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Abstract—As fuzzy c-means clustering (FCM) algorithm is sen-
sitive to noise, local spatial information is often introduced to an
objective function to improve the robustness of the FCM algorithm
for image segmentation. However, the introduction of local spatial
information often leads to a high computational complexity, arising
out of an iterative calculation of the distance between pixels within
local spatial neighbors and clustering centers. To address this issue,
an improved FCM algorithm based on morphological reconstruc-
tion and membership filtering (FRFCM) that is significantly faster
and more robust than FCM is proposed in this paper. First, the
local spatial information of images is incorporated into FRFCM
by introducing morphological reconstruction operation to guar-
antee noise-immunity and image detail-preservation. Second, the
modification of membership partition, based on the distance be-
tween pixels within local spatial neighbors and clustering centers,
is replaced by local membership filtering that depends only on the
spatial neighbors of membership partition. Compared with state-
of-the-art algorithms, the proposed FRFCM algorithm is simpler
and significantly faster, since it is unnecessary to compute the dis-
tance between pixels within local spatial neighbors and clustering
centers. In addition, it is efficient for noisy image segmentation
because membership filtering are able to improve membership
partition matrix efficiently. Experiments performed on synthetic
and real-world images demonstrate that the proposed algorithm
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not only achieves better results, but also requires less time than the
state-of-the-art algorithms for image segmentation.

Index Terms—Fuzzy c-means clustering (FCM), image segmen-
tation, local spatial information, morphological reconstruction
(MR).

I. INTRODUCTION

IMAGE segmentation aims to partition an image into several
regions that are nonoverlapped and consistent according to

the requirements of different applications, and it is always one
of the most challenging tasks in image understanding and com-
puter vision due to the variety and complexity of images [1],
[2]. Even though numerous approaches [3]–[6] of image seg-
mentation have been proposed, none of them are sufficiently
robust and efficient for a large number of different images.
The technologies of image segmentation involve clustering [7],
[8], region growth [9], watershed transform [10], active contour
model [11], MeanShift [12], Graph Cut [13], spectral cluster-
ing [14], Markov random field [15], neural network [16], etc.
Among these technologies, clustering is one of the most popular
methods used for image segmentation because of its effective-
ness and rapidity. The aim of clustering is to partition a set into
some clusters so that members of the same cluster are simi-
lar, and members of different cluster are dissimilar. Generally,
clustering methods can be categorized into hierarchical, graph
theoretic, decomposing a density function, and minimizing an
objective function. In this paper, we will focus on image segmen-
tation based on clustering methods by minimizing an objective
function.

As conventional clustering is crisp or hard, it leads to poor
results for image segmentation. Based on fuzzy set theory, fuzzy
c-means clustering (FCM) had been proposed by Bezdek [17].
FCM is superior to hard clustering as it has more tolerance to
ambiguity and retains more original image information. Even
though FCM is efficient for images with simple texture and
background, it fails to segment images with complex texture
and background or images corrupted by noise because it only
considers gray-level information without considering the spatial
information. To address the problem, one of the most popular
ideas is to incorporate the local spatial information in an ob-
jective function to improve the segmentation effect. Motivated
by this idea, Ahmed et al. [18] proposed FCM algorithm with
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spatial constraints (FCM_S), where the objective function of
the classical FCM is modified in order to take into account of
the intensity inhomogeneity and to allow the labeling of a pixel
to be influenced by the labels in its immediate neighborhood.
However, FCM_S is time-consuming because the spatial neigh-
bors term is computed in each iteration. To reduce the execution
time of FCM_S, Chen and Zhang [19] employed average fil-
tering and median filtering to obtain the spatial neighborhood
information in advance. Their two proposed variants, FCM_S1
and FCM_S2, have a lower computational cost than FCM_S,
since both mean-filtered images and median-filtered images can
be computed before the start of the iterative stage. However,
both FCM_S1 and FCM_S2 are not robust for Gaussian noise,
as well as for known noise intensity. Moreover, it is difficult to
ascertain the type of noise and intensity before using FCM_S1
or FCM_S2.

Enhanced FCM (EnFCM) [20] is an excellent algorithm from
the viewpoint of its low computational time; it performs clus-
tering based on gray level histograms instead of pixels of a
summed image. The computational time is low because the
number of gray levels in an image is generally much smaller
than the number of its pixels. However, the segmentation result
produced by EnFCM is only comparable to that produced by
FCM_S. To improve the segmentation results obtained by En-
FCM, Cai et al. [21] proposed the fast generalized FCM algo-
rithm (FGFCM) that introduced a new factor as a local similarity
measure aiming to guarantee both noise-immunity and detail-
preservation for image segmentation, and meanwhile removes
the empirically-adjusted parameter α that is required in En-
FCM, and finally performs clustering on gray level histograms.
Although FGFCM is able to improve the robustness and com-
putational efficiency of FCM to some extent, they require more
parameters than EnFCM.

To develop new FCM algorithms, which are free from any pa-
rameter selection, Krinidis and Chatzis [22] proposed a robust
fuzzy local information c-means clustering algorithm (FLICM)
by replacing the parameter α employed by EnFCM with a novel
fuzzy factor that is incorporated into objective function to guar-
antee noise-immunity and image detail-preservation. Although
the FLICM overcomes the problem of parameter selection and
promotes the image segmentation performance, the fixed spatial
distance is not robust for different local information of images.
Gong et al. [23] utilized a variable local coefficient instead of
the fixed spatial distance, and proposed a variant of the FLICM
algorithm (RFLICM) that is able to exploit more local context
information in images. Furthermore, by introducing a kernel
metric to FLICM, and employing a tradeoff weighted fuzzy
factor to control adaptively the local spatial relationship, Gong
et al. [24] proposed a novel FCM with local information and
kernel metric (KWFLICM) to enhance the robustness of FLICM
to noise and outliers. Similar to FLICM, KWFLICM is also free
of any parameter selection. However, KWFLICM has a higher
computational complexity than FLICM. In fact, the parameter
selection depends on image patches and local statistics.

Image patches have been successfully used in nonlocal de-
noising [25], [26] and texture feature extraction [27], and a
higher classification accuracy can be obtained by using the

similarity measurement based on patch. Therefore, patch-based
denoising methods, where the nonlocal spatial information is
introduced in an objective function by utilizing a variant param-
eter, which is adaptive according to noise level for each pixel
of images [24], are extended to FCM to overcome the problem
of parameter selection to improve the robustness to noise. How-
ever, it is well known that patch-based nonlocal filtering and pa-
rameter estimation have a very high computational complexity.
To reduce the running time of FLICM and KWFLICM, Zhao
et al. [28] proposed neighborhood weighted FCM algorithm
(NWFCM) that replaces the Euclidean distance in the objec-
tive function of FCM with a neighborhood weighted-distance
obtained by patch distance. Even though the NWFCM is faster
than FLICM and KWFLICM, it is still time-consuming because
of the calculation of patch distance and parameter selection. To
overcome the shortcoming, Guo et al. [29] proposed an adaptive
FCM algorithm based on noise detection (NDFCM), where the
tradeoff parameter is tuned automatically by measuring local
variance of grey levels. Despite the fact that NDFCM employs
more parameters, it is fast since image filtering is executed be-
fore the start of iterations.

Following the work mentioned above, in this study, we pro-
pose a significantly fast and robust algorithm for image segmen-
tation. The proposed algorithm can achieve good segmentation
results for a variety of images with a low computational cost,
yet achieve a high segmentation precision.

Our main contributions can be summarized as follows.
1) The proposed FRFCM employs morphological recon-

struction (MR) [30], [31] to smooth images in order to im-
prove the noise-immunity and image detail-preservation
simultaneously, which removed the difficulty of having to
choose different filters suitable for different types of noise
in existing improved FCM algorithms. Therefore, the pro-
posed FRFCM is more robust than these algorithms for
images corrupted by different types of noise.

2) The proposed FRFCM modifies membership partition by
using a faster membership filtering instead of the slower
distance computation between pixels within local spatial
neighbors and their clustering centers, which leads to a
low computational complexity. Therefore, the proposed
FRFCM is faster than other improved FCM algorithms.

The rest of this paper is organized as follows. In Section II, we
provide the motivation for our work. In Section III, we propose
our algorithm and model. The experimental results on synthetic
images, real medical images, aurora images, and color images
are described in Section IV, Finally, we present our conclusion
in Section V.

II. MOTIVATION

To improve the drawback that FCM algorithm is sensitive to
noise, most algorithms try to overcome the drawback by incor-
porating local spatial information to FCM algorithm, such as
FLICM, KWFLICM, NWFCM, etc. However, a high computa-
tional complexity is a problem for them. In fact, the introduction
of local spatial information is similar to image filtering in ad-
vance (see Appendix A). Thus, local spatial information of an
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image can be calculated before applying the FCM algorithm,
which will efficiently reduce computational complexity, such as
FCM_S1 and FCM_S2. Besides, if the membership is modified
through the use of the relationship of the neighborhood pixels,
but the objective function is not modified, then the correspond-
ing algorithm will be simple and fast [32]. Motivated by this, in
this paper, we improve FCM algorithm in two ways: one is to
introduce local spatial information using a new method with a
low computational complexity and the other is to modify pixels’
membership without depending on the calculation of distance
between pixels within local spatial neighbors and clustering
centers. The proposed algorithm on image segmentation will be
implemented efficiently with a small computational cost.

A. Motivation of Using MR

By introducing local spatial information to an objective func-
tion of FCM algorithm, the improved FCM algorithms are in-
sensitive to noise and show better performance for image seg-
mentation. Generally, the modified objective function of these
algorithms is given as follows:

Jm =
N∑

i=1

c∑

k=1

um
ki‖xi − vk‖2 +

N∑

i=1

c∑

k=1

Gki (1)

where f = {x1 , x2 , · · ·, xN } represents a grayscale image, xi is
the gray value of the ith pixel, vk represents the prototype value
of the kth cluster, uki denotes the fuzzy membership value of
the ith pixel with respect to cluster k. U = [uki ]c×N represents
membership partition matrix. N is the total number of pixels in
the image f , and c is the number of clusters. The parameter m
is a weighting exponent on each fuzzy membership that deter-
mines the amount of fuzziness of the resulting classification. The
fuzzy factor Gki is used to control the influence of neighborhood
pixels on the central pixel. Different Gki usually leads to vari-
ant clustering algorithms, such as FCM_S, FCM_S1, FCM_S2,
FLICM, KWFLICM, NWFCM, etc. From these algorithms, we
found that the form of Gki directly decides the computational
complexity of different clustering algorithms. For example, in
FCM_S, the Gki is defined as

Gki =
α

NR
um

ki

∑

r∈Ni

‖xr − vk‖2 (2)

where α is a parameter that is used to control the effect of the
neighbors term, NR is the cardinality of uki , xr denotes the
neighbor of xi , and Ni is the set of neighbors within a window
around xi .

For FLICM, the Gki is defined as

Gki =
∑

r∈Ni
i �=r

1
dir + 1

(1 − ukr )
m ‖xr − vk‖2 (3)

where dir represents the spatial Euclidean distance between
pixels xi and xr . It is obvious that the Gki is more complex than
that in FCM_S, and thus FLICM has a higher computational
complexity than FCM_S. In FCM_S1 and FCM_S2, the Gki is
defined as

Gki = αum
ki‖x̂i − vk‖2 (4)

where x̂i is a mean value or median value of neighboring pixels
lying within a window around xi . The Gki in FCM_S1 and
FCM_S2 has a more simplified form than FCM_S, and the
clustering time can be reduced because

∑
r∈Ni

‖xr − uk‖2/NR

is replaced by α‖x̂i − uk‖2 .
Although FCM_S1 and FCM_S2 simplified the neighbors

term in the objective function of FCM_S, and presented excel-
lent performance for image segmentation, it is difficult to ascer-
tain noise type that is required to choose a suitable filter (mean
or median filter). FCM_S2 is able to obtain good segmentation
results for images corrupted by Salt & Pepper noise, but it is
incapable of doing so for images corrupted by Gaussian noise.
FCM_S1 produces worse results compared with FCM_S2. In
practical applications, we expect to obtain a robust x̂ in which
different types of noise are efficiently removed while image de-
tails are preserved. Motivated by this, we introduce MR to FCM
because MR is not only able to obtain a good result, but also
it requires a short running time [33]. Therefore, in this paper,
we introduce MR to FCM to address the drawback produced
by conventional filters. MR uses a marker image to reconstruct
original image to obtain a better image, which is favorable to
image segmentation based on clustering. Similar to FCM_S1
and FCM_S2, the reconstructed image will be computed in ad-
vance, and thus the computational complexity of the proposed
algorithm is low. We will present the computation of recon-
structed image in details in Section III.

B. Motivation of Using Membership Filtering

In FCM algorithm, according to the definition of the object
function and the constraint that

∑c
k=1 uki = 1 for each pixel

xi , and using the Lagrange multiplier method, the calculations
of membership partition matrix and the clustering centers are
given as follows:

uki =
‖xi − vk‖−2/(m−1)

∑c
j=1 ‖xi − vj‖−2/(m−1) (5)

vk =
∑N

i=1 um
kixi∑N

i=1 um
ki

. (6)

According to (5), it is easy and fast to compute uki by using
vector operation for FCM algorithm. However, it is complex and
slow to compute uki shown in (7) for improved FCM algorithm,
such as FLICM and KWFLICM because vector operation cannot
be used in the computation of Gki in (3).

uki =

(‖xi − vk‖2 + Gki

)−1/(m−1)

∑c
j=1 (‖xi − vj‖2 + Gji)

−1/(m−1) . (7)

Therefore, multiple loop program is employed by FLICM and
KWFLICM, which causes a high computational complexity. On
the one hand, the introduction of Gki in (7) is able to improve
the robustness of FCM to noisy image segmentation, but on the
other hand, the introduction of Gki causes a high computational
cost. Clearly, there is a contradiction between improving the
robustness and reducing the computational complexity simulta-
neously for FCM [34]. We found that if Gki can be computed
in advance, the contradiction will disappear because the uki in
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(7) can be computed by using vector operation without multiple
loops.

In this paper, we introduce membership filtering to FCM
to address the contradiction mentioned above. First, because a
reconstructed image is computed in advance, we perform clus-
tering on the gray level histogram of an image reconstructed
by MR. After obtaining fuzzy membership partition matrix, we
use membership filtering to modify membership partition ma-
trix to avoid the computation of distance between pixels within
local spatial neighbors and clustering centers. We present our
proposed method in details in Section III.

III. METHODOLOGY

In this study, we employ MR to replace mean or median
filters due to its robustness to noise. MR is able to efficiently
suppress different noise without considering noise type. More-
over, MR algorithm is fast as parallel algorithms exist for the
implementation of MR. Motivated by the idea of EnFCM, we
perform clustering on the gray level histogram of an image re-
constructed by MR to obtain a fuzzy membership matrix via
iteration operation. Finally, a filter is employed to modify the
membership partition matrix. Using this method, we can obtain
a good segmentation result requiring less time.

A. General Overview of the Proposed Methodology

Similar to EnFCM, the clustering of the proposed FRFCM is
performed on the gray level histogram, and thus the objective
function can be written as

Jm =
q∑

l=1

c∑

k=1

γlu
m
kl‖ξl − vk‖2 (8)

where ukl represents the fuzzy membership of gray value l with
respect to cluster k, and

q∑

l=1

γl = N (9)

where ξ is an image reconstructed by MR, and ξl is a gray level,
1 � l � q, q denotes the number of the gray levels contained in
ξ, it is generally much smaller than N . ξ is defined as follows:

ξ = RC (f) (10)

where RC denotes morphological closing reconstruction and f
represents an original image.

Utilizing the Lagrange multiplier technique, the aforemen-
tioned optimization problem can be converted to an uncon-
strained optimization problem that minimizes the following ob-
jective function:

J̃m =
q∑

l=1

c∑

k=1

γlu
m
kl‖ξl − vk‖2 − λ

(
c∑

k=1

ukl − 1

)
(11)

where λ is a Lagrange multiplier. Therefore, the problem of
the minimization of objective function is converted to finding
the saddle point of the above Lagrange function and taking the
derivatives of the Lagrangian J̃m with respect to the parameters,
i.e., ukl and vk .

By minimizing the objective function (8), we obtained the
corresponding solution as follows:

ukl =
‖ξl − vk‖−2/(m−1)

∑c
j=1 ‖ξl − vj‖−2/(m−1) (12)

vk =
∑q

i=1 γlu
m
klξl∑q

i=1 γlum
kl

. (13)

According to (12), a membership partition matrix U =
[ukl ]c×q is obtained. To obtain a stable U , (12) and (13) are re-
peatedly implemented until max{U (t) − U (t+1)} < η, where
η is a minimal error threshold. Because u

(t)
kl is a fuzzy member-

ship of gray value l with respect to cluster k, a new membership
partition matrix U

′
= [ukl ]c×N that corresponds to the original

image f , is obtained, i.e.,

uki = u
(t)
kl , if xi = ξl . (14)

To obtain a better membership partition matrix and to speed
up the convergence of our algorithm, we modify uki by using
membership filtering. Considering the tradeoff between perfor-
mance of membership filtering and the speed of algorithms, we
employ a median filter in this paper as follows:

U
′′
= med {U ′ } (15)

where med represents median filtering.
Based on the analysis mentioned above, the proposed algo-

rithm FRFCM can be summarized as follows.
Step 1: Set the cluster prototype value c, fuzzification parameter

m, the size of filtering window w, and the minimal error
threshold η.

Step 2: Compute the new image ξ using (10), and then compute
the histogram of ξ.

Step 3: Initialize randomly the membership partition matrix
U (0) .

Step 4: Set the loop counter t = 0.
Step 5: Update the clustering centers using (13).
Step 6: Update the membership partition matrix U (t+1) using

(12).
Step 7: If max {U (t) − U (t+1)} < η then stop, otherwise, set

t = t + 1 and go to Step 5.
Step 8: Implement median filtering on membership partition

matrix U
′
using (15).

B. Morphological Reconstruction

For FCM algorithm, the rate of convergence is always decided
by the distribution characteristics of data. If the distribution char-
acteristic of data is favorable to clustering, the corresponding
number of iterations is small, otherwise, the number of itera-
tions is large. FCM is sensitive to noise because the distribution
characteristics of data is always affected by noise corruption,
which causes two problems. One is that the result obtained by
FCM algorithm is poor for noisy image segmentation; the other
is that the number of iterations of FCM is larger for an image
corrupted by noise than the image uncorrupted by noise. It is
well known that the distribution characteristic of data can be
described by histogram. If the histogram is uniform, it is dif-
ficult to achieve a good and fast image segmentation. On the
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Fig. 1. Comparison of distribution characteristics of data for noisy image and filtered image. (a) Original imge “cameraman” (image size: 512 × 512).
(b) Histogram of the original image. (c) Image corrupted by Gaussian noise (the mean value is zero, and the variance is 5%) (d) Histogram of (c). (e) image filtered
by a mean filter (3 × 3). (f) Histogram of (e).

TABLE I
COMPARISON OF NUMBER OF ITERATIONS FOR THREE DIFFERENT IMAGES (THE NUMBERS REPRESENT THE AVERAGES OF REPEATING 100 TIMES)

Original image [Fig. 1(a)] Noisy image [Fig. 2(a)] Filtered image [Fig. 2(c)]

Numbers of iterations with standard deviations 21.06 ± 1.91 38.46 ± 7.51 24.56 ± 1.48

contrary, it is easy if the histogram has several apparent peaks.
Fig. 1 shows an example.

Fig. 1 shows that the histogram of original image has two
obvious peaks while the histogram of image corrupted by Gaus-
sian noise has no obvious peaks except extremum (0 and 255).
There are two obvious peaks in Fig. 1(f), similar to the original
Fig. 1(b), demonstrating a mean filter is efficient for the re-
moval of Gaussian noise. We implemented FCM algorithm on
three images: original image, the image corrupted by Gaussian
noise (the mean vlaue is zero, and the variance is 5%), and the
image filtered by a mean filter (the size of the filtering window
is 3 × 3). Table I shows the comparison of number of iterations
of FCM for the three images (c = 2).

Table I shows that the number of iterations of FCM is the
smallest for the original image and it is the largest for the noisy
image. Mean filter is efficient for the optimization of data dis-
tribution because the number of iterations is reduced.

In this paper, we introduce MR to FCM algorithm to optimize
distribution characteristic of data before applying clustering.
MR is able to preserve object contour and remove noise without
knowing the noise type in advance [35], which is useful for
optimizing distribution characteristic of data.

There are two basic MR operations, morphological dilation
and erosion reconstructions [36]. Morphological dilation recon-
struction is denoted by Rδ

f (g) that is defined as

Rδ
f (g) = δ

(i)
f (g) (16)

where f is the original image, g is a marker image and g � f , δ
represents dilation operation, and δ

(1)
f (g) = δ(g) ∧ f , δ(i)

g (f) =
δ(δ(i−1)(g)) ∧ f , and ∧ stands for the pointwise minimum.

By duality, morphological erosion reconstruction is denoted
by Rε

f (g) that is defined as

Rε
f (g) = ε

(i)
f (g) (17)

where g � f , ξ represents erosion operation, and ε
(1)
f (g) =

ε(g) ∨ f , ε
(i)
g (f) = ε(ε(i−1)(g)) ∨ f , and ∨ stands for the

pointwise maximum.

The reconstruction result of an image depends on the selec-
tion of marker images and mask images [37]. Generally, if the
original image is used as a mask image, then the transforma-
tion of the original image is considered as the marker image.
In practical applications, g = ε(f) meets the condition g � f
for dilation reconstructions and g = δ(f) meets the condition
g � f for erosion reconstructions. Thus, g = ε(f) and g = δ(f)
are always used to obtain a marker image due to simplicity and
effectiveness.

Based on the composition of erosion and dilation reconstruc-
tions, some reconstruction operators with stronger filtering ca-
pability can be obtained, such as morphological opening and
closing reconstructions. Because morphological closing recon-
struction, denoted by RC , is more suitable for texture detail
smoothing, we employ RC to modify original image. RC is
defined as follows:

RC (f) = Rε
Rδ

f (ε(f ))

(
δ
(
Rδ

f (ε(f))
))

. (18)

In [20], the modified image ξ = (ξi)N
i=1 is defined as

ξi =
1

1 + α
(xi + αx̂i) . (19)

According to (18), xi ∈ f and x̂i ∈ RC (f), where RC (f) de-
notes a reconstructed image obtained by RC . To obtain a marker
image, a structuring element B including center element is re-
quired for ε or δ, i.e., εB (f) ≤ f and δB (f) ≥ f . Then, RC is
rewritten as

RC (f) = Rε
Rδ

f (εB (f ))

(
δB

(
Rδ

f (εB (f))
))

. (20)

For example, a disk with radius r can be considered as B.
If r = 0, then RC (f) = f ; else f will be smoothed to different
degree according to the change of r. Therefore, the effect of α
is similar to r. And thus, we can replace ξ with RC (f), and
the parameter α will be removed, which solves the problem of
noise estimation because MR is able to remove different noises
efficiently.

To show the effect of MR for different type of noise removal
in images, Fig. 2 shows comparative results generated by a mean
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Fig. 2. Comparison of noise removal using different methods. (a) Image cor-
rupted by Gaussian noise (the mean value is zero, and the variance is 5%).
(b) Image corrupted by Salt & Pepper noise (the noise density is 20%). (c) Fil-
tered result using mean filtering for (a). (d) Filtered result using mean filtering
for (b). (e) Filtered result using median filtering for (a). (f) Filtered result using
median filtering for (b). (g) Filtered result using MR for (a). (h) Filtered result
using MR for (b).

filter, a median filter, and RC . The original image is Fig. 1(a),
and the size of the filtering window employed by the mean
and the median filters is 3 × 3. For consistency, the structuring
element, in this case, is also a square of size 3 × 3 (r = 1).

Fig. 2(c), (e), and (g) is filtering results of image corrupted by
Gaussian noise by using the mean filter, the median filter, and
RC respectively. It is clear that RC is efficient for Gaussian noise
removal. Similarly, Fig. 2(d), (f), and (h) is filtering results of
image corrupted by Salt & Pepper noise by using the mean filter,
the median filter, and RC , respectively. It is also clear that RC is
efficient for Salt & Pepper noise removal. Therefore, on the one
hand, MR removes the difficulty of choosing filters for images
corrupted by noise; on the other hand, MR integrates spatial
information into FCM to achieve a better image segmentation.
Compared with mean filtering and median filtering, Fig. 2 shows
that MR is able to optimize data distribution without considering
noise type. Moreover, MR can obtain better results for image
filtering than mean and median filters, which is important for
subsequent clustering and image segmentation.

C. Membership Filtering

According to the above results in Section III-B, we found that
the introduction of local spatial information is useful and effi-
cient for improving FCM algorithm. However, the computation

Fig. 3. Comparison of membership partition from FCM and FLICM (c =
3, and the iteration step is 10). (a) Original synthetic image included three
gray levels (0, 85, 170). (b) Image corrupted by Gaussian noise (the mean
value is zero, and the variance is 3%). (c) Membership partition using FCM.
(d) Membership partition using FLICM.

of distance between pixels within local spatial neighbors and
clustering centers does introduce a high computational complex-
ity, such as FCM_S. Although some improved algorithms, such
as FCM_S1 and FCM_S2, reduce computational complexity by
computing spatial neighborhood information in advance, these
algorithms need to ascertain the noise type before applying an
image filter. To exploit spatial neighborhood information during
the iteration process of clustering, FLICM and KWFLICM com-
pute the distance between the neighbors of pixels and clustering
centers in each iteration. Although FLICM and KWFLICM pro-
duce good segmentation results for noisy images, they have a
high computational complexity.

In [22], FLICM will be equal to FCM, if Gki is removed. For
this the idea is to replace Gki in a simple way where the compu-
tation of distance between pixels within local spatial neighbors
and vk is unnecessary. Motivated by the idea, membership fil-
tering is introduced. We will replace the contribution of Gki

with the spatial neighborhood information of membership par-
tition. To further analyze the contribution of Gki , Fig. 3 shows
the effect of spatial neighborhood information on membership
partition.

FCM and FLICM are used to segment Fig. 3(b). Fig. 3(c) and
(d) is membership partition provided by FCM and FLICM, re-
spectively, when the number of iterations is 10. Fig. 3(c) shows
that some pixels marked with red color will be misclassified
because the original image is corrupted by Gaussian noise. By
introducing local spatial information into FLICM, the misclas-
sified pixel will be corrected as shown in Fig. 3(d) (the corrected
pixels are marked with blue color). For a pixel (the gray value is
115) in Fig. 3(b), we obtained three fuzzy memberships (0.01,
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Fig. 4. Membership partition using FCM based on membership filter for
Fig. 3(b) (the iteration step is 10).

0.98, 0.01) of the pixel shown in Fig. 3(c) by using FCM, which
clearly indicates that the pixel belongs to the second cluster
according to FCM. However, in reality, it belongs the third
cluster (the gray value is 170) according to the Ground Truth. In
Fig. 3(d), we obtained new fuzzy memberships (0.03, 0.47, 0.50)
of the pixel by using FLICM, which shows that the pixel be-
longs the third cluster because 0.5 is the maximal membership.
Even though pixels corrupted with Gaussian noise are classified
accurately by FLICM, the maximal membership value of pixels
is small. And thus, FLICM has a slow speed of convergence.

According to (2) and (7), uki depends on the distance ‖xi −
vk‖ and ‖xr − vk‖. But in fact, ‖xr − vk‖ is a repetitive or
redundant computation since it can be obtained according to
‖xi − vk‖. It is the same as KWFLICM. It is clear that we can
use a membership filter to correct the misclassified pixels, i.e.,
it is unnecessary to compute the distance between the neighbors
of pixels and clustering centers. According to Gki shown in (3),
the modified membership partition is considered as

u
′
ki = uki +

∑

r∈Ni
i �=r

1
dir + 1

ukr (21)

where dir represents the Euclidean distance between uki and
ukr , and ukr is the neighbors of uki . The factor, 1/(dir + 1),
reflects the spatial structure information of membership parti-
tion.

Because FLICM is sensitive to Salt & Pepper noise, it is
inefficient to use (21) to remove the noise. In this paper, we
use a median filter to modify membership partition as shown
in (15), In fact, it can be demonstrated that the introduction
of local spatial information is similar to membership filter for
improving segmentation results (see in Appendix A). However,
membership filtering does not require to compute the distance
between the pixels within local spatial neighbors and clustering
centers. Therefore, the corresponding computational complexity
of improved algorithms based on membership filtering is lower
than other algorithms, such as NWFCM, FLICM, KWFLICM,
etc. For membership partition obtained by FCM in each iteration
shown in Fig. 3, a median filter is used to modify membership
partition, and Fig. 4 shows results (the result is normalized, and
the filtering window is the same as the structuring element B).

Fig. 4 shows membership filtering has a capability of correct-
ing misclassified pixels. Moreover, it provides a better mem-
bership partition than FLICM. Therefore, it is a good idea to
utilize membership filtering instead of the introduction of fuzzy
factor Gki . Also, FCM algorithm based on membership filtering
(MFFCM) provides better clustering centers than FCM as shown

in Table II. Therefore, the objective function of FCM algorithm
based on membership filtering converges quickly. However, if
membership filtering is implemented in each iteration, the cor-
responding algorithm will be complex and lowly efficient. To
improve the computational efficiency of MFFCM further, mem-
bership filtering is just implemented once on the final member-
ship partition matrix.

Based on the analysis above, MR is used to optimize data
distribution, and then we implement FCM algorithm on the his-
togram of reconstructed image. Finally, we use a median filter to
modify membership partition. The proposed FRFCM is imple-
mented on Fig. 3(b), and Table II shows the comparison of values
of clustering centers produced by FCM, FLICM, MFFCM, and
FRFCM, where the mean square error (MSE) of clustering cen-
ters is used to evaluate the performance of different algorithms.

In Table II, 11.4, 18.9, 18.9, and 5.6 are values of the first
clustering center obtained by FCM, FLICM, MFFCM, and FR-
FCM, respectively. The value, 33.07, is the MSE between the
FCM results of (11.4, 106.9, 192.0) and the Ground Truth of (0,
85, 170). It is clear that the value, 5.6, from FRFCM is the clos-
est value to 0 that is the first clustering center from the Ground
Truth. Consequently, Table II demonstrates that FRFCM pro-
vides the best clustering centers after ten iterations. Based on
the analysis mentioned above, we conclude that the proposed
FRFCM has following advantages.

1) Similar to FLICM and KWFLICM, it is free from param-
eters except the size of filtering window.

2) It has a low computational complexity because the redun-
dant computation of distance is unnecessary.

3) It is able to provide good results for image segmentation
because of the introduction of MR and membership filter-
ing, and thus spatial information is efficiently exploited.

IV. EXPERIMENTS

To estimate the effectiveness and efficiency of the proposed
FRFCM, synthetic noise images, real images including a medi-
cal image and an aurora image, and color images are tested in our
experiments. Nine state-of-the-art clustering algorithms: FCM
[17], FCM_S1 [19], FCM_S2 [19], EnFCM [20], FGFCM [21],
FLICM [22], KWFLICM [24], NWFCM [28], and NDFCM
[29], are employed in these experiments to compare with the
proposed FRFCM. These algorithms have different advantages.
FCM, FCM_S1, FCM_S2, EnFCM, FGFCM, and NDFCM
have a low computational complexity. FLICM, KWFLICM,
and NWFCM have a strong capability of noise removal, while
FLICM and KWFLICM do not require parameter values to be
set.

In the following experiments, a fixed 3 × 3 window is used in
all the algorithms except FCM for fair comparison. The weight-
ing exponent is set m = 2, η = 10−5 . In addition, according to
FCM_S1, FCM_S2, and EnFCM, α is used to control the effect
of the neighbors term, experientially, α = 3.8. In FGFCM and
NDFCM, the spatial scale factor and the gray-level scale factor
are λs = 3 and λg = 5, respectively. Besides, a new scale factor
λα equals to 3 for the NDFCM [29]. For NWFCM, λg equals
to 5. Except m, η, and the number of the cluster prototype,
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TABLE II
COMPARISON OF CLUSTERING CENTERS PRODUCED BY DIFFERENT ALGORITHMS [THE DATA REPRESENTS AVERAGE RESULTS OF REPEATING 100 TIMES, THE

ITERATION STEP IS 10, AND THREE GRAY LEVELS OF GROUND TRUTH FIG. 3(A) IS (0, 85, 170)]. THE BEST VALUES ARE HIGHLIGHTED.

Method FCM FLICM MFFCM FRFCM

Values of clustering centers (11.4, 106.9, 192.0) (18.9, 117.3, 179.1) (18.9, 91.2, 169.7) (5.6, 85.4, 169.1)
MSE 33.07 38.51 19.89 5.69

Fig. 5. Comparison of segmentation results on the first symmetric image.
(a) Original image. (b) noisy image (Gaussian noise with zero mean and 5%
variance). (c) FCM result. (d) FCM_S1 result. (e) FCM_S2 result. (f) EnFCM
result. (g) FGFCM result. (h) FLICM result. (i) NWFCM result. (j) KWFLICM
result. (k) NDFCM result. (l) FRFCM result.

there is no other parameters for FLICM and KWFLICM. For
our FRFCM, the mask image is the original image, and a square
structuring element of size 3 × 3 is used to obtain marker image.
In addition, median filter is used to fuzzy membership filtering,
and the filtering window is also 3 × 3.

A. Results on Synthetic Images

In this section, two synthetic images with size 256 × 256 are
used in the experiment. The first image includes three classes
(three intensity values are 0, 85, and 170, respectively), and
the second image includes four classes (four intensity value
are 0, 85, 170, and 255, respectively). The two synthetic im-
ages are shown in Figs. 5(a) and 6(a), respectively. These im-
ages are corrupted by Gaussian, Salt & Pepper, and Uniform
noise, respectively, and these corrupted images are utilized
for testing the efficiency and robustness of above algorithms.
Figs. 5(c-l) and 6(c-l) show segmentation results obtained by
different algorithms.

In addition, a performance index, the optimal segmentation
accuracy (SA), and a quantitative index score (S) [18], are used
to assess the denoising performance of different algorithms,
where SA is defined as the sum of the correctly classified pixels
divided by the sum of the total number of the pixels

SA =
c∑

k=1

Ak

⋂
Ck∑c

j=1 Cj
(22)

Fig. 6. Comparison of segmentation results on the second symmetric image.
(a) Original image. (b) Noisy image (Salt & Pepper, the noise intensity is 20%).
(c) FCM result. (d) FCM_S1 result. (e) FCM_S2 result. (f) EnFCM result.
(g) FGFCM result. (h) FLICM result. (i) NWFCM result. (j) KWFLICM result.
(k) NDFCM result. (l) FRFCM result.

and S is defined as the degree of equality between pixel sets Ak

and the Ground Truth Ck

S =
c∑

k=1

Ak

⋂
Ck

Ak

⋃
Ck

(23)

where c is the number of the cluster prototype, Ak denotes the
set of pixels belonging to the kth class found by the algorithm,
while Ck denotes the set of pixels belonging to the class in the
Ground Truth. All the algorithms are repeatedly run 100 times
on synthetic images corrupted by different noises. Tables III
and IV give the average segmentation accuracy and the scores
results of the repeated experiments for the ten algorithms.

In Fig. 5, FCM algorithm does not overcome its sensitivity
to noise. FCM_S1 and FCM_S2 are able to reduce the effect of
noise on segmentation results due to the introduction of local
spatial information. EnFCM, FGFCM, and NDFCM improve
segmentation results to some extent, the segmented images
have better visual effect than FCM, FCM_S1, and FCM_S2.
Although NWFCM obtains a better visual effect for the first
and the third classes (the clustering centers are 0 and 170), it
causes a poor effect on the second class (the clustering center is
85). FLICM and KWFLICM are superior to FGFCM depending
on Fig. 5(h) and (j). Fig. 5(l) shows that the proposed FRFCM
obtains better segmentation result than other algorithms.

Fig. 6 shows that FCM_S1 obtains a poor segmentation re-
sult which is close to FCM because mean filters employed by
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TABLE III
SEGMENTATION ACCURACY (SA%) OF TEN ALGORITHMS ON THE FIRST SYNTHETIC IMAGE WITH DIFFERENT NOISES. THE BEST VALUES ARE HIGHLIGHTED.

Noise FCM FCM_S1 FCM_S2 EnFCM FGFCM FLICM NWFCM KWFLICM NDFCM FRFCM

Gaussian 3% 73.70 98.47 98.23 98.86 98.88 99.10 91.91 99.78 98.81 99.78
Gaussian 5% 67.18 94.53 94.20 97.22 97.18 98.17 89.59 99.52 97.06 99.64
Gaussian 10% 59.67 80.53 80.31 88.17 87.46 90.85 89.61 95.45 87.49 99.04
Gaussian 15% 56.47 76.39 75.25 80.94 80.46 79.36 88.35 85.46 80.60 86.61
Salt & Pepper 10% 94.28 94.85 99.80 95.70 98.65 93.37 99.91 99.97 98.60 99.94
Salt & Pepper 20% 83.42 88.31 99.60 86.84 95.27 82.01 99.61 86.88 95.17 99.86
Salt & Pepper 30% 77.05 78.42 98.89 83.00 89.29 71.51 98.62 99.31 87.75 99.78
Uniform 10% 93.64 97.05 99.85 98.08 98.88 96.53 99.89 99.96 98.81 99.93
Uniform 20% 87.14 93.09 99.28 94.82 96.64 90.22 99.42 99.91 96.43 99.88
Uniform 30% 80.60 88.30 97.43 90.25 92.58 80.72 97.97 99.81 92.19 99.79

TABLE IV
COMPARISON SCORES (S%) OF THE TEN ALGORITHMS ON THE SECOND SYNTHETIC IMAGE WITH DIFFERENT NOISES. THE BEST VALUES ARE HIGHLIGHTED.

Noise FCM FCM_S1 FCM_S2 EnFCM FGFCM FLICM NWFCM KWFLICM NDFCM FRFCM

Gaussian 3% 56.69 95.47 95.34 96.64 96.67 97.73 95.31 99.32 96.48 99.49
Gaussian 5% 39.57 75.27 75.14 82.89 82.53 88.50 59.97 94.67 82.42 98.73
Gaussian 10% 36.61 67.92 68.82 77.04 76.70 82.44 55.63 89.79 76.51 97.97
Gaussian 15% 36.31 67.34 68.55 76.98 76.65 81.93 54.81 89.47 76.52 96.41
Salt & Pepper 10% 85.65 89.23 99.72 89.78 96.90 84.66 99.77 45.51 96.81 99.87
Salt & Pepper 20% 73.56 77.68 99.06 77.55 90.32 69.15 98.92 46.37 89.48 99.67
Salt & Pepper 30% 62.33 61.53 96.98 67.86 77.80 53.32 95.36 41.88 76.89 99.36
Uniform 10% 86.15 92.79 99.56 95.09 97.12 79.59 99.60 44.67 96.91 99.84
Uniform 20% 73.96 84.50 97.93 88.17 91.43 77.99 98.44 52.60 90.85 99.58
Uniform 30% 63.25 74.70 93.13 78.68 82.23 63.33 94.81 55.98 81.56 99.28

FCM_S1 is incapable of removing Salt & Pepper noise. But
FCM_S2 obtains a good segmentation result because median
filters employed by FCM_S2 is able to efficiently remove Salt
& Pepper noise. NWFCM provides a good segmentation result
for images corrupted by Salt & Pepper noise because a weight
function incorporating both patch structure information and the
local statistics, is introduced in distance measurement between
pixels. FLICM and KWFLICM are sensitive to Salt & Pepper
noise, which leads to poor results, even KWFLICM obtains a
wrong result shown in Fig. 6(j). FGFCM is superior to En-
FCM because FGFCM introduces a new factor as a local (both
spatial and gray) similarity measure aiming to guarantee both
noise-immunity and detail-preservation, and meanwhile remove
the empirically-adjusted parameter α for image segmentation.
FRFCM has superiorities of both noise-immunity and detail-
preservation, and it provides better segmentation results than
other algorithms due to the introduction of MR and member-
ship filtering.

From Tables III and IV, we can see that the segmentation ac-
curacy of FRFCM are consistently higher than other algorithms
for synthetic images contained different noise. It is obvious
that FRFCM is much more robust to different noise than other
algorithms. KWFLICM is sensitive to Salt & Pepper and Uni-
form noise when the noise level is high. FCM_S1 is efficient
for images corrupted by Gaussian noise, but FCM_S2 is effi-
cient for images corrupted by Salt & Pepper and Uniform noise.
NWFCM is able to provide good segmentation results for image
corrupted by Salt & Pepper and Uniform noise, but it is sensi-
tive to Gaussian noise. Both NDFCM and FGFCM are robust to

different noise, and they have close performance according to
Tables III and IV.

B. Results on Real Images

Image segmentation plays a key role in medical diagnosis
support systems. It is always difficult to segment a medical im-
age because the complexity of medical images such as noise,
blur, and intensity nonuniformity. To demonstrate the superi-
ority of the proposed FRFCM, a liver CT image (256 × 256)
including a tumor is considered as a test image in this section.
Fig. 7 shows segmentation results of the tumor produced by
different algorithms with c = 5.

In Fig. 7(a), the tumor is marked by a blue square. Our aim is
to segment the tumor from the liver CT image. It is clear that our
algorithm shows an excellent performance for the detection of
the tumor. Fig. 7 shows that FCM, FCM_S1, FCM_S2, FLICM,
NDFCM, and FRFCM are able to segment the tumor accurately
shown in Fig. 7(b)–(d), (g), (j), and (k), and EnFCM, FGFCM,
NWFCM, and KWFLICM fail to segment the tumor shown in
Fig. 7(e), (f), (h), and (i). Compared with the result from FCM,
segmentation results from FCM_S1 and FCM_S2 are better, and
the segmentation result from FRFCM provides a better visual
effect for the tumor. The segmentation result can be used in
three-dimensional (3-D) reconstruction of the tumor. And then,
by computing the volume of the tumor, a doctor will make
a correct diagnosis depending on the variation of the tumor
volume.
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Fig. 7. Comparison of segmentation results on the liver CT image. (a) Original
image. (b) FCM result. (c) FCM_S1 result. (d) FCM_S2 result. (e) EnFCM
result. (f) FGFCM result. (g) FLICM result. (h) NWFCM result. (i) KWFLICM
result. (j) NDFCM result. (k) FRFCM result.

Fig. 8. Comparison of segmentation results on the aurora image. (a) Original
image. (b) FCM result. (c) FCM_S1 result. (d) FCM_S2 result. (e) EnFCM
result. (f) FGFCM result. (g) FLICM result. (h) NWFCM result. (i) KWFLICM
result. (j) NDFCM result. (k) FRFCM result.

Aurora is formed when solar wind collides with charged par-
ticles. It carries important information that reflects the invisible
coupling between atmospheric layers. The analysis on aurora
images is significant for research on space physics, such as
climate changes, global warming, electromagnetic wave inter-
ference, etc. [38], [39]. Auroral oval segmentation is a key step
in aurora image analysis, and it remains a challenging topic
because of random noise, low contrast, and dayglow contami-
nation in Ultraviolet Imager images. To extend the applications
of FRFCM in specified image segmentation, an aurora image
(228 × 200) shown in Fig. 8(a) is considered as a tested image.
Fig. 8(b)–(k) shows the comparison of segmentation results on
auroral oval provided by different algorithms with c = 3.

As can be seen from Fig. 8(b) that FCM is sensitive to noise.
FCM_S1 and FCM_S2 improve the segmentation result ob-
tained by FCM, but they are unable to segment aurora oval

Fig. 9. Comparison of segmentation results on color image “12003” from
BSDS500 (c = 3). (a) Original image. (b) FCM result. (c) FCM_S1 result. (d)
FCM_S2 result. (e) EnFCM result. (f) FGFCM result. (g) FLICM result. (h)
NWFCM result. (i) KWFLICM result. (j) NDFCM result. (k) FRFCM result.

efficiently shown in Fig. 8(c) and (d). EnFCM and FGFCM fail
to obtain segmentation results of aurora oval shown in Fig. 8(e)
and (f). NWFCM and NDFCM are sensitive to noise leading to
poor segmentation results shown in Fig. 8(h) and (j). FLICM
and KWFLICM provide good segmentation results than other
algorithms as shown in Fig. 8(g) and (i). However, they are
time-consuming. The proposed FRFCM achieves aurora oval
segmentation, shown in Fig. 8(k), with low computation time,
and yet the segmentation result is better than other algorithms.

C. Results on Color Images

Most of the improved FCM algorithms are only efficient for
gray image segmentation, for it is difficult to obtain local spatial
information of color images. However, FCM is able to segment
color image with a shorter time, as local spatial information is
neglected in FCM. It is easy to extend FCM_S1, FCM_S2, En-
FCM, and NDFCM to color image segmentation because image
filtering is performed on each channel of color images, respec-
tively. Euclidean distance of pixels (3-D vector) is employed in
FLICM, KWFLICM, NWFCM, and FGFCM for color image
segmentation, where the local spatial information is computed
in each iteration of FLICM and KWFLICM. Thus, FLICM and
KWFLICM have a very high computational complexity for color
image segmentation. For EnFCM, FGFCM, and FRFCM, the
clustering is performed on pixels but not the gray level histogram
because it is difficult and complex to obtain the histogram of a
color image. In addition, multivariate MR [40] is used in FR-
FCM to optimize data distribution, the other steps are similar to
gray image segmentation using FRFCM.

In this experiment, the tested images are chosen from the
Berkeley Segmentation Dataset (BSDS500) that includes 500
images [41]. The selection of all parameters is the same as



LEI et al.: SIGNIFICANTLY FAST AND ROBUST FUZZY C-MEANS CLUSTERING ALGORITHM BASED ON MORPHOLOGICAL 3037

Fig. 10. Segmentation results on color images from BSDS500 using FRFCM.
(a) c = 2. (b) c = 3.

that for gray image segmentation except r in FRFCM (r = 3).
We conducted experiments and applied these algorithms on
BSDS500, and Figs. 9 and 10 show segmentation results. From
Fig. 9, we can see that all the algorithms fail to segment the color
image except FRFCM. Fig. 9(k) shows that FRFCM obtains ex-
cellent segmentation results without changing any parameters.
Furthermore, to demonstrate the superiority of FRFCM, we im-
plemented FRFCM on the data set of BSDS500, and some se-
lected segmentation results are shown in Fig. 10. Fig. 10 shows
that the segmentation results of different images have accurate
contours and we can obtain good object segmentation results

TABLE V
AVERAGE PERFORMANCE OF TEN ALGORITHMS ON BSDS500 THAT INCLUDES

500 IMAGES (THE BEST VALUES ARE HIGHLIGHTED)

Algorithm PRI BDE CV VI

FCM 0.72 14.06 0.39 3.15
FCM_S1 0.69 13.45 0.44 2.75
FCM_S2 0.73 13.89 0.40 3.04
EnFCM 0.69 13.47 0.44 2.74
FGFCM 0.73 13.76 0.40 3.06
FLICM 0.72 13.94 0.39 3.11
NWFCM 0.72 13.95 0.39 3.14
KWFLICM 0.72 13.88 0.39 3.10
NDFCM 0.73 13.71 0.40 3.05
FRFCM 0.76 13.03 0.46 2.59

TABLE VI
COMPUTATIONAL COMPLEXITY OF TEN ALGORITHMS

Algorithm Computational complexity

FCM O(N × c × t)
FCM_S1 O(N × w2 + N × c × t)
FCM_S2 O(N × w2 + N × c × t)
EnFCM O(N × w2 + q × c × t)
FGFCM O(N × w2 + q × c × t)
FLICM O(N × c × t × w2 )
NWFCM O(N × (w + 1)2 + N × c × t)
KWFLICM O(N × (w + 1)2 + N × c × t × w2 )
NDFCM O(N × w2 + N × c × t)
FRFCM O(N × w2 + q × c × t)

Fig. 11. Comparison of number of iterations of ten algorithms on tested
images.

using FRFCM which is simple and significantly fast. It is clear
that FRFCM provides excellent segmentation results for color
images.

In this paper, four performance measures: probabilistic rand
index (PRI) [42], the boundary displacement error (BDE) [43],
the covering (CV) [41], and the variation of information (VI)
[41] are used to quantitatively evaluate segmentations obtained
by different algorithms against the Ground Truth segmentation.

The PRI is a similarity measure that counts the fraction of
pairs of pixels whose labels are consistent between the com-
puted segmentation, S

′
, and the corresponding Ground Truth
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TABLE VII
COMPARISON OF EXECUTION TIMES (IN SECONDS) OF TEN ALGORITHMS ON TESTED IMAGES. THE BEST VALUES ARE HIGHLIGHTED.

Image FCM FCM_S1 FCM_S2 EnFCM FGFCM FLICM NWFCM KWFLICM NDFCM FRFCM

Fig. 5 0.62 0.28 0.23 1.99 12.34 26.04 36.66 50.42 1.85 0.06
Fig. 6 0.22 0.28 0.16 0.25 0.27 38.63 13.80 87.49 2.15 0.03
Fig. 7 1.66 1.19 1.00 2.25 8.31 110.49 59.06 123.57 3.69 0.12
Fig. 8 0.44 0.20 0.21 0.39 5.12 10.07 9.88 54.15 1.48 0.05

segmentation, S. PRI can be calculated as follows:

PRI(S, S
′
) = 1 −
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where pij is the number of pixels in the ith cluster of S and
the jth cluster of S

′
, and N is the total number of pixels of the

image.
The BDE is an error measure that is used to measure the

average displacement error of boundary pixels between two
segmentations, and it is defined as

BDE(S, S
′
) =

(
N1∑

i

d(pi, S)

)
/N1 +

(
N2∑

i

d(pi, S
′
)/N2

)
/2

(25)
where N1 and N2 denote the total number of points in the
boundary sets S

′
and S, respectively. d is a distance between

a pixel pi in S
′

and its closest boundary pixel p in S, and it is
defined as follows:

d(pi, S) = minp∈S ‖pi − p‖. (26)

The CV is an overlap measure that can be also used to evaluate
the segmentation effect. It is defined as

CV(S → S ′) =

(
∑

RES

|R| · max
R ′∈S ′

O(R,R′)

)
/N (27)

where O(R,R′) = |R ∩ R′|/|R ∪ R′| denotes the overlap be-
tween two regions R and R′.

The VI is a similarity measure that is always used to measure
the distance between two segmentations in terms of their average
conditional entropy given by

V I(S, S ′) = H(S) + H(S ′) − 2I(S, S ′) (28)

where H and I represent the entropies and mutual information
between two segmentations S and S ′, respectively.

When the final segmentation is close to the Ground Truth
segmentation, the PRI and CV is larger while the BDE and VI
is smaller. All these algorithms are evaluated on BSDS500, and
the average values of PRI, BDE, CV, and VI of segmentation
results are given in Table V. c is set from 2 to 6 for each image
in BSDS500. We choose a best c corresponding to the highest
PRI. The average values of PRI, VI, CV, and BDE obtained by
different algorithms are presented in Table V. We can see that
our FRFCM clearly outperforms other algorithms on PRI, BDE,
CV, and VI values.

From experiments Section IV-A–IV-C, the proposed FR-
FCM is able to provide good segmentation results for different
typed images. Moreover, it has a better performance than other
algorithms.

D. Running Time

Based on the analysis above, the computational complexity
of different algorithms are given in Table VI, where N is the
number of pixels of an image, c is the number of clustering
prototype, t is the iteration number, w is the size of the filter-
ing window, and q is the number of gray levels in the image.
Generally, q 
 N .

According to Table VI, EnFCM, FGFCM, and FRFCM have
low computational complexity due to q 
 N (the gray level
of the tested image is q = 256, and the number of pixels in
the tested image is N = 256 × 256). Moreover, to estimate the
practicability of different algorithms, we compared the running
time of these algorithms. All experiments are performed on a
workstation with an Intel Core (TM) i7-6700, 3.4GHz CPU
and 16G memory using MATLAB. Fig. 11 shows number of
iterations and Table VII shows execution times (in seconds) of
different algorithms on tested images.

From Table VII, it is clear that KWFLICM and FLICM have
a very high computational complexity compared to other algo-
rithms. NWFCM is also slow because the computation of neigh-
borhood weights based on patch distance is complex. FCM_S1
and FCM_S2 are fast because mean-filtered images and median-
filtered images are computed in advance. EnFCM is fast due to
the introduction of gray level and gray level is far less than the
number of pixels in an image. FGFCM is not fast because the
computation of filtered image is complex. FRFCM only em-
ploy MR and membership filtering where MR is performed in
advance and median filtering is implemented only once after
clustering. Moreover, the idea of histogram is also used in FR-
FCM. Therefore, the objective function of FRFCM converges
very fast, and FRFCM requires a very small computational time.
In addition, we presented the comparison of number of itera-
tions in Fig. 11. We can see that FRFCM requires the least
iteration.

In Section IV-C, these algorithms mentioned above are ex-
tended to color images, and Figs. 9 and 10 show segmentation
results. In contrast with gray image segmentation, they require
much time to segment color image due to the increase of dimen-
sion of data. Table VIII shows the comparison of computational
complexity of different algorithms for Fig. 9.

From Table VIII, we can see that the computational cost of
FLICM, KWFLICM, and NWFCM are extremely large for color
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TABLE VIII
COMPARISON OF NUMBER OF ITERATIONS AND EXECUTION TIMES (IN SECONDS) OF TEN ALGORITHMS ON COLOR IMAGES (FIG. 9)

FCM FCM_S1 FCM_S2 EnFCM FGFCM FLICM NWFCM KWFLICM NDFCM FRFCM

Numbers of iterations 36 100 70 99 46 68 50 76 37 44
Running time 1.52 4.71 3.33 4.466 4.91 366.22 160.78 451.90 12.32 2.73

image segmentation. Although FCM_S1, FCM_S2, EnFCM,
FGFCM, NDFCM, and FRFCM have similar computational
complexity for color images (q = N ), FRFCM is significantly
faster than these algorithms shown in Table VIII and obtains
better segmentation results shown in Figs. 9 and 10.

V. CONCLUSION

In this paper, a significantly fast and robust FRFCM algo-
rithm for image segmentation has been proposed to improve
the segmentation quality and reduce the influence of image
noise. By introducing MR operation, the local spatial infor-
mation of images has been utilized to improve segmentation
effect. Because MR is able to suppress noise while preserv-
ing the contour of objects, a tradeoff has easily been achieved
between noise suppression and detail preservation. Moreover,
MR is able to provide good reconstructed results for images
corrupted by different type of noise. Furthermore, FRFCM em-
ployed membership filtering to exploit the local spatial con-
straint. We demonstrated that membership filtering is able to
provide similar results compared with local spatial constraint,
but local spatial constraint requires much more time than mem-
bership filtering in each iteration. Experimental results show
that the proposed FRFCM is able to provide better segmenta-
tion results without tuning parameters for different gray or color
images.

However, similar to other improved FCM algorithms, the
number of clusters is also set experimentally in FRFCM. In the
future, we will explore new FCM algorithm that automatically
set the number of clusters. In addition, the selection of mask
image or marker image is also an open problem; some better
results can be obtained by changing mask or marker image.

APPENDIX A

In this appendix, the detailed demonstration that the introduc-
tion of local spatial information is similar to membership filter
is presented.

Let i denote the sample, k represents the kth cluster, Ni is
the neighbor area centered i, c denotes the number of clusters,
because dki = ‖xi − vk‖2 and dji = ‖xi − vj‖2 , we can obtain

uki =
‖xi − vk‖−2/(m−1)

∑c
j=1 ‖xi − vj‖−2/(m−1)

=
(dki)

−1/(m−1)

∑c
j=1 (dji)

−1/(m−1) .

If we replace the distance between central pixels and cluster-
ing centers with the distance between the neighbors of pixels

and clustering centers, then

d′ki =
∑

r∈Ni

wkrdkr

d′j i =
∑

r∈Ni

wjrdjr .

Therefore, the membership matrix of improved algorithms
incorporating neighborhood information (FCM_S, FLICM,
KWFLICM) is obtained

u′
ki =

(d′ki)
−1/(m−1)

∑c
j=1 (d′j i)

−1/(m−1)

=

(∑
r∈Ni

wkrdkr

)−1/(m−1)

∑c
j=1

(∑
r∈Ni

wjrdjr

)−1/(m−1)

=
(WkiDki)

−1

∑c
j=1 (WjiDji)

−1

= (WkiDki)−1(W
′
kiD

′
ki)

= α1
D

′
ki

Dki

where, m=2, α1 = W
′
ki/Wki , WkiDki = F (

∑
r∈Ni

wkr

dkr ), WjiDji =F (
∑

r∈Ni
wjrdjr), W

′
kiD

′
ki = F

′
([
∑c

j=1(Wjr

Djr )−1 ]−1); F : (w, d)→(W,D) and F
′
: (W,D) → (W

′
,D

′
)

are mapping functions.
We consider an idea replacing membership u′

ki with its neigh-
borhood membership ukr , r ∈ Ni , i.e.,

u′′
ki =

∑

r∈Ni

wkrukr .

According to the definition of uki , we obtain

ukr =
(dkr )

−1/(m−1)

∑c
j=1 (djr )

−1/(m−1) .

substituting ukr into u′′
ki , i.e.,

u′′
ki =

∑

r∈Ni

wkr
(dkr )−1/(m−1)

∑c
j=1(djr )−1/(m−1)

=
∑

r∈Ni

wkr
(dkr )−1

(Dkr )−1

= w
′
kr

D
′
kr

d
′
kr

= α2
D

′
kr

Dkr
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where, m = 2, α2 =Dkiw
′
ki/d

′
ki , Dkr =F1([

∑c
j=1(djr)−1 ]−1),

w
′
krD

′
ki/d

′
ki = F1

′(
∑

r∈Ni
wkrDkr/dkr ); F1 : d → D and

F
′
1 : (w, d,D) → (w

′
, d

′
D

′
) are mapping functions.

We can see that u′′
ki and u′

ki have the similar form, the only
differences between u′′

ki and u′
ki can be found in weighted

coefficient, i.e., α1 and α2 . Therefore, the proposed mem-
bership filter is similar to the introduction of local spatial
information. �

REFERENCES

[1] B. Wang and Z. Tu, “Affinity learning via self-diffusion for image segmen-
tation and clustering,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Providence, RI, USA, 2012, pp. 2312–2319.

[2] S. Kim, C. D. Yoo, S. Nowozin, and P. Kohli, “Image segmentation using
higher-order correlation clustering,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 36, no. 9, pp. 1761–1774, Sep. 2014.
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