previously, all antecedent at-
tributes can be ranked with respect to their estimated relative
significance, in terms of their potential implication upon the
derivation of the (interpolated) consequent. This allows for the
development of a computational method to implement an im-
proved version of T-FRI, where weights are integrated in all
calculations during the transformation process, including the
initial construction of the intermediate rule. Without unneces-
sarily detailing the entire construction process of the weighted
intermediate rule, which is similar to that of the conventional

approach (see Section II-A2), only the weighting on the con-
sequent and the shift factor during the modified process are
presented as follows:

˜̂
wi

z =
m∑

j=1

Wjŵi
j , δ̃z =

m∑
j=1

WjδAj
. (32)

Obviously, these will degenerate to those computed as per (13)
and (14), when all attributes are equally regarded in terms of
their significance.

3) Weighted Transformation: Given the above method for
constructing the weighted intermediate rule, the scale and move
factors originally provided in (18) now become

s̃z =
m∑

j=1

WjsAj
, m̃z =

m∑
j=1

WjmAj
. (33)

From this, if an observation that does not match any rule in the
sparse rule base is presented, an interpolated fuzzy value Z∗

for the consequent attribute can be obtained by computing the
transformation T (Z̃ ′, s̃z , m̃z ), in the exactly same way as given
in Section II-A4. Importantly, when all antecedent attributes are
assumed to be of equal significance, namely when all weights are
equal, the above modified fuzzy rule-based interpolative process
degenerates to the conventional T-FRI. Mathematical proof for
this is straightforward but is omitted here to save space.

Note that in the above description, no specification of which
attribute ranking mechanism to use is made. Indeed, the pro-
posed technique is independent of the FS method to be adopted
for attribute scoring. Any of the attribute ranking methods avail-
able may be taken to assess the relative significance of individ-
ual antecedent attributes. Thus, the proposed ranking-guided
FRI offers flexibility in its implementation. Section II-B has
outlined five effective attribute evaluation functions (that are
used in popular FS systems), each of which may be adopted to
implement the ranking mechanism.

IV. EXPERIMENTAL EVALUATION

This section presents a systematic experimental evaluation of
the proposed approach for T-FRI supported by attribute ranking.
It first reports on the results of performing pattern classification
over ten benchmark datasets. Classification results are com-
pared with those obtained by: first, the state-of-the-art T-FRI;
and second, the standard rule-based reasoning via the applica-
tion of CRI [3], without involving rule interpolation but directly
firing those (fully or partially) matched rules. Then, the robust-
ness and effectiveness of the new approach is also empirically
demonstrated by observing the following.

1) The analysis of confusion matrices obtained for a specified
case study.

2) The classification accuracy in relation to the number of
the closest rules selected for interpolation.

3) The consistency and efficiency of utilizing different FS
methods in supporting T-FRI.

Finally, the improvement of the classification performance
following the weighted approach is further illustrated by fine
tuning the experimental settings.
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TABLE II
DATASETS USED FOR CLASSIFICATION

Dataset Attributes # Classes # Instances #

Iris 4 3 150
Diabetes 8 2 768
Phoneme 5 2 5404
Appendicitis 7 2 106
Magic 10 2 1902
NewThyroid 5 3 215
Banana 2 2 5300
Haberman 3 2 306
BUPA 6 2 345
Hayes–Roth 4 3 160

Fig. 4. Membership functions defining values of antecedent attributes.

A. General Experimental Setup

1) Datasets: Ten benchmark datasets (for classification
problems) are taken from the UCI machine learning [45]
and knowledge extraction based on evolutionary learning
dataset repositories [46]. The details of these are summarized
in Table II.

2) Experimental Methodology: As indicated previously, for
simplicity, triangular membership functions are employed here
unless otherwise stated. They are used to represent the fuzzy
values of the antecedent attributes. For each problem, the conse-
quent attribute is designed to take a singleton fuzzy set (which
is equivalent to a discrete crisp value), representing a certain
class label. While different antecedent attributes have their own
underlying value domains, these domains are normalized to be
within the common range of 0 to 1 and consisting of three qual-
itatively distinct fuzzy values, as shown in Fig. 4. Such a simple
fuzzification is used in the main body of the experiments for sim-
plicity as well as for fair comparison, with no optimization of the
value domain carried out. Of course, if fine-tuned membership
functions are available and used, the classification performance
can be expected to further improve (as to be illustrated later).

Experimental results are obtained by averaging the outcomes
of 10× ten-fold cross validation per dataset. The rules used to
perform both CRI and interpolative reasoning are learned from
the raw data by the use of the classical method of [47], after
fuzzification. This rule induction technique is employed, herein
forming a common ground for fair comparison. However, if
preferred, more advanced rule induction mechanisms (e.g., those
implemented with evolutionary or memetic algorithms [48])
may be exploited to produce a more compact rule base (but this
is beyond the scope of this paper).

On average, 20% of the learned rules are purposefully re-
moved randomly in order to make the resultant rule base sparser,

and hence, to validate the effectiveness of rule interpolation.
Attribute weights are derived from the use of one and each of
those five ranking methods introduced previously, using the
artificial training data generated from the sparse rule base via the
reverse engineering procedure. Classification performance is
assessed in terms of accuracy over the testing data. In each test,
a testing sample is checked against the rules within the rule base
first. If there is no rule matching the observation, FRI is applied
to make inference, using both the conventional T-FRI and the
attribute ranking-supported T-FRI to facilitate comparison.

The main body of this experimental study is based on the use
of n = 2 closest rules to perform rule interpolation. However, a
series of experiments are also carried out by varying the number
of the closest rules selected for interpolation (see Section IV-
B3). In particular, 10× ten-fold cross validation is adopted for
each of the five different cases where the number of the closest
rules selected is set to 2, 3, 4, 5, 6, respectively.

B. Results and Discussions

1) Classification Accuracy: Table III shows the average
classification accuracies, and standard deviations (SD), which
are calculated by averaging the 10× ten-fold cross validation,
for each of the seven compared approaches. In this table, CRI is
the column showing the accuracies achievable using CRI based
on the sparse rule base; Ori lists the accuracies obtained us-
ing the conventional T-FRI, with the rest naming schemes used
being obvious and self-explanatory (e.g., IG stands for the accu-
racies achieved by the proposed approach with the antecedent
attributes in the rules weighted by their corresponding IGs);
and AVG Guided presents the accuracies obtained by averag-
ing the performances of the five attribute ranking-guided T-FRI
methods.

The comparison with CRI is included herein to demonstrate
the power of FRI in general and that of ranking-guided FRI
in particular in performing fuzzy reasoning, both of which sig-
nificantly outperform the use of CRI in all the problems that
involve a sparse rule base. This may be expected since a fuzzy
system implemented with CRI alone cannot draw any conclu-
sion when an observation does not match any of the rules in the
rule base. As already indicated, no attempt is made to optimize
the fuzzification of any attribute domains. Thus, the classifica-
tion rates are generally not very impressive. However, this is
not the point of this experimental investigation. The point is
to compare the relative performances of different approaches,
with a common ground for fair comparison. The improvement
achievable by employing learned membership functions (from
training samples) will be shown later.

The use of any of the five attribute ranking-guided methods
has been shown to enable the corresponding fuzzy reasoning
system to outperform the system using the conventional T-FRI.
This indicates that individual rule antecedent attributes do make
different contributions to the classification, and that the rank-
ing scores obtained by FS techniques offer positive means for
discovering such differences. Interestingly, the narrow-banded
SD values (those numbers following the classification accuracy)
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TABLE III
AVERAGE CLASSIFICATION ACCURACIES (%) WITH SD IN 10× TEN-FOLD CROSS VALIDATION

Dataset CRI Ori IG Relief-F LLCFS LS RSFS AVG Guided

Iris 42.66 ± 0.11 79.33 ± 0.05 90.66 ± 0.03 92.66 ± 0.03 91.33 ± 0.04 90.00 ± 0.04 91.33 ± 0.03 91.20 ± 0.03
Diabetes 36.71 ± 0.08 58.59 ± 0.06 66.66 ± 0.05 63.54 ± 0.04 61.97 ± 0.04 61.84 ± 0.07 58.98 ± 0.05 62.60 ± 0.05
Phoneme 30.66 ± 0.08 57.10 ± 0.06 67.33 ± 0.05 64.78 ± 0.05 64.59 ± 0.05 60.47 ± 0.07 61.67 ± 0.07 63.77 ± 0.06
Appendicitis 32.08 ± 0.10 52.00 ± 0.16 69.72 ± 0.15 66.91 ± 0.19 57.72 ± 0.17 59.45 ± 0.14 66.72 ± 0.17 62.11 ± 0.16
Magic 34.76 ± 0.09 55.84 ± 0.05 64.35 ± 0.03 59.77 ± 0.05 58.94 ± 0.06 60.89 ± 0.06 55.84 ± 0.04 59.96 ± 0.04
NewThyroid 53.87 ± 0.18 53.87 ± 0.18 58.09 ± 0.17 58.61 ± 0.16 70.32 ± 0.22 56.21 ± 0.18 55.77 ± 0.17 59.40 ± 0.18
Banana 36.01 ± 0.08 56.41 ± 0.06 59.75 ± 0.04 57.83 ± 0.04 58.53 ± 0.04 57.71 ± 0.03 59.73 ± 0.04 58.71 ± 0.04
Haberman 55.44 ± 0.10 74.26 ± 0.11 78.83 ± 0.08 79.15 ± 0.11 81.11 ± 0.09 78.50 ± 0.09 79.15 ± 0.12 79.35 ± 0.10
BUPA 19.43 ± 0.07 48.72 ± 0.09 62.03 ± 0.08 58.84 ± 0.09 57.35 ± 0.11 55.69 ± 0.09 55.40 ± 0.09 57.86 ± 0.09
Hayes-Roth 36.87 ± 0.11 46.87 ± 0.10 60.00 ± 0.11 60.62 ± 0.13 54.37 ± 0.11 56.25 ± 0.11 58.75 ± 0.12 58.00 ± 0.12

Average 37.84 ± 0.10 58.30 ± 0.10 67.74 ± 0.08 66.27 ± 0.08 65.63 ± 0.09 63.71 ± 0.08 64.34 ± 0.09 65.54 ± 0.08

given in Table III further demonstrate that the performance of
the proposed work is robust.

Examining more closely, those methods based on directly
assessing individual attributes (namely, IG, Relief-F, LLCFS,
and LS) achieve more significant improvements, with the best
average accuracy being obtained by IG-guided T-FRI (having
an average improvement of 9.44% over all ten datasets than
that of Ori). The remaining one, RSFS, adopts the technique of
(attribute) subset selection. As shown in Section III-B, ranking
attributes with such a technique requires modification of the
underlying FS algorithm. Nevertheless, the RSFS-based FRI
has a comparable improvement over the conventional T-FRI to
the average performance of the other four, again indicating the
robustness of the innovative approach proposed in this paper.
Collectively, these results also show the generality of attribute
ranking-guided approach in which the use of a very different FS
method retains the improved performance.

As also can be seen from Table III, both FRI approaches (the
original and the attribute ranking-guided) significantly outper-
form the standard fuzzy reasoning based on CRI, and the results
are more stable with a relatively lower SD values. Of course,
such an obviously poorer classification accuracy obtained by
the use of CRI can be expected as it fires matched or partially
matched rules only while facing the problem of sparseness of the
rule base. This strongly demonstrates the effectiveness of fuzzy
interpolative reasoning, especially for the proposed approach
owing to its further enhanced performance over the conven-
tional T-FRI.

2) Analysis on Confusion Matrices: Apart from the overall
classification accuracies, it is practically interesting to investi-
gate the statistical properties of the classification performance in
terms of true positive (TP), true negative, false positive, and false
negative (FN). Without overwhelming the examination while
having a focused discussion, the Haberman dataset is taken as
an example to run such an investigation. Tables IV–X show
the confusion matrices computed by the use of seven compara-
tive approaches (averaged over 10 × 10 fold cross validation),
respectively. Table XI lists the averaged performance of the
five different implementations of the attribute ranking-guided
method. Despite the fact that this dataset contains samples that
are distributed in a imbalanced manner (which increases the
difficulties in performing accurate classification), these tables

TABLE IV
CONFUSION MATRIX OF CRI

Classified

Positive Negative

Actual Positive 50.16% 26.40%
Negative 18.15% 5.28%

TABLE V
CONFUSION MATRIX OF ORIGINAL T-FRI

Classified

Positive Negative

Actual Positive 68.40% 8.79%
Negative 16.93% 5.86%

TABLE VI
CONFUSION MATRIX OF IG-T-FRI

Classified

Positive Negative

Actual Positive 72.64% 4.56%
Negative 16.61% 6.19%

TABLE VII
CONFUSION MATRIX OF RELIEF-F-T-FRI

Classified

Positive Negative

Actual Positive 72.64% 4.88%
Negative 15.96% 6.51%

clearly show the superior performances achieved by the pro-
posed approach to the original T-FRI, leaving alone the CRI.

Importantly, these tables both individually and collectively
reveal that the classification accuracy achieved by the use of
the attribute ranking-guided T-FRI is led by the significant
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TABLE VIII
CONFUSION MATRIX OF LLCFS-T-FRI

Classified

Positive Negative

Actual Positive 75.90% 3.58%
Negative 15.31% 5.21%

TABLE IX
CONFUSION MATRIX OF AN LS-T-FRI

Classified

Positive Negative

Actual Positive 72.32% 4.88%
Negative 16.61% 6.18%

TABLE X
CONFUSION MATRIX OF RSFS-T-FRI

Classified

Positive Negative

Actual Positive 72.96% 4.56%
Negative 16.28% 6.19%

TABLE XI
CONFUSION MATRIX OF AVG_GUIDED-T-FRI

Classified

Positive Negative

Actual Positive 73.29% 4.49%
Negative 16.15% 6.06%

reduction of FNs and the substantial increase in TPs. These
results form a sharp contrast with those obtainable by the use
of the original T-FRI and more remarkably, with those by CRI.
This is of practical significance because for many real-world
applications, not only the overall classification rates should be
high, but also FNs should be minimized while TPs are maxi-
mized. This is of particular importance for medical applications
as with the situation of this dataset (which summarizes the cases
on the survival of patients who had undergone surgery for breast
cancer—if a patient died within five year of the surgery, then
the case is regarded as positive, or if the patient survived for five
years or longer, then it is a negative case). For such problems,
FNs can be extraordinarily damaging.

Fortunately, the implementations with the proposed approach,
all lead to much reduced FNs (with an average rate of 4.49% over
the range of 3.58% to 4.88%, as compared to 8.79% returned by
the conventional T-FRI and 26.40% by CRI). This is in addition
to the remarkable improvements over the TP rates (an average
of 73.29% over the range of 72.32% to 75.90%, as opposite to
68.40% by the original T-FRI and a mere 50.16% by CRI).

TABLE XII
AVERAGE CLASSIFICATION ACCURACY (%) VERSUS NUMBER OF CLOSEST

RULES USED FOR INTERPOLATION

Dataset Methods Number of Closest Rules (n) SD

2 3 4 5 6 over n

BUPA Ori 48.72 53.95 53.05 51.88 51.57 1.98
IG 62.03 57.95 54.74 53.91 51.56 4.05

Relief-F 58.84 55.95 51.89 52.18 50.71 3.38
LLCFS 57.35 57.10 56.52 54.18 54.74 1.43

LS 55.69 55.68 55.68 53.05 51.03 2.11
RSFS 55.40 55.37 55.97 51.86 50.99 2.30

Hayes–Roth Ori 46.87 49.37 48.12 48.75 48.12 0.93
IG 60.00 58.12 58.12 55.00 53.12 2.76

Relief-F 60.62 56.25 56.25 55.00 51.25 3.35
LLCFS 54.37 52.50 53.75 55.00 53.75 0.92

LS 56.25 54.37 53.75 53.75 54.37 1.02
RSFS 58.75 58.75 56.25 52.50 50.00 3.89

Appendicitis Ori 52.00 52.18 53.00 51.09 52.09 0.68
IG 69.72 62.09 62.18 62.18 62.18 3.38

Relief-F 66.91 64.18 62.36 64.18 62.27 1.88
LLCFS 57.72 56.81 56.81 55.91 55.81 0.78

LS 59.45 55.63 54.72 53.81 53.91 2.32
RSFS 66.72 63.81 62.91 60.18 60.18 2.74

Phoneme Ori 57.10 54.16 57.54 58.91 59.19 2.01
IG 67.33 64.93 63.45 64.63 65.08 1.40

Relief-F 64.78 62.89 62.91 63.71 63.82 0.77
LLCFS 64.59 61.56 60.99 60.65 61.02 1.61

LS 60.47 61.28 60.28 61.47 62.43 0.86
RSFS 61.67 61.34 61.76 61.82 60.39 0.59

3) Number of Closest Rules: Up till now, all experimental
results reported in the existing literature regarding the use of
T-FRI have been based on the use of two closest rules (i.e.,
n = 2) to perform interpolation. The choice of using two rules
is for computational simplicity. Hypotheses have been given
previously in which a larger neighborhood (i.e., more than 2
closest rules) may lead to generally more accurate interpolated
outcomes. It is, therefore, interesting to investigate the level
of change in classification accuracy with regard to varying the
number of the closest rules selected for fuzzy rule-based inter-
polative reasoning.

Considering the computational effort required for such an ex-
perimental investigation, only a subset of the previously listed
ten benchmark datasets (namely, BUPA, Hayes–Roth, Appen-
dicitis, and Phoneme) are randomly used to conduct this study.
Table XII presents the experimental results, with the summary
of these plotted in Fig. 5. Again, the accuracies shown in this
table are calculated by averaging the results obtained in 10×
ten-fold cross validation.

Over the range of n, n ∈ {2, . . . , 6} that are examined, run-
ning both the conventional T-FRI and the attribute ranking-
supported T-FRI always results in a substantial improvement
(in terms of the classification accuracy) over the performance
achievable by running CRI with direct rule-firing (which is
shown in Table III and is irrelevant to the n). Importantly, each of
the proposed five attribute-guided T-FRI methods consistently
outperforms the conventional T-FRI for almost all datasets and
all settings of n. The results in Table XII further demonstrate
the robustness of the proposed work given that the SD values
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Fig. 5. Accuracy variation with number of closest rules for four datasets: (a) BUPA. (b) Hayes–Roth. (c) Appendicitis. (d) Phoneme.

of the classification accuracy across all n values are rather
small.

Surprisingly (and very positively in support of the present
approach), as a larger n is assumed, little improvement can be
gained for any of the five attribute ranking-supported methods.
In fact, the performance may even deteriorate as n increases.
The best performance is actually achieved when the number of
selected closest rules is the smallest (i.e., 2). This indicates that
the weighting scheme facilitates the determination of the best
neighboring rules to be taken at the earliest opportunity. This
result empirically negates the hypothesis commonly made about
T-FRI in which more rules used for interpolation would lead to
significantly better results. It also helps avoid the use of a larger
n in applications of the weighted T-FRI, thereby, reducing the
computational complexity that would otherwise be increased
due to the requirement of searching for and running with more
rules for interpolation.

4) Consistency and Efficiency of Ranking Methods: There
is one exception in the above results regarding the Phoneme
dataset where the classification accuracy achieved using an LS-
guided T-FRI is eventually increasing as the number of closest
rules goes up, though this variation is not significant. There-
fore, a further investigation has been conducted to forensically
examine the ranking scores that are obtained by the use of the
five different evaluation functions. The results are presented in
Table XIII.

As can be seen from this table, the first four attribute rank-
ing methods consistently agree on that the fourth antecedent
attribute plays the most significant role in deciding on the con-
sequent, with a much higher ranking scores obtained. Three out
of these (IG, Relief-F, and RSFS) put the first antecedent at-
tribute in the second place, with LLCFS ranking it at the third
place. The only one method which is out of the tune is LS,

TABLE XIII
ATTRIBUTE WEIGHTS AND RANKINGS USING DIFFERENT RANKING SCHEMES

FOR PHONEME DATASET

Methods Antecedent Weights Rankings

IG 0.2852 0.0792 0.0125 0.5724 0.0507 [4 1 2 5 3]
Relief-F 0.1326 0.0414 0 0.7286 0.0973 [4 1 5 2 3]
LLCFS 0.0001 0 0 0.7416 0.2583 [4 5 1 2 3]
RSFS 0.0016 0.0016 0.0016 0.9938 0.0016 [4 1 2 3 5]
LS 0 0.4541 0.0988 0.1995 0.2476 [2 5 4 3 1]

which ranks the first antecedent attribute at the bottom, with a
zero score signifying its relative lack of relevancy in this rule
base. This is a very different result from the great majority,
implying that the LS algorithm may underperform in deriving
an appropriate ranking for this particular dataset. As such, it
may explain the reason that the FRI guided with the LS method
achieves a relative poor performance when the number of closest
rules is two and the overall different trend of the classification
accuracy while varying n in this dataset case, as shown in Fig. 5.

The introduction of ranking scores of antecedent attributes in
support of weighted rule interpolation may lead to additional
computational overheads overall (albeit it ensuring that only the
smallest number of closest rules are needed). Table XIV shows
the corresponding average testing time recorded for classifica-
tion over testing samples when the number of closest rules is
increasing, together with the SD value over n. In this table,
the column of Max Increase lists the maximum increase of the
testing time observed while increasing the number of closest
rules n.

Generally, there is a slight increase in time consumption when
involving more closest rules in the implementation of rule in-
terpolation for all T-FRI methods. However, while the attribute
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TABLE XIV
AVERAGE TESTING TIME (SECOND) VERSUS NUMBER OF CLOSEST RULES

Dataset Methods Number of Closest Rules (n) SD over n Max Increase

2 3 4 5 6

BUPA Ori 0.1584 0.1556 0.1587 0.1524 0.1624 0.0037 0.0100
IG 0.1429 0.1445 0.1513 0.1473 0.1506 0.0036 0.0084

Relief-F 0.1465 0.1448 0.1459 0.1538 0.1498 0.0036 0.0090
LLCFS 0.1411 0.1473 0.1461 0.1463 0.1540 0.0046 0.0129

LS 0.1420 0.1431 0.1446 0.1509 0.1502 0.0041 0.0089
RSFS 0.1417 0.1433 0.1458 0.1464 0.1512 0.0036 0.0095

Hayes–Roth Ori 0.0448 0.0425 0.0446 0.0439 0.0467 0.0015 0.0042
IG 0.0386 0.0417 0.0413 0.0426 0.0425 0.0016 0.0040

Relief-F 0.0394 0.0401 0.0403 0.0417 0.0408 0.0008 0.0023
LLCFS 0.0404 0.0417 0.0414 0.0435 0.0426 0.0011 0.0031

LS 0.0414 0.0415 0.0417 0.0422 0.0429 0.0006 0.0008
RSFS 0.0406 0.0410 0.0420 0.0427 0.0426 0.0009 0.0021

Appendicitis Ori 0.0334 0.0377 0.0391 0.0378 0.0394 0.0024 0.0060
IG 0.0323 0.0350 0.0354 0.0364 0.0381 0.0021 0.0058

Relief-F 0.0343 0.0347 0.0369 0.0368 0.0367 0.0012 0.0025
LLCFS 0.0349 0.0352 0.0367 0.0375 0.0371 0.0011 0.0026

LS 0.0347 0.0372 0.0368 0.0367 0.0369 0.0010 0.0022
RSFS 0.0375 0.0368 0.0361 0.0369 0.0371 0.0005 0.0014

Phoneme Ori 1.4078 1.4159 1.4448 1.4769 1.4911 0.0366 0.0833
IG 1.3954 1.4335 1.4486 1.4728 1.4818 0.0343 0.0864

Relief-F 1.3502 1.3798 1.3959 1.4303 1.4153 0.0312 0.0801
LLCFS 1.3665 1.4047 1.4321 1.4328 1.4524 0.0332 0.0859

LS 1.3440 1.3672 1.4023 1.4113 1.4256 0.0335 0.0816
RSFS 1.3415 1.3900 1.3864 1.3958 1.4258 0.0302 0.0843

ranking-guided T-FRI employs the weights in all of the key
stages of interpolation (including the selection of the closest
rules, the construction of the intermediate rule, the calculation of
weighted transformation factors, and the execution of weighted
transformations), there is no significant increase in the time
consumed by the weighted T-FRI as compared to that by the
original T-FRI. This, together with the above observed general
consistency amongst the use of the attribute ranking schemes,
once again shows the efficacy of the proposed approach.

5) Use of Learned Membership Functions: As indicated pre-
viously, the classification performance in terms of accuracy is
not very impressive, even though the proposed work improves
it significantly over the conventional approaches. However, this
is expected as the quantity space used to depict the value do-
mains of all the attributes across all datasets is so simplistic
(recall Fig. 4), without any optimization (which is purposefully
designed so as to enable systematic investigations over a wide
range of experimental settings). Such unbiased specification of
the domain values allows fair comparison to be made between
different fuzzy reasoning techniques. Besides, an average of
20% of the learned rules are deliberately removed randomly, in
order to have a rule base that is rather sparse. This makes the
domain knowledge, represented in terms of fuzzy rules, rather
incomplete, which in turn, makes the classification task a chal-
lenge for any learning classifier and hence, leads to less accurate
classification. Nevertheless, it is interesting to empirically ver-
ify what if an (at least partially) optimized quantity space is
utilized.

Fuzzy C-Means (FCM) [49] is one of the most widely used
fuzzy clustering algorithms. It works by assigning a membership

degree to each data sample corresponding to a certain cluster
center based on the relative distance between the cluster center
and that sample. The closer to the cluster center, the higher
the membership degree to which the sample is deemed to be-
long to the corresponding cluster. Thus, the clustering outcome
on a given dataset reveals the distribution of the membership
functions for the underlying attributes. Owing to its popularity,
FCM is herein adopted to perform fuzzification, learning the
membership functions for the antecedent attributes. However,
any optimization of the membership functions is directly in-
fluenced by the dataset itself. Without overly complicating the
experimental investigation, only the simple Iris dataset is used
in this specific study (on the effect of using learned fuzzy sets).
Fig. 6 shows the membership functions generated using FCM.
The optimal number of clusters for each antecedent attribute is
selected by the method of [50], resulting in four clusters for the
first antecedent attribute, two for the third, and three for each of
the remaining two.

Table XV presents the classification results using the FCM-
returned membership functions. For comparison, it also lists
those that are obtained by the use of evenly distributed fuzzi-
fication based on the entries given in Table III. As expected, a
better fuzzification leads to a better classification. Individually
speaking, each weighted method that uses FCM-learned mem-
bership functions beats their corresponding opponent (that em-
ploys just the simple quantity space of Fig. 4 for each antecedent
attribute). Collectively, this leads to an averaged enhancement
of 1.87% (=93.07% − 91.20%) for the FS-supported T-FRI
methods. Importantly, this is on top of the already achieved
substantial improvement of the FS-supported T-FRI over the
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Fig. 6. Membership functions learned with FCM for Iris dataset, respectively, plotted in sub-figures (a)– (d) for attributes 1–4.

TABLE XV
ACCURACIES (%) VS. SPECIFICATION OF MEMBERSHIP FUNCTIONS FOR IRIS DATASET

Fuzzification Method CRI Ori IG Relief-F LLCFS LS RSFS AVG Guided Improvement over CRI Improvement over Ori

Evenly Distributed 42.66 79.33 90.66 92.66 91.33 90.00 91.33 91.20 48.54 (114%) 11.87 (15%)
FCM-learned 68.00 88.00 95.99 93.33 92.00 90.67 93.33 93.07 25.07 (37%) 5.07 (6%)

conventional T-FRI and CRI-based classification methods, as
also highlighted in this table.

It may be recognized that the improved classification rate
is still not so high as the highest possible as reported in the
literature regarding this simple dataset [51], where a fully trained
learning classifier is adopted with the fuzzy sets involved having
been comprehensively optimized. However, it must be noticed
that the present high accuracy is attained with an average of
20% rules having been randomly taken out of the learned rule
base. This demonstrates the great potential of the proposed FRI
approach in dealing with real-world problems, where typically
only partial and imprecise knowledge is available.

V. CONCLUSION

This paper has presented a novel FRI approach that signif-
icantly reinforces the power of fuzzy interpolative reasoning,
by exploiting attribute ranking techniques to help determine the
relative importance of rule antecedent attributes involved in a
sparse rule base. The approach is general since it allows for
any established ranking method to be utilized to score the at-
tributes, leading to a flexible weighting scheme for FRI. This
paper has provided five different attribute ranking methods for
attribute weighting, based on popular FS techniques in the rel-
evant literature. This paper has also proposed an innovative re-
verse engineering procedure, through which the ranking scores
can be calculated from an artificial decision table derived from
the original rules, without requiring additional observations to
be made. The proposed work has been systematically evaluated
on ten benchmark classification tasks.

Collectively, the experimental results presented have clearly
demonstrated the efficacy and robustness of the attribute
ranking-supported approach to fuzzy rule interpolative reason-
ing. In particular, the weighted interpolative methods have been
shown to entail remarkably improved classification accuracy
over both conventional T-FRI and CRI-based fuzzy reasoning
techniques. This has been achieved using a very simple fuzzi-
fication mechanism. The experimental investigations have also
confirmed that any of the existing popular FS techniques may
be employed to evaluate and score the antecedent attributes,
without adversely affecting the classification outcome nor con-
siderably increasing the computational time complexity. The
results have further illustrated that better performance can be
obtained by fine tuning the membership functions that define
the antecedent attributes given a particular practical problem.

In addition to the aforementioned advantages over conven-
tional T-FRI techniques, the attribute ranking-supported T-FRI
methods have systematically proven to only require the least
number of the closest rules to carry out interpolation (with re-
spect to a given observation that does not match any existing
rule in the sparse rule base). Overall, as the most appropriate
closest rules are selected in terms of the relative significance
of domain attributes, better results are obtained using fewest
rules possible, thereby, minimizing the complexity in both rule
searching and rule firing.

The work in this paper is developed on the basis of the pop-
ular T-FRI algorithm, the proposed approach appears to permit
other FRI techniques to be integrated with the attribute ranking
and reverse engineering methods in a similar manner. For in-
stance, popular FRI algorithms such as those reported in [10],
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[39], [52] also involve multidimensional input spaces, which
may be combined with the proposed attribute ranking scheme,
thereby, creating potentially more effective multidimensional
FRI methods. This hypothesis remains to be tested, with an ex-
pectation that a generalized weighting scheme for fuzzy inter-
polative reasoning can be developed, making fuzzy rule-based
inference more flexible. Also, this paper assumes that a sparse
rule base is given. It would be interesting to investigate which of
the many data-driven rule induction techniques available may be
employed to generate an improved rule base, and to study how
such a learning mechanism may be blended with the reverse
engineering procedure to provide a stronger attribute ranking
scheme. Additionally, how the reverse engineering procedure
may be efficiently implemented to minimize the adverse impact
of the curse of dimensionality forms another piece of further
research. Finally, the current approach presumes the use of a
fixed (sparse) rule base. The most recently proposed mecha-
nism for dynamic FRI [53] should be integrated with it to allow
the collection and refinement of any intermediate fuzzy rules
and interpolated results, in order to enrich the rule base and
avoid unnecessary interpolation on the fly.
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